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ABSTRACT

‘We propose an improvement on a state-of-the-art keyphrase extrac-
tion algorithm, Topical PageRank (TPR), incorporating topical in-
formation from topic models. While the original algorithm requires
a random walk for each topic in the topic model being used, ours is
independent of the topic model, computing but a single PageRank
for each text regardless of the amount of topics in the model. This
increases the speed drastically and enables it for use on large col-
lections of text using vast topic models, while not altering perfor-
mance of the original algorithm.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms

Automatic Keyphrase Extraction, Topical Keyphrase Extraction

1. INTRODUCTION

Automatic Keyphrase Extraction (AKE) is the task of identify-
ing a set of expressions or noun phrases which concisely repre-
sent the content of a given article. Keyphrases have proven useful
for various Information Retrieval and Natural Language Processing
tasks, such as summarization [1] and contextual advertising on web
pages [6]. Currently two types of methods are used: supervised
and unsupervised methods. State-of-the-art unsupervised methods
transform the input document into a graph representation. Each
node in this graph corresponds to a candidate-word and edges con-
nect two candidates occurring within a certain text window. The
significance of each node, i.e., word, is computed using a random
walk algorithm based on PageRank [4]. The top ranked nodes
are then selected to generate keyphrases. TextRank is one of the
most well-known examples of a graph-based approach [3]. Recent
work has shown that the quality of keyphrases is improved by us-
ing topic model information in the graph model. Topical PageRank
(TPR) [2] is a variation on the TextRank-algorithm that incorpo-
rates topical information by increasing the weight of important top-

Copyright is held by the author/owner(s).

WWW 2015 Companion, May 18-22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742730.

ical words based on the topic-document and word-topic distribu-
tions generated by a topic model. Experimental results showed
that TPR outperforms other existing unsupervised AKE-methods.
While TPR is an effective algorithm for the inclusion of topical in-
formation from the topic model, it requires a random walk for each
topic in the topic model. This approach becomes cumbersome for
huge collections of text using large topic models, as PageRank is
a computationally intensive algorithm. In this paper we propose a
modification of the original TPR algorithm which is equally effec-
tive but speeds up the algorithm as many times as the amount of
topics in the topic model.

2. SINGLE-PAGERANK
TOPICAL KEYPHRASE EXTRACTION

Topical PageRank, as described in [2], requires a PageRank for
each topic separately and boosts the words with high relevance to
the corresponding topic. In a word graph each candidate word (i.e.,
nouns and adjectives) become a vertex in set v = {w1,...,wn}.
For each candidate w;, a window of the following words in the
given article (typically chosen as 10) is selected and a directed edge
from w; to each word w; included in the window is created, result-
ing in a directed graph. Formally, the topic-specific PageRank can
be defined as follows:
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where R (w;) is the PageRank score for word w; in topic z,
e(w;, w;) is the weight of the edge (w; — w;), the number of out-
bound edges is O(w;) = >, e(w;,w’) and X is a damping fac-
tor € [0, 1] indicating the probability of a random jump to another
node. A large R.(w) indicates a word w that is a good candidate
keyword in topic z. The topic specific preference value P, (w;)
for each word w; is the probability of arriving at this node after
a random jump, thus with the constraint > P.(w) = 1 given
topic z. In TPR, the best performing value for P, (w;) is reported
as being the probability that word w; occurs given topic z, denoted
as P(w;|z). This indicates how much that topic z is focused on
word w;. With the probability of topic z for document d P(z|d),
the final ranking score of word w; in document d is computed as
the expected PageRank score over that topic distribution, for a topic
model with K topics,

Rz(wi) = )\
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R(w:) = Ru(w;) - P(2|d). 2)
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Adjectives and nouns are then merged into keyphrases and corre-
sponding scores are summed and ranked. Note that original TPR
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Figure 1: Speed-up with proposed modification

requires a PageRank for each topic in the model. Since topic mod-
els with a large amount of topics (e.g. K = 1,000) are reported
to empirically perform best, this requires many computations for
each document, especially for long ones. That is, for D documents
the total amount of PageRanks for AKE is K x D. We propose an
alternative strategy to avoid this large computational cost, by using
but a single PageRank per document. We do this by using a single
weight-value we call W (w; ) indicating the full topical importance
of each word w; in the PageRank instead of K topic-specific values
and summing all results. First, we determine the cosine similarity
between the vector of word-topic probabilities P(w;|Z) =
(P(wilz1), ..., P(wi|zx)) and the document-topic probabilities
of the document, P(Z|d) = (P(z1|d),..., P(zx|d)), to deter-
mine the single weight value W (w;) per word w; and document
d.
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W(w;) = (3)

This quantity W (w;) can be considered the ‘topical word impor-
tance’ of word w; given document d, where the contribution of a
particular topic zy, is larger if w; is an important word for that topic,
and the topic is strongly present in the considered document. As a
result, the single PageRank R(w;) becomes
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3. EVALUATION

To detect any change in performance, we use a dataset com-
prised of news articles built by Wan and Xiao [5], that contains
308 news articles from the 2001 Document Understanding Confer-
ence (DUC) summarization-track, with 2,488 manually assigned
keyphrases. We create a mapping between the keyphrases in the
gold standard and those in the system output using an exact match.
We reduce keyphrases to their stems using the Porter-stemmer and
use three standard evaluation metrics for AKE: precision, recall,
and Fl-measure. Other parameters (for the stemmer, tokenizer
and PageRank) are identical to those in the original TPR-paper [2].
Figure 1 shows how much our modification speeds up the computa-
tion time as compared to the original TPR algorithm for processing
of the complete collection of articles. Both approaches are pro-
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Figure 2: Comparison of the original TPR [2] (indicated
‘TPR’) with the more efficient single-PageRank TPR (indicated
‘single-TPR’), and two baselines, TF-IDF and TextRank [3]

grammed using identical pre-processing functions and PageRank
implementations. The graph shows the linear speed up achieved by
making the algorithm independent of the amount of topics, and thus
constant time. Figure 2 shows precision-recall curves for the orig-
inal TPR and ours using a single PageRank, using the same topic
model of 1,000 topics trained on Wikipedia data (a corpus similar
to the one used in the original TPR [2]), and two baselines TF-IDF
and TextRank. The effectiveness of our method is close to identical
while computation time is reduced by factor ~ 1/K (i.e., 1,000
times faster in this example).

4. CONCLUSION

We propose a more efficient use of topic models for unsuper-
vised keyphrase extraction. Using a single value for topical word
importance in a PageRank algorithm based on the cosine similarity
between the vector of word-topic probabilities and the document-
topic probabilities of the document, we achieve a constant compu-
tation time, independent of the topic model being used. We show
that this modification does not significantly alter the performance
while reducing the computation time by a large margin.
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