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ABSTRACT
To help users better understand the potential risks associated with
publishing data publicly, and the types of data that can be inferred
by combining data from multiple online sources, we introduce a
novel information exposure detection framework that generates and
analyzes the web footprints users leave across the social web. We
propose to use probabilistic operators, free text attribute extraction,
and a population-based inference engine to generate the web foot-
prints. Evaluation over public profiles from multiple sites shows
that our framework successfully detects and quantifies information
exposure using a small amount of non-sensitive initial knowledge.

1. INTRODUCTION
This poster examines this problem of quantifiably measuring on-

line privacy risks by proposing a framework that constructs web
footprints (as would an adversary stalking a user) and reports to
the user her particular level of vulnerability based on her publicly
shared information. Our framework (see Figure 1) first creates the
user’s web footprint by combining publicly accessible information
from social media, micro-blogs, data aggregation sites, etc. Since
much web data is unstructured, we also introduce a pattern-based
attribute extractor that bootstraps patterns from text and then ex-
tracts structured attribute values based on them, thereby increasing
the amount of usable information for web footprint construction. In
addition, probabilistic inference logic is applied to supplement web
footprints with probable attribute value pairs learned via algebraic
dependencies between attribute values in profiles on different sites.
Finally, we infer the user’s attribute values by site-level population.

2. OUR APPROACH
We assume a person P , about whom an adversary is attempt-

ing to learn information, has publicly revealed certain attributes
(e.g., name and age) or that such information is otherwise pub-
licly available, perhaps from a data aggregation site. Some of the
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revealed information may be sensitive (e.g., birthday or income).
We frame the public information exposure (PIE) detection problem
in the context of an adversary who wishes to (1) gather publicly
available information about a target individual P , and (2) infer ad-
ditional attribute values about P by applying inference techniques
to the publicly available information.

We assume that the adversary has some background knowledge
about P (e.g., P ’s name) and that he uses only publicly available
information about P to form beliefs about P that are not originally
known to the adversary. To learn information about P , we allow the
adversary to query a set of sites S = {s1, s2, . . . , sq}, e.g. online
social networks, search engines, and data aggregation sites.
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Figure 1: The PIE framework.

Algorithm Overview.
There has been an
emerging interest in
linking individuals across
online social networks
(OSNs), including [1–
5]. Our approach
augments traditional
structured attribute in-
ference with three com-
plementary methods:
pattern-based inference
(to extract attributes
from text), distributed
probabilistic-join in-
ference (to map pro-
files across sites), and
population-based in-
ference (to incorporate information about norms in the population).
Our experiments show that augmenting standard record linkage
with these inference techniques increases the number of discovered
beliefs and more accurately models a real adversary. To the best of
our knowledge, we are the first to propose this holistic methodol-
ogy for problems in this area.

Our high level algorithm for PIE detection (shown in Algorithm 1)
collects information about a person from different public websites.
The input to our algorithm is the set of core attributes, Bcore, the
minimum confidence thresholds for probabilistic joins (θcross-site)
and population inferences (θsite), and the set of public websites to
search, S. The algorithm outputs person P ’s web footprintW .

The algorithm begins by assigning the initial set of beliefs based
on Bcore to the web footprint W . Each site is queried to find pro-
files that contain the attribute values in Bcore, adding the resulting
profiles to set p. Next, it iterates through all the unstructured (text)
attributes in any of the returned profiles and uses a pattern-based
attribute detection algorithm to identify and extract missing struc-
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Algorithm 1 Information Exposure Detection Algorithm
1: Input: Bcore, θcross-site, θsite, S
2: Output:W
3:
4: W ← Bcore
5: Bcand ← ∅

6: p← ∅ ▷ set of profiles to consider
7: for all si in S do ▷ find profiles on site si that match Bcore
8: p← p∪ GATHER_PROFILES(Bcore, si)
9: for all pi in p do ▷ infer values from unstructured text
10: for all ⟨Aj , αj⟩ in pi s.t. Aj is an unstructured attribute do
11: EXTRACT_STRUCTURED_VALUES(αj , pi)

12: repeat
13: for all αi

j in p do ▷ iterate over values in all profiles
14: Bcand ← DETERMINE_DEPENDENCIES(αi

j , p)

15: W ← UPDATE_WEBFOOTPRINT(Bcand, θcross-site)

16: Bcand ← Bcand−W ▷ remove beliefs where conf ≥ θcross-site

17: for all bj in Bcand do ▷ iterate over low confidence beliefs
18: Bcand ← COMPUTE_POPULATION_INFERENCE(bj)

19: W ← UPDATE_WEBFOOTPRINT(W,Bcand, θsite)

20: untilW does not change
21: returnW

Table 1: Ground truth statistics.
Site # of Profiles # of Ground Truth Profiles
Google+ 264,266 12,964
LinkedIn 71,253 50,109
Twitter 73,439 3916
FourSquare 112,764 6352

tured attribute values (the detection algorithm uses bootstrapped
patterns found in a large corpus to find user data that match the
patterns and extracts the attributes within the patterns). Learned
structured attributes are “inserted” into the corresponding profiles.

The algorithm then applies site-level and cross-site inference tech-
niques to infer additional attribute values and assign confidences to
those values. The resulting set of beliefs are added to the web foot-
print iff the belief’s confidence exceeds a minimum threshold. For
the set of beliefs that have lower confidence, we use the population
inference engine to see if we can improve our confidence in these
different beliefs or learn other new ones based on norms found in
population data. The above process repeats until no new informa-
tion can be added to the web footprint.

3. EXPERIMENTS
We evaluated our approach to PIE detection using public profile

data from Google+, LinkedIn, Twitter, and FourSquare. We gen-
erated a ground truth data set using the about.me API that maps
actual accounts on different sites for specific individuals. Table 1
summarizes the number of profiles collected for each site and the
number of ground truth individuals for each site. Our population
inference engine is based on 100,000 public profiles from Google+
and 49,823 public profiles from LinkedIn.

Public Information Exposure and Accessibility. We test infor-
mation exposure breaches by considering different initial Bcore sets,
beginning with just first name and last name, and then consider at-
tribute cores that include one or more additional attributes (loca-
tion, education, city, relationship status, birthday, college, gender).
We compute three PIE scores for each attribute core averaged over
all of the ground truth users that are on all four sites: the number
of true beliefs, information accessibility (the weighted sum of the
learned beliefs and the confidence values), and information expo-
sure (the fraction of beliefs in W that are accurate, weighted by
attribute importance). Due to space limitations, we cannot present
all results for all combinations tested. When adding more attributes
the number of true beliefs increases from 6 (when using only name
as the initial core beliefs) to between 7 and 27 (when using name

Table 2: Number of True Beliefs
Initial beliefs (Bcore) Gold PIE
first name, last name 2 6
first name, last name, gender 3 7
first name, last name, location 3 10
first name, last name, education 4 11
first name, last name, city 4 27
first name, last name, relationship status 4 13
first name, last name, birthday 4 11
first name, last name, college 4 6

and relationship status). We also find that information accessibility
is 16 when using only name as the initial core beliefs). It sometimes
decreases to as low as 11 when additional attributes are added, but
usually increases (to as high as 38). Finally, we find that the expo-
sure for this group of individuals is between 0.83 (when using only
name as the initial core beliefs) and 0.96 (when using name, gen-
der, city, location, and education). Adding data to the core that is
not considered sensitive increases the information exposure by ap-
proximately 13%. This indicates that there is enough variation in
common attributes to uniquely identify people with high accuracy
if the adversary knows a small number of these attributes.

We also compare our approach to a gold standard for accuracy
that uses exact-match record linkage (string matching) across the
profiles from different sites to find new beliefs. The gold standard
adds an attribute, attribute value pair if there is a matching attribute
value across two sites for a particular attribute and there is no con-
flicting attribute value for that attribute. Otherwise, the attribute,
attribute value pair is not added. This means that the accuracy will
be close to one when we have at least one additional attribute with
the name. Our interest is in understanding the impact of using this
strict approach on the number of true beliefs discovered. Table 2
shows this comparison. We see that while the accuracy of the gold
standard is optimal, the number of true beliefs discovered is low,
usually no more than one attribute more than the core. In contrast,
our approach increases the number of true beliefs significantly, with
an increase of between 4 and 24 more beliefs.

Finally, we consider the contribution of each components of the
framework. The site-level inference and cross-site inference ac-
count for the majority of beliefs discovered (77%), both pattern-
based inference using Twitter data and population-inference aug-
ment the overall set of beliefs by over 20%; many of these beliefs
would not be discovered without the combined framework.

4. CONCLUSION
There has been little work that examines how much information

can be derived from the data that we publish openly and publicly
online. This poster proposes an approach to determine a user’s web
footprint– beliefs inferred by an adversary. An empirical analysis
across multiple social networking sites highlights how easy it is to
re-identify people using our approach. We hope that our framework
will make the risks of data leakage more transparent to web users.

Acknowledgments
This work was supported by NSF CNS-1223825 and CNS-1149832.

References
[1] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer, and R. Teixeira.

Exploiting Innocuous Activity for Correlating Users Across Sites. In WWW, 2013.
[2] M. Humbert, T. Studer, M. Grossglauser, and J.-P. Hubaux. Nowhere to Hide:

Navigating around Privacy in Online Social Networks. In ESORICS, 2013.
[3] T. Iofciu, P. Fankhauser, F. Abel, and K. Bischoff. Identifying Users Across Social

Tagging Systems. In ICWSM, 2011.
[4] P. Jain, P. Kumaraguru, and A. Joshi. @I Seek ‘fb.me’: Identifying Users Across

Multiple Online Social Networks. In WoLE, 2013.
[5] A. Malhotra, L. Totti, W. Meira Jr., P. Kumaraguru, and V. Almeida. Studying

User Footprints in Different Online Social Networks. In ASONAM, 2012.

118


	Introduction
	Our Approach
	Experiments
	Conclusion



