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ABSTRACT

Crowdsourcing applications are becoming widespread; they
cover very different scenarios, including opinion mining, mul-
timedia data annotation, localised information gathering,
marketing campaigns, expert response gathering, and so on.
The quality of the outcome of these applications depends on
different design parameters and constraints, and it is very
hard to judge about their combined effects without doing
some experiments; on the other hand, there are no experi-
ences or guidelines that tell how to conduct experiments, and
thus these are often conducted in an ad-hoc manner, typ-
ically through adjustments of an initial strategy that may
converge to a parameter setting which is quite different from
the best possible one. In this paper we propose a compara-
tive, explorative approach for designing crowdsourcing tasks.
The method consists of defining a representative set of ex-
ecution strategies, then execute them on a small dataset,
then collect quality measures for each candidate strategy,
and finally decide the strategy to be used with the complete
dataset.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION

A new class of software applications, called crowd-based
applications, is emerging. These applications use crowds, en-
gaged through a variety of platforms, for performing tasks;
the most typical application scenarios include fact check-
ing, opinion mining, localized information gathering, mar-
keting campaigns, expert response gathering, image recog-
nition and commenting, multimedia decoding and tagging,
and so on.

The common aspect of these applications is the interac-
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tion between the requestor (who poses a task), the system
(which organizes the computation by mixing conventional
and crowd-based modules), and a potentially wide set of
performers (who are in charge of performing crowd tasks
and are typically unknown to the requestor). The system
may take multiple forms: in addition to crowdsourcing plat-
forms (such as Amazon Turk or CrowdFlower) or question-
answering systems (such as Quora or Yahoo!Answers), a
recent trend is to use social networks (such as Facebook,
Twitter or LinkedIn) as sources of human labor.
Crowd-based computations undergo a new set of design
principles and phases, as dealing with crowds introduces
many concurring objectives and constraints. A non-exhaustive
list of such objectives and constraints includes:

e Performers selection, possibly on the basis of their
expertise on the task that they should perform;

e Performers rewarding, that that includes the mon-
etary aspect (how much to pay for an elementary task)
as well as non-monetary ones (such as fun, self-esteem,
altruism, visibility and reputation);

e Performers exclusion, the set up of explicit mech-
anisms for determining low-quality performers and ei-
ther banning them from the computation or simply
disregarding their contributions to the result;

e Convergence criteria, determining on an object ba-
sis when the number of results that have been collected
is sufficient to take a final decision about the outcome
of cowdsourcing for that object;

e Global time constraints, i.e. the time at which the
crowd-based computation should be stopped and re-
sults should be taken as final;

e Global cost constraints, i.e. the maximum amount
that should be spent on the overall crowdsourcing task;

e Object-specific cost constraints, i.e. the maxi-
mum amount that should be spent for producing the
result relative to a single object;

e Performer-specific cost constraints, i.e. the max-
imum amount that should be given to each specific
performer.

As consequence, a requestor has several design dimensions
to consider when building a successful crowdsourcing task;
some of these dimensions influence the first and most im-
portant decisions, i.e. the choice of the platform to be used



(crowdsourcing vs social, possibly multi-platform) and of the
community of engaged performers on those platforms.

The next choices are instead concerned with the setting
of control parameters, whose number is smaller than the
design dimensions, as it typically includes the task-specific
reward, object-specific convergence criteria, and performer-
specific exclusion criteria. Defining the appropriate values
for these parameters is hard, as they are not independent
and are linked by hidden relations, and may be influenced
by the domain of application.

Current approaches address this problem by offering tools
where a programmer (e.g. using Turkit for Amazon Mechan-
ical Turk) can easily define and configure crowd-based ap-
plications, without considering how to do their setting (and
at most providing defaults, e.g.[16], [14], |1], [3]); other ap-
proaches define a mathematical formulation of the problem
in terms of constrained optimization but fail to guarantee
a consistency check of the effectiveness of the optimal so-
lution in terms of real-life application execution; moreover,
no mathematical model can cover the variety of optimiza-
tion dimensions and constraints, as each model typically ad-
dresses a small set of decisions for a specific crowdsourcing
ask (e.g., [20], |2], [12], [22], see the next section); even un-
der such limitations, many mathematical models are hardly
tractable, as the underlying problems fall into exponential
of NP-hard classes.

In this paper, we propose a domain-independent, explo-
rative design method which uses rapid prototyping in the
small in order to select the design parameters to be used
for big datasets. The method consists of defining a repre-
sentative set of execution strategies, then execute them on
a small, unbiased dataset, then collect quality measures for
each candidate strategy, and finally decide the strategy to
be used with the complete dataset. In our approach, the de-
signer has to empirically choose execution strategies which
are compared, and then empirically decide the best strategy
by looking at how the solution satisfies the various objectives
and constraints, without a formalization of these empirical
choices, as we believe that any mathematical formulation
is not of practical use for this problem. However, we sug-
gest to use diversification criteria in determining the initial
space of execution strategies, so as to guarantee that the
final selection is among alternatives that yield to significant
differences along the considered dimensions.

The proposed method is of general applicability, but it
is complemented by the availability of a tool, called Crowd-
searcher [5][4], that supports the definition of multi-platform
crowd-based applications through step-by-step specifications,
where the application is initially configured and then auto-
matically generated, and therefore it is possible to create
the execution strategies in the small by simply changing the
parameters settings in the tool.

This paper is organized as follows: Section [2| describes
related work ; Section [3] describes in details the proposed
approach; Section @ shows the experimental scenario and
discuss the results and Section [5] concludes.

2. BACKGROUND AND RELATED WORK

Most crowd programming approaches rely on imperative
programming models to specify the interaction with crowd-
sourcing services (e.g., see Turkit [16], RABJ [14], Jabber-
wocky [1]). AutoMan [3] is integrating human computations
with Scala, providing a rich variety of options for adaptive
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quality control, although expressed within a low-level pro-
gramming style.

Other works are centered on supporting workflows which
include humans. CrowdLang [19] supports workflow design
and execution of tasks involving human and machine activ-
ities. CrowdWeaver [13] is a system for visually manage
complex crowd work. The work [21] presents a declarative
approach to crowdsourcing workflows based on XML speci-
fications through BPEL4People.

From the databases world studies has been done for both
designing and optimizing crowdsourcing task. CrowdDB [9]
uses an extension of SQL (called CrowdSQL) for both mod-
elling the data and querying the crowd and it exploits query
optimization techniques. Qurk [17] is a query system for hu-
man computation workflows that exploits a relational data
model and SQL, it provides a series of optimizations like:
batch predicates, run-time pricing, heuristics for reducing
the cost of the join operation, pre-filling the tables with re-
sults coming from past HIT and training algorithms.

A lot of studies have been done on mode for optimizing
the design of a crowdsourcing task. Usually they focus on
the problem of task allocation and results aggregation, and
they usually use statistical methods [20]. For instance, [2]
proposes a method based on active learning for inferring
the correct solution given a set of answers. The authors in
|12] show how to use the probabilistic matrix factorization
approach in order to aggregate results of a labeling task. In
[22] the authors propose a Bayesian model for aggregating
the results of a labeling task bu taking into the account the
quality of the workers. Notice that all these works focus on
a single type of operation (labeling) and address only the
problem of aggregating the results of the single evaluations
given by each performer.

On the other hand in [24] the authors propose a proba-
bilistic framework for choosing which HIT is better to send
to the crowd from a set of candidates based on the infor-
mativeness of the HIT (modeled as entropy). Furthermore
|11] proposes a model for decomposing a task into simpler
sub-task, focusing on the quality of the final results.

Other works use experiments to understand how differ-
ent task design configurations impact on the final results.
Typically they focus on a single dimension like incentives
(both monetary [18][23] or not [7]), task types [8] and task
decomposition [15].

At the best of our knowledge this is the first time that
an empirical method has been integrated in the task design
process. The results of the experiments are promptly used
to decide the configuration of the task.

3. METHOD

Our approach refers to a simple concept model shown in
Figure |1} which describes how each elementary execution of
a crowdsourcing step, called Ezecution, is referred to an un-
derlying operation (e.g. classifying, tagging, labeling, liking,
commenting) called Task, to a specific Platform (that can
be either a crowdsourcing marketplace or a social network),
to a specific Object of a given collection, and to a specific
Performer who executes. This model is a simplified version
of the control mart presented in [4].

These concepts, in turn, are characterized by a set of prop-
erties, whose ranges of values define the design space. Typ-
ically, they should be assigned by the application designer
in order to configure the crowdsourcing tasks, either by in-
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Figure 1: Concept model and parameters used by
our approach

teracting with a design tool, or by using scripting languages
(which in turn invokes an API where they appear as pa-
rameters), or for directly configuring the application. For
instance, figure [1] illustrates a setting where we define four
properties; the method is agnostic to the specific choices
of properties but assumes that they can be referred to the
concept model and, of course, that they can be used for
configuring the execution task. They are:

e Platform: where the task will be executed. This is a
very important dimension because each platform tar-
gets different crowds which have different skills.

e Cardinality, i.e. the number of object shown to the
performer: this parameter controls the amount of work
that a performer has to face each time. It influences
the cost and time required by the task.

e Reward, i.e. the cost of a HIT on Amazon Mechanical
Turk.

e Agreement: i.e., with a majority based decision for
each objects, it indicates the amount of agreement
needed in order to consider an object as evaluated.
A high level of agreement should correspond a better
quality of the results while negatively impacting on the
time and cost.

This list can be extended in order to satisfy specific user
needs, for instance adding a spam detection strategy, whose
modeling would lead to adding a Spam flag on the per-
former, set to 0 or 1 to indicate its inclusion or exclusion.

Each candidate execution is thus represented by a vector
S = {s1,82,...,5n} in an n—dimensional space, where n is
the number of considered parameters; for instance, an exe-
cution on Amazon Mechanical Turk showing 3 objects per
HIT, requiring a 2 workers over 3 to agree on the evaluation
and paying each worker 0.01$ is represented as:

S =["AMT”,3,2/3,0.01] (1)

Once the design space is well defined, the designer should
then choose some of the possible strategies (represented as
a collection of vectors.) It is not possible to consider all
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possible combinations due to the cost and the required time
for conducting all the small-scale experiments. It is impor-
tant to choose few strategies by including interesting points
in the solution space and by using as criteria parameter di-
versification, at the same time by avoiding to include any
two solutions when one of them dominates the other. This
notion is not easily formalizable, but it takes into account
the correlation between parameters. For instance, it makes
little sense to include two solutions such as one has a higher
cost and a lower object cardinality than another one (i.e., a
simpler task which is better paid).

The execution of strategies, both in the small and in the
large, can be evaluated by using a set of quality measures
that are computed at the end of the process by inspecting
how each object has been managed by the crowd (e.g., its
classification, tagging, liking and commenting). We use the
following quality measures:

e Cohen’s kappa coefficient, a statistical measure of
inter-annotator agreement for categorical annotation
tasks [6]. When several performers evaluate the same
objects, kappa measures the agreement among them.

e Precision of responses, that can be computed only
when the ground truth is available; it corresponds to
the percent of correct responses over the total and can
be aggregated at the level of object, performer, plat-
form, or whole task.

e Execution time, the elapsed time needed to complete
the whole task.

e Monetary cost, the total amount of money spent for
rewarding the crowd in order to complete the whole
task.

This is only a small set of possible performance measures,
and can be extended with more complex (as the ones shown
in [10]) or application specific metrics.

Finally, our approach requires the splitting of the dataset

of the objects into two subsets small and large, with |small| <<
|large|, such that the selection of S is not biased.
Then, all the strategies {S1, S2, ..., Sm } are run on the small
set (in the small phase) and the quality measures are col-
lected; by analysing them, the strategy Sies: which is asso-
ciated with the best quality measures is selected.

Eventually Spest is run on the remaining objects of the
large dataset and its results are composed with the ones
obtained with the small set.

4. EXPERIMENT

We designed an image labeling crowdsourcing task in which

we ask the crowd to classify pictures related to actors, telling
if it represents the actor himself in a portrait, if it is a scene
taken from a movie, or if it is not relevant (exclusive op-
tions); We used Amazon Mechanical Turk (AMT) as execu-
tion platform.
Using our approach, we identified the following design di-
mensions: number of images shown in each user task, agree-
ment level for each picture classification, and cost of each
AMT hit. Then we selected 8 different strategies (as shown
in Figure [2)) and we ran them on both the small and large
dataset.

The experiment had the purpose of assessing the two main
assumptions of our method:
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Figure 2: (a) Multi-dimensional matrix of param-
eters which are compared in the running example,
and selection of representative combinations (encir-
cled); and (b) Quality measures of the selected com-
binations after their execution over a subset of the
objects.

1 The outcome of the experiment in the small is corre-
lated with the result of the experiment in the large;

2 The cost of performing all experiments in the small
followed by one experiment in the large is affordable
and the extra-effort is well compensated by the possi-
bility of chosing the experiment with the best quality
measures in the small.

We determined an experiment of limited size but sufficient
to perform such an assessment. We built a dataset consisting
of 900 images related to 90 actors, retrieved from Google
Images; then we selected 90 images for the phase in the small
(i.e. 10 images for 9 actors, including both men and women),
so that the comparison of small vs large involves an order
of magnitude, which is enough to illustrate the difference
between small and large cases. This setting hints to the
quality of the method also when the difference between small
and large size reaches two or three orders of magnitudes, as
in a typical big data scenario.

We then run the experiment eight times, both in the small
and in the large, so as to assess the similarity of small and
large size experiments; we paid a total of $227 for the sixteen
experiments (of course, introducing two or more orders of
magnitude of difference between the small and large cases
would require a corresponding, proportional increase of the
total cost.)

The experiment was implemented using CrowdSearChelﬂ
[5][4]; the set up of each experiment in such case is man-
aged by the tool. CrowdSearcher is an important ingredient
for our approach, because it allows to quickly define all the
variants needed for the experiment and to easily collect and
monitor the performance of the single strategy. Thus, set-
ting up a sequence of experiments with Crowdsearcher re-
quires essentially to change parameters within the tool and
regenerate another crowd-based run on AMT which creates
suitable HITS sets, with suitable intervals between them so
as to build independent observations.

Crowdsearcher also collects statistics about each applica-
tion, which allows us to read some of the quality measures
(such as precision and duration of the experiment) directly
from the execution controller; other quality measures, such
as Cohen’s kappa coefficient, must be computed by looking
at the output objects.

"http://crowdsearcher.search-computing.org/
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Table [T] summarizes the results of the experiment, by re-
porting the four quality measures (kappa, precision, cost and
duration).

Regarding the first assumption defined in Section {4 we
calculated the Pearson correlation coefficient, configuration-
wise, between the experiments in the small and in the large.
As one can see, correlation is almost one for the cost, that
can be obtained just by considering the scale factor between
small and large; but correlation is quite good also for du-
ration, performer agreement and precision. Note that du-
rations are longer for the small experiments than for the
long ones. This reflects a known behaviour of the crowd,
which tends to select tasks with higher number of execu-
tions to perform (also due to the bias introduced by crowd
platforms, which show the biggest tasks first).

We next compared the strategy by looking for a trade-
off between precision and cost. In particular, based upon
the small-scale experiment, we selected Strategy 6, which
appears to have enough precision (0.864) associated with a
low cost (1.92), yielding a good price/performance ratio.The
choice of Strategy 6 completes the decision making.

The designer’s choice is anyway driven by cost-benefit
analysis, that however is performed in the small, e.g. the
designer will be able to decide if a difference in precision
from .811 of case 3 to .856 of case 5 is justified by an in-
crease in costs from 1.40 to 4.77.

Note that we spent $22.49 for computing all the strategies
in the small and $16.86 for executing the strategy number
6, for a total cost of $39.35; these two numbers are com-
parable, but the difference between the cost of experiments
in the small and in the large increases a lot with big input
data. When the task is very large, an incremental tuning
is also possible, e.g. using datasets of increasing sizes for
computing the quality measures of a restricted number of
candidates. The case in the large of Table [l can be consid-
ered an intermediate-size experiment if one has to process a
dataset of millions of photos; in such case, the eight cases in
the large would result from a selection starting from a larger
number of experiments in the small.

One could note that case 7 is associated with a slightly
higher cost of 2.70 compared to case 6 (that was selected
by considering quality measures in the small), but it also
exhibits a better precision in the large of 0.871 compared
to case 6; such better precision is not predicted by the ex-
periment in the small and comes as a surprise. Indeed the
method incurs some unexpected differences between tests
in the small and in the large due to the intrinsic statistical
variability of our study; greater sizes in both small and large
cases would yield to less variability.

5. CONCLUSION

In this paper, we have proposed an explorative approach

for designing crowdsourcing tasks. The experimental eval-
uation shows that the method is applicable to this kind of
problem (as there is a good correlation between the results
of the experiments in the small and in the large), and that
the trade-off between the cost and the added value is afford-
able.
Future work will focus on formalizing the process for se-
lecting candidate strategies and on the application of the
method to a wider set of design dimensions (e.g. varying
also the execution platform).



Table 1: Quality measures and Pearson correlation of experiments in the small and in the large.

[ [ Agreement kappa | Precision [ Cost (8) [ Duration (s) |
[ Config. | small [ large | small [ large | small [ large | small [ large |
1 N/A N/A 0.733 0.799 1.35 13.68 14885 8832
2 0.692 0.607 0.778 0.855 4.05 43.97 11788 20346
3 0.596 0.612 0.811 0.838 1.40 14.15 52219 30032
4 0.579 0.578 0.822 0.857 2.25 23.10 114186 63963
5 0.442 0.569 0.856 0.858 4.77 46.35 120983 53162
6 0.499 0.540 0.811 0.864 1.92 16.86 110535 65178
7 0.580 0.606 0.800 0.871 2.70 28.05 121945 67676
8 0.533 0.555 0.833 0.838 4.05 41.67 78086 23745
Correlation 0.707 0.619 0.999 0.915
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