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ABSTRACT
Community detection has become an extremely active area of re-
search in recent years, with researchers proposing various new met-
rics and algorithms to address the problem. Recently, the Weighted
Community Clustering (WCC) metric was proposed as a novel way
to judge the quality of a community partitioning based on the dis-
tribution of triangles in the graph, and was demonstrated to yield
superior results over other commonly used metrics like modularity.
The same authors later presented a parallel algorithm for optimiz-
ing WCC on large graphs. In this paper, we propose a new dis-
tributed, vertex-centric algorithm for community detection using
the WCC metric. Results are presented that demonstrate the algo-
rithm’s performance and scalability on up to 32 worker machines
and real graphs of up to 1.8 billion edges. The algorithm scales best
with the largest graphs, finishing in just over an hour for the largest
graph, and to our knowledge, it is the first distributed algorithm for
optimizing the WCC metric.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—data min-
ing; H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—clustering

Keywords
Community detection; Distributed graph algorithms

1. INTRODUCTION
Due to the generality of the graph as a data structure, graphs cor-

respond well to many different systems in the real world, like social
networks, molecules, road maps, and more; and many problems can
be expressed intuitively and solved using a graph representation.
One such problem whose solution has many applications is that of
community detection – automatically identifying groups of vertices
that are tightly connected among themselves and loosely connected
with the rest of the graph. In social networks, for example, the iden-
tification of communities can help with targeted marketing; or in a
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network of items that are frequently purchased together, commu-
nity detection could be used to make recommendations.

As the graphs being operated on become larger and larger, the
ability to process them in memory on one machine becomes infea-
sible due to both time and memory constraints. For these two rea-
sons, complexity and size, distributed algorithms have become nec-
essary to solve problems on large graphs. In this paper, we present
a distributed algorithm for optimizing WCC [17], a recently pro-
posed metric for judging the quality of community partitionings.
The algorithm scales well on real graphs of up to 1.8 billion edges
and outperforms a parallel, centralized algorithm that also seeks
to optimize WCC [18]. The algorithm follows the vertex-centric
paradigm introduced by the Pregel platform [12], and to the best of
our knowledge, it is the first distributed algorithm for optimizing
the WCC metric.

The structure of the paper is as follows. In Section 2, we begin
by presenting an overview of related work in community detection
and distributed community detection. Next, in Section 3, we intro-
duce background material and the terminology used in the rest of
the paper. Following this, the proposed algorithm is explained in
Section 4, followed by experimentation in Section 5. We conclude
with a discussion of future work.

2. RELATED WORK
Most of the research on community detection algorithms has fo-

cused on single threaded algorithms on SMP machines. The list
of proposals is rich and diverse, with those based on modularity
maximization forming the most prominent family of community
detection algorithms [15]. Modularity is a community detection
metric that rewards those partitions with communities with an inter-
nal edge density larger than that expected in a null model. Several
strategies have been proposed for its optimization, such as agglom-
erative greedy [5] or simulated annealing [13]. One of the most
famous and widely used community detection algorithms based on
modularity maximization is the Louvain method [4], a multilevel
approach that scales to graphs with hundreds of millions of ob-
jects. However, the quality of its results decreases considerably as
the size of the graph increases [7]. More importantly, it has been
reported that modularity has resolution limits [3, 6], which means
that modularity is unable to detect small and well-defined commu-
nities when the graph is large. Related to this, recent studies have
proven not only that modularity has detectability issues [14] (i.e. it
is not able to identify communities even if they are well defined),
but also that the identification of well-defined communities is more
difficult than ill-defined ones [19]. Although it has not been studied
whether or not WCC also suffers from these problems, properties
presented in [17] suggest that algorithms based on WCC are able
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to deliver cohesive and structured communities regardless of the
size of the graph.

There also exist several proposals based on random walks. The
intuition is that in a random walk, the probability of remaining in-
side of a community is higher than going outside, due to the higher
density of internal edges. This strategy is the main idea exploited
in Walktrap [16]. Another algorithm based on random walks that
is highly adopted in the literature is Infomap [22], which searches
for a codification for describing random walks based on commu-
nities. The codification that requires the least amount of memory
(attains the highest compression rates) is selected. According to the
comparison performed by Lancichinetti et al. [7], Infomap stands
as one of the best community detection algorithms in the literature.

Another category of algorithms is formed by those capable of
finding overlapping communities, which have gained significant
interest during the last years. We find several proposals, such as
Oslom [8], which uses the significance as a fitness measure in or-
der to assess the quality of a community. Similar to modularity, the
significance is defined as the probability of finding a given cluster
in a random null model. Another algorithm that falls into this cat-
egory is the Link Clustering Algorithm (LCA) [1]. This algorithm
is based on the idea of taking edges instead of vertices to form
a community. The similarity of adjacent vertices is assessed by
looking at the Jaccard coefficient of the adjacency lists of the two
vertices of the edges. Those edges connecting vertices with high
similarity are assigned to the same community, and so overlapping
communities emerge naturally. Finally, a recently proposed algo-
rithm is BigClam by Yang et al. [25]. This algorithm is based on
computing an affiliation of vertices to communities that maximizes
an objective function using non-negative matrix factorization. The
objective function is based on the intuition that the probability of
an edge existing between two vertices increases with the number of
communities the vertices share (i.e. the number of communities in
which the vertices overlap).

Most of the work regarding the exploitation of parallelism for
community detection has the form of multithreaded algorithms for
SMP machines. In [11], authors propose a parallel version of the
Louvain method, which achieves an speedup of 16x using 32 threads.
Similarly, in [21] Riedy et al. propose an agglomerative modular-
ity optimization algorithm for the Cray XMT and Intel based ma-
chines, capable of analyzing a graph with 100 million nodes and 3.3
billion edges in 500 seconds. Finally, in [2] the authors propose
a parallel version of Infomap, called RelaxMap that relaxes con-
currency assumptions of the original method, achieving a parallel
efficiency of about 70%.

There has been little work regarding distributed algorithms for
community detection. One family of algorithms that fit well into
the vertex-centric model are those based on label propagation [20,
23]. In label propagation, each vertex is initialized with a unique
label, and then, they define rules that simulate the spread of these
labels in the network similarly to infections. Label propagation has
the advantage of being asymptotically efficient, but no theoretical
guarantees are given regarding the quality of the results, especially
in networks where communities are not well-defined.

3. BACKGROUND & TERMINOLOGY
Informally stated, the goal of community detection is, given a

graph, to divide the graph into groups (communities) of vertices
such that, within a group, vertices are tightly connected, and be-
tween groups, there are few connections. For non-overlapping com-
munity detection, which is the focus of this paper, no two commu-
nities contain the same vertex. There are two primary aspects of
this problem. First, it is necessary to give a formal definition of a

metric that defines the quality of a given grouping, or partitioning,
of a graph. The next step is to create an algorithm to find one or
more partitionings of the graph that optimize this metric.

In this paper, we address the second part of this problem by
proposing a scalable, distributed algorithm for the optimization of
the WCC metric proposed in [17]. This metric is defined on un-
weighted, undirected graphs. Inspired by properties of real-life net-
works, the basic idea behind the metric is that within a community,
vertices should have a high concentration of triangles among them-
selves, and they should close more triangles with other vertices in
the community than with vertices outside of the community. Us-
ing this idea, given an undirected, unweighted graph G(V,E), the
quality of a community may then be defined as the average co-
hesion of each of its member vertices to the other vertices in the
community, where the cohesion of a vertex x to a set of vertices S
is defined as

WCC(x, S) =

(
t(x,S)
t(x,V ) ·

vt(x,V )
|S\{x}|+vt(x,V \S) if t(x, V ) 6= 0

0 if t(x, V ) = 0

The function t(x, S) here gives the number of triangles closed by x

with other vertices in S, and the function vt(x, S) gives the number
of unique vertices contained in all such triangles. This cohesion
metric therefore rewards a high ratio of triangles closed within the
community versus triangles closed outside of the community (the
left-hand term) and punishes vertices that have a high number of
vertices in its community with which it does not close any triangle
(the right-hand term). In other words, the left term promotes that
the communities are well defined and isolated from the rest of the
graph; and the right term promotes that all nodes in the community
are interconnected and form triangles.

The quality of a partitioning is the average quality of each vertex
in its assigned community. So, for a set S, WCC(S) is defined
as the average 8x 2 S of WCC(x, S), and the final WCC of a
partitioning P = {C1, . . . , Cn

} of V is then defined as

WCC(P) =
1
|V |

X

S2P

X

x2S

WCC(x, S).

In practice, the optimization of this metric results in high qual-
ity partitionings that correspond well to ground-truth communities,
and it satisfies a number of desirable theoretical properties. For
more information on the metric itself see [17].

4. PRESENTATION OF ALGORITHM
Our algorithm for optimizing this metric consists of three ba-

sic phases: preprocessing, community initialization, and WCC it-
eration. In the first phase, the values of t(x, V ) and vt(x, V ) are
computed for every vertex, and all edges that do not belong to any
triangles are removed from the graph. Next, the local clustering
coefficient of each vertex is computed, and an initial partitioning of
the graph is determined based on these coefficients. From this ini-
tial partitioning, the WCC iteration process is repeatedly applied,
where each vertex chooses a new community simultaneously based
on a heuristic and the global WCC value is computed. The algo-
rithm halts when the WCC value converges. An overview of the
algorithm can be seen in Figure 1.

4.1 Preprocessing
The preprocessing portion of the algorithm is responsible for two

things: counting, for each vertex, the total of number of triangles it
belongs to in the graph (t(x, V )), and removing all edges which
do not belong to any triangles. After removing all such edges,
vt(x, V ) is simply the degree of the vertex x. This filtering step
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Figure 1: Algorithm Overview. The boxes with dotted edges represent messages sent by vertices. Where unspecified, assume that a message
is sent to all neighbors of the vertex.

improves performance and allows simplifying assumptions later
when deciding whether to transfer a vertex from one community to
another. Note that these two values are constant throughout com-
putation and therefore only need to be calculated once.

Given two vertices u and v, a standard way to compute the num-
ber of triangles they form together (the number of triangles in which
the edge (u, v) is included) is to intersect their adjacency lists in or-
der to count the number of their common neighbors. If the two ver-
tices have no common neighbors, the edge (u, v) is removed from
the graph, because it does not affect the computation of WCC. To
count all of the triangles in the graph in which node u is contained,
one must do this process for every neighbor v of u. In a centralized
setting, this is relatively straightforward to implement. However,
in a vertex-centric distributed setting, vertices do not have access
to the adjacency lists of their neighbors, and therefore adjacency
lists must be sent between vertices via message passing. With a
large graph, if every vertex sends its adjacency list to every one
of its neighbors in one superstep, this may lead to an excessive
amount of time being spent in communication, or in the worst case,
to memory problems that cause worker failures.

In order to address this problem, we propose two optimizations.
First, we observe that in real life graphs, there tend to be a few
‘hub’ vertices with a very high degree and many vertices with a
much lower degree [9]. This means that when these hub vertices
send out their adjacency sets, it incurs a high communication cost
in comparison with the messages sent by non-hub vertices. For this
reason, in the first superstep, each vertex sends its degree to all of
its neighbors, and following this, vertices only send their adjacency
sets to neighbor vertices with a higher degree. The higher degree
vertex in an edge then counts the triangles formed with the lower
degree vertex, and responds with a message containing the triangle
count.

Secondly, to reduce the occurrence of memory problems, this
phase may be split into several subphases, where each vertex only
sends its adjacency list to a subset of its neighbors in each subphase.
The number of subphases is chosen by counting the total number
of vertices that will be sent in messages during preprocessing and
using this to estimate the approximate overhead required to send
these messages, yielding the model

nPrepPhases =

&
vertexSize ·

P
v2V

|adj(v)||hdn(v)|
nWorkers · availWorkerMemory

'
,

where adj(v) is the adjacency set of vertex v (the contents of a
preprocessing message), hdn(v) is the set of neighbors of v that

have a higher degree than it (the destinations of the message), and
vertexSize is an estimate of the amount of memory taken to send
one vertex id. For a given vertex v, |adj(v)||hdn(v)| gives the
total number of elements (vertex ids) that will be sent during pre-
processing. The numerator therefore estimates the total amount of
memory that will be taken by all messages sent across all prepro-
cessing phases. This sum is computed with aggregators just after
the computation of hdn for each vertex. The denominator estimates
the total amount of memory available for preprocessing overhead
in the cluster, assuming an even degree distribution across workers.
The value for availWorkerMemory is chosen based on the re-
sources available for preprocessing, and the number of preprocess-
ing phases is thus chosen such that each subphase operates with an
overhead less than this value.

Together, these two optimizations together greatly reduce the
cost of communication during preprocessing.

4.2 Community Initialization
Following preprocessing, the graph consists only of edges that

are part of at least one triangle. The next step is to create an ini-
tial partitioning of the graph from which to begin the process of
WCC optimization, meaning that each vertex must decide its initial
community. We make the assumption that the higher the clustering
coefficient of a vertex, the more likely its neighbors are to belong
to its community, because a high clustering coefficient indicates
that these vertices are tightly connected. This assumption is also
applied in [18], but the computation method presented there is not
adapted to the vertex centric processing model.

We require that the initial communities fulfill the following prop-
erties:

1. Every community contains a single center vertex and a set of
border vertices connected to the center vertex.

2. The center vertex has the highest clustering coefficient of any
vertex in the community.

3. Given a center vertex y and a border vertex x in a commu-
nity, the clustering coefficient of y must be higher than the
clustering coefficient of any neighbor z of x that is the center
of its own community.

The process for obtaining such initial communities is shown in Fig-
ure 2. First, each vertex sends a message with its id, its clustering
coefficient, its degree1, and its initial community (its vertex id) to
1The degree is only used in the case that two neighbors of a vertex
have identical clustering coefficients. In this case, the vertex with
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Figure 2: Community Initialization Process. The number inside
each vertex indicates its current community, and arrows represent
messages being passed from one vertex to another. Execution pro-
ceeds downward in the diagram, with each level being the resulting
configuration after the incoming messages are processed. When a
vertex receives a message from a vertex with id x and community
y, it checks whether x is currently a center vertex by checking if
x = y and whether the clustering coefficient of x is greater than
that of its current center and changes its community accordingly.

all of its neighbors. Each vertex then saves its incoming messages
for use in future steps. Following this step, a vertex chooses its
new community to be the id of the neighbor who has the highest
clustering coefficient, considering as candidates only the neighbors
that are currently centers. If its own clustering coefficient is higher
then that of any neighbor or if none of its neighbors are currently
centers, it chooses to be the center of its own community.

In the example in the figure, this means that after the communi-
cation of clustering coefficients, each vertex chooses the id of the
vertex to its right as its community. However, after this step, the
third desired property above is violated; the first three nodes be-
long to the communities of the vertices to their right, none of which
are center nodes. So, it is then necessary for any vertex x that has
changed communities to communicate its new community to all of
its neighbors with lower clustering coefficients. These neighbors
are the only ones that need to be notified because only vertices with
a lower coefficient can become border nodes of x. After receiving
the new communities of their neighbors, vertices redetermine their
communities based on which neighbors have become borders and
centers in the previous step. This iterative process continues until
no vertices change communities, in which case all three properties
above are satisfied.

the higher degree is considered to be ‘higher’. If the degrees are
also equal, the vertex with the higher id is considered to be higher.

4.3 WCC Iteration
The main idea behind WCC iteration is to have each vertex re-

peatedly update its community based on an improvement heuristic
and to evaluate the overall WCC between each update, and after
a prespecified number of steps where the WCC does not improve
more than a certain amount, the computation halts.

4.3.1 Choosing a new community
When updating its community, the vertex has three options:

• Transfer: The vertex moves from its community to the com-
munity of a neighboring vertex.

• Remove: The vertex removes itself from its current commu-
nity and becomes the sole member of its own isolated com-
munity.

• Stay: The vertex remains in its current community.

In order to choose which of these actions to perform, the vertex
must decide which of the actions will most likely lead to the biggest
improvement in the global WCC value. In [18], the authors present
a heuristic for the WCC improvement induced by each action, using
aggregate community statistics for a vertex’s current and neighbor
communities (the size and edge density of the community and the
number of edges leaving the community), the graph’s clustering co-
efficient, and a vertex’s knowledge of its neighbors’ communities.
The heuristic is an approximation of the WCC that does not require
the computation of the internal triangles, and thus is computation-
ally more efficient. Due to its effectiveness, we use this heuristic as
well. More details on the heuristic can be found in [18]. Because
this update process occurs independently within each vertex, every
vertex may perform the update simultaneously, meaning that this
portion of the algorithm very effectively exploits parallelism.

4.3.2 WCC Computation
To compute the actual global WCC, the values t(x,C

x

) and
vt(x,C

x

) must be calculated for each vertex x and its community
C

x

. This follows the same distributed triangle-counting process
as in preprocessing, except that messages are only sent between
vertices in the same community, and thus this step is less computa-
tionally expensive than global triangle counting. These local WCC
values are then aggregated and averaged to obtain the global WCC.
If a new best WCC has been obtained, vertices save their current
communities, and when the WCC value converges, vertices output
their saved community that led to the best overall WCC.

5. EXPERIMENTATION
For experimentation, we chose to perform tests on a variety of

real life graphs, taken from the SNAP graph repository2. Informa-
tion about each graph can be found in Table 1. Experiments were
performed on a 40 node cluster with 2.40GHz Xeon E5-2630L pro-
cessors and 128G of RAM each, and a 1 Gigabit Ethernet connec-
tion between nodes. In terms of software, we use Giraph release
1.1.0 and Hadoop version 0.20.203 (the default for Giraph). All
experiments were repeated 5 times and their results were averaged
to obtain the numbers shown. 3.

The goal of the experiments is to demonstrate the scalability of
the method as the number of workers grows, as well as to compare
performance benefits and result quality as compared to the parallel
2
http://snap.stanford.edu

3Code for the distributed WCC algorithm can be found at
http://www.github.com/saltzm/distributed_wcc
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Vertices Edges Communities

Youtube 1,134,890 2,987,624 8,385
LiveJournal 3,997,962 34,681,189 287,512
Orkut 3,072,441 117,185,083 6,288,363
Friendster 65,608,366 1,806,067,135 957,154

Table 1: Characteristics of the test graphs
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Figure 3: The runtime of the algorithm on each graph, varying the
number of workers. The last bar in each group indicates the runtime
of the centralized Scalable Community Detection algorithm from
[18].

centralized version reported in [18]. In Figure 3, we see that in all
cases except for the smallest graph, our distributed version even-
tually outperforms the centralized version. The final WCC values
obtained by both methods (not shown) are very similar as well,
within 1% of each other for every graph, indicating that there is no
decrease in result quality incurred by the distributed algorithm. In
addition, from looking at Figures 4 and 6, the speedup of the al-
gorithm with the addition of workers improves with the size of the
graph; the larger the graph, the better the scalability. For the largest
graph, Friendster, we were not able to run the algorithm on fewer
than 24 machines due to memory issues. This could be ameliorated
by using a more efficient data structure for storing the graph, since
the graph alone used a large amount of memory, which could be a
topic of future work. In the largest graphs, we measured that the
two main bottlenecks are triangle counting during preprocessing
and in the computation of the next best community for each vertex.
Because the phase for choosing new communities is much more
computation heavy than communication heavy, it is to be expected
that additional parallelism would continue to boost performance es-
pecially in this phase as the number of workers increases.

6. CONCLUSION & FUTURE WORK
In this paper, we presented a scalable algorithm for distributed

community detection using the WCC metric that performs well on
graphs of over one billion edges. In particular, in the Friendster
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Figure 4: The speedup of the algorithm on each graph as compared
to the execution time with 1 worker, varying the number of workers.
Note that speedup improves as the size of the graph increases.

● ●
●

Runtime vs. Number of Edges

Number of Edges (M)

R
un

tim
e 

(s
)

●

●

●

0 20 40 60 80 100 120

0
10

00
20

00
30

00
40

00

●

●

1
2
4
8
16
32

Figure 5: The runtime of the algorithm increases with the number
of edges in the graph, varying the number of workers. When the
number of workers is higher, the runtime increases more slowly as
edges are added.
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Figure 6: The speedup of the Friendster graph, varying the number
of workers. Because the smallest number of machines used was
24, the runtime with one worker is extrapolated to be 24 times the
runtime with 24 workers, and the speedups for the rest are calcu-
lated from that value. For comparison, the average runtime of the
centralized Scalable Community Detection code was 5.56 hours.

graph, with over 1.8 billion edges, the algorithm scales well from
24 to 32 workers and at its fastest finds all communities in just over
an hour. Current bottlenecks include memory requirements for tri-
angle counting and runtime for the computation of new communi-
ties for each vertex. In the future, we may consider using alternative
triangle counting algorithms, including ones that only approximate
the number of triangles. Furthermore, implementing the algorithm
in alternate frameworks such as GraphX [24] and GraphLab [10]
would be worthwhile, as well as comparing to other community
detection algorithms like label propagation.
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