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ABSTRACT
Reachability is crucial to many network operations in various com-
plex networks. More often than not, however, it is not sufficient
simply to know whether a source node s can reach a target node t
in the network. Additional information associated with reachability
such as how long or how many possible ways node s may take to
reach node t. In this paper we analyze another piece of important
information associated with reachability – which we call pivotal-
ity. Pivotality captures how pivotal a role that a node k or a subset
of nodes S may play in the reachability from node s to node t in a
given network. We propose two important metrics, the avoidance
and transit hitting times, which extend and generalize the classical
notion of hitting times. We show these metrics can be computed
from the fundamental matrices associated with the appropriately
defined random walk transition probability matrices and prove that
the classical hitting time from a source to a target can be decom-
posed into the avoidance and transit hitting times with respect to
any third node. Through simulated and real-world network exam-
ples, we demonstrate that these metrics provide a powerful ranking
tool for the nodes based on their pivotality in the reachability.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems, Graph algorithms

Keywords
Reachability; Pivotality; Hitting time

1. INTRODUCTION
Reachability is crucial in any type of complex networks, be them

communication and computer networks, power grids, transporta-
tion networks or social networks [15][8][12]. More often than not,
however, it is not sufficient simply to know that a node s can reach
another node t in the network. Additional information associated
with reachability such as how long (e.g., in terms of number of in-
termediate nodes to be traversed or some other measures of time
or cost) or how many possible ways (e.g., in terms of paths) for
node s to reach node t. Such information is essential for selecting
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paths for packet routing or information/commodity delivery, flow
scheduling, power management, traffic control, load balancing and
so forth in communication and computer networks, power grids and
transportation networks. In social networks, such information pro-
vides a measure of the strength of social ties between nodes and the
role of nodes in these networks.

The shortest path distance is a commonly used metric to measure
the reachability from a source s to a target t. Its drawback lies in
that it fails to capture the “path diversity” between the two nodes.
Information about path diversity is important for load balancing, re-
silient routing and other network operations, and more broadly, for
analyzing the overall network robustness. Path diversity can per-
haps be best captured via random walks on the (weighted, directed
or undirected) graph associated with the underlying network: The
hitting time (sometimes referred to as the random walk distance),
Hst , measures the expected numbers of steps it takes for a random
walker starting from node s to reach node t for the first time. This
metric is in general asymmetric, Hst 6= Hts, even the underlying
graph is undirected. The (symmetric) commute time, defined as
Cst = Hst +Hts, is also known as the effective resistance distance
due to its connection to electric resistive networks [3].

In this paper, we analyze another piece of important information
associated with reachability – which we call pivotality. Pivotality
captures how pivotal a role that a third node k or a subset of nodes
S may play in the reachability from node s to node t in a given
network by quantifying how many (and how long) paths from s to
t go through k or S, and how many do not. Such information is
critical for load balancing, protection routing, fast rerouting, ro-
bustness analysis and other network operations in various types of
complex networks. For example, k can represent a “middlebox”
(e.g., firewall) and S a set of application proxy servers in the cloud;
one would like to quantify the overhead incurred for routing traf-
fic from s via k or S to t. Likewise, k or S can represent a single
or multiple congested or failed nodes, or potentially compromised,
vulnerable or untrustworthy nodes; one would like to quantify the
overhead incurred for routing traffic from s to t by completely by-
passing k or S.

For these purposes, we introduce two inter-related metrics: avoid-
ance and transit hitting times which extends and generalizes the
classical notion of hitting times: the avoidance hitting time from a
node s to another node t with respect to k or S is the expected num-
ber of steps it takes for a random walker starting from node s to first
hit node t without ever hitting node k or any node in S; whereas the
transit hitting time from a node s to another node t with respect to
k or S is the expected number of steps it takes for a random walker
starting from node s to first hit node k or any node in S and then hit
node t for the first time. We establish that both avoidance and tran-
sit hitting times can be computed from the fundamental matrices
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associated with the appropriately defined random walk transition
probability matrices. We further show that with respect to any third
node k, hitting time Hst can be decomposed into the avoidance hit-
ting time and transit hitting time with respect to k. By exploiting
relationships between the hitting time and avoidance/transit hitting
times, we quantify the role and impact of node k in the connectiv-
ity/reachability from node s to t. Finally we use several simulated
and real-world network examples to illustrate the advantages and
utility of avoidance and transit hitting times, especially in compar-
ison with existing metrics proposed in the literature.

2. RELATED WORK
The notions of centrality and betweenness have been widely stud-

ied in the literature to capture various roles that nodes play in social
and other complex networks. These metrics are commonly defined
in terms of the shortest paths between pairs of nodes. For example,
in social network analysis the (shortest-path) centrality of a node
s is the average (shortest-path) distance from node s to all other
nodes in the network. Freeman’s well-known (shortest-path) be-
tweenness [6] counts the number of shortest paths (from any source
s to any target t) that pass through a given node k. Hence larger the
betweenness value of a node k, more vital it is to the reachability to
many pairs of nodes in the network. As mentioned earlier, a main
drawback of metrics defined solely in terms of shortest paths is that
it does not capture the path diversity in the network. For this rea-
son, various centrality measures based on random walks on graphs
have been proposed in the literature. By exploiting the connection
between random walks and current flows in electrical resistive net-
works [3], Newman [11] proposes a random-walk betweenness (or
current flow betweenness) metric which measures the total sum of
current flows passing through a given node k from all sources to all
sinks (“targets”) in a network. Fouss et al. [5] use the hitting time
(and commute time) associated with random walks on graphs as
the measure of similarity between nodes in a recommendation sys-
tem application. Sarkar et al. [14] develop a fast proximity search
in large graphs by means of hitting time. Chen et al. [2] present
a clustering algorithm via hitting time on directed graphs. All of
these studies are confined to applying the classical hitting time to
solving graph/network problems.

Closely related to what we study in this paper, Ranjan and Zhang
[13] introduce the notion of (forced) detour cost of a random walker
from a source s to a target t with respect to a third node k, which is
defined as ∆H(k)

st := Hsk +Hkt −Hst . Namely, the (forced) detour
cost is the additional steps incurred when a random walker starts
at source node s and is forced to first visit the third node k, and
then starts from node k to reach target node t vs. the number of the
steps it takes starting at source node s and hitting target node t for
the first time. Ranjan and Zhang show [13] that aggregated over
all pairs of sources and targets, ∑s ∑t ∆H(k)

st = L+
kk. Here L+

kk is the
diagonal entries of L+, the Penrose-Moore pseudo-inverse of the
graph Laplacian L = D−A, where A = [ai j] is the adjacency matrix
of a graph (network) and D = diag[di], di = ∑ j ai j, is the diagonal
degree matrix. Based on this (forced) detour cost as well as sev-
eral other interpretations of the diagonal entries L+

kk of L+, Ranjan
and Zhang advocate C∗(k) := 1/L+

kk as a new node centrality mea-
sure – referred to as the structural or topological centrality, and
demonstrate that C∗(k) := 1/L+

kk indeed better captures the struc-
tural/topological roles that node k plays in a network than existing
centrality metrics, in particular in terms of their roles in the overall
network robustness. Motivated by the results in [13], in this paper
we aim to provide a more precise characterization of how pivotal
a role a third node k may play in the random walks from a source

Table 1: List of Notations

F( j) Fundamental matrix for target j
F( j)

im The im-th entry of Fundamental matrix F( j).
It represents the expected number of passages through
node m, starting from i and before hitting j

F(S) Fundamental matrix for a target set S, say, S = { j,k}
F(S)

im The im-th entry of the fundamental matrix F(S)

Q(k̄)
i j The probability of hitting j before k when starting from i

Hi j Hitting time from i to j. It is i j-th entry of the hitting time matrix H
Hi,S Hitting time from i to a target set S, say, S = { j,k}
H(k̄)

i j Avoidance hitting time from i to j conditioned on avoiding k

H(ǩ)
i j Transit hitting time from i to j conditioned on transiting k

node s to a target node t by probabilistically quantifying the number
of paths from source s to target t that circumvent node k vs. those
that traverse node k that the random walker is likely to take. This
leads us to introduce two inter-related metrics, avoidance and tran-
sit hitting times, to measure the pivotality of node k in the random
walks from source s to target t.

3. THEORY OF AVOIDANCE AND TRAN-
SIT HITTING TIMES

In this section, we first provide an overview of the existing theory
on random walks on a general weighted and directed networks and
introduce the classical notions of hitting and commute times. We
then define the new notions of avoidance and transit hitting time
metrics and demonstrate how they can be computed. The section
culminates with the Hitting Time Decomposition Theorem.

3.1 Background and Notations
A network can be abstractly modeled as a weighted and directed

graph, denoted by G = (V,E,A). Here V is the set of nodes in the
network such as routers or switches in a communication network
or users in a social network; E is the set of (directed) edges repre-
senting the (physical or logical) connections between nodes (e.g.,
a communication link from a node i to a node j) or entity relations
(e.g., follower-followee relation between two users). The affinity
(or adjacency) matrix A = [ai j] is assumed to be nonnegative, i.e.,
ai j ≥ 0, where ai j > 0 if and only if 〈i, j〉 ∈ E. We remark that
here ai j captures certain “affinity” or “closeness” from node i to
node j, i.e., the communication capacity from node i to node j, or
strength of social tie between node i and node j. Hence larger ai j is,
“closer” node i is to node j – in other words, A can be viewed as a
“similarity” matrix. This is in contrast to a “cost” or “distance” ma-
trix C = [ci j] that is sometimes used to denote link weights, where
larger ci j is, “farther away” (or “dissimilar”) node i is from node j.
(One can easily convert a cost matrix C to an affinity matrix A, e.g.,
by setting ai j = 1/ci j.) Throughout the paper, we assume that net-
works under consideration are strongly connected, namely, there is
at least one path from any node i to any other node j.

Given G, a random walk on G is a Markov chain on G given by
the transition probability matrix P=D−1A, where D= diag[di] and
di = ∑ j ai j (di is often referred to as the (out-)degree of node i and
D is the (diagonal) degree matrix). Given a random walk starting
at node s, at each step i the random walker picks an out-going edge
randomly with probability Pi j =

ai j
∑ j ai j

. The hitting time Hst is de-
fined as the expected time (or number of steps) it takes for a random
walk starting at node s to reach (“hit”) node t for the first time. In-
tuitively, the larger Hst is, the farther node t is located from node s.
Hitting times can be computed directly using the fundamental ma-
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trix F [3] for absorbing Markov chains. Let n= |V |. For each j∈V ,
we use P| j to denote the (n− 1)× (n− 1) sub-matrix after delet-
ing the row and column j from the transition probability matrix P.
Then the fundamental matrix F( j) is defined as F( j) := (I−P| j)−1.

It can be proved that the ik-th entry of the matrix F( j), F( j)
ik , yields

the expected number of passages through node k for a random walk
starting at node i and before hitting j. Then the hitting time from
source i to target j is given by Hi j = ∑m F( j)

im , namely the sum over
the expected number of passages through all the other nodes before
hitting the target [3]. More generally, we can define the hitting time
from a source node i to a set of target nodes S, denoted by Hi,S. Hi,S
is defined as the expected number of steps for a random walk start-
ing at node i and hitting one of the nodes in S for the first time. For
example, for S = { j,k}, Hi,{ j,k} is the expected number of steps
for a random walk starting at node i and hitting either j or k for
the first time. Again we can compute Hi,S using an appropriately
defined fundamental matrix. Let P|S denote the (n−|S|)× (n−|S|)
submatrix after deleting the rows and columns corresponding to
the indices j ∈ S from P, and define F(S) := (I−P|S)−1. Hence

Hi,S = ∑m F(S)
im . Table 1 summarizes some of the notations used in

this paper.

3.2 Avoidance and Transit Hitting Times
We are now in position to introduce two inter-related metrics,

avoidance and transit hitting times by extending and generalizing
the classical notion of hitting times. Consider a target set S con-
sisting of two target nodes j and k. Recall that the hitting time
Hi,S = Hi,{ j,k} is the expected number of steps for a random walk
starting at node i to first hit either target j or target k. Since both
target nodes j and k are absorbing, there are only two possible
ways for the random walk to hit the target set S = { j,k}: either
the random walk first hits node j without ever hitting node k or it

first hits node k without ever hitting node j. We use Q(k̄)
i j to de-

note the probability that the random walk first hits target node j. It

is not too hard to see that Q(k̄)
i j = ∑m F({ j,k})

im Pm j . Then the prob-
ability that the random walk first hits target node k is then given

by Q( j̄)
ik = 1−Q(k̄)

i j = ∑m F({ j,k})
im Pmk. Using these relations, we

can analyze the (random) paths taken by a random walk starting
at node i and first hitting target node j while avoiding a particular
third node k and quantify the probability such paths are taken by the
random walker. This leads us to define the notion of avoidance hit-
ting time. For any third node k, the avoidance hitting time H(k̄)

i j is
the expected number of steps taken by a random walk which starts
at node i and hits node j for the first time while without ever hitting
node k in between (i.e., by always avoiding node k on its way to
target node j). We have the following theorem, the proof of which
is delegated to the Appendix.

THEOREM 1. (Avoidance Hitting Time)
Hitting time from node i to node j conditioned on avoiding node k
can be computed using the following equation:

H(k̄)
i j =

∑m F({k, j})
im Q(k̄)

m j

Q(k̄)
i j

. (1)

Closely related to the avoidance hitting time is the notion of tran-

sit hitting time. For any third node k, the transit hitting time H(ǩ)
i j is

the expected number of steps taken by a random walk which starts
at node i and always traverse node k before hits target node j for the

first time. Using the avoidance hitting time, we can express H(ǩ)
i j as

Figure 1: Network Example 1

follows:

H(ǩ)
i j = H( j̄)

ik +Hk j. (2)

Using the avoidance and transit hitting times, we can now divide
the paths (or walks) between a source node i to a target node j
into two groups with respect to an arbitrary third node k: those
paths that exclude or avoid node k and those that include or transit
node k. The probability that a random walk takes either a path/walk

from the first group vs. that from the second group is given by Q(k̄)
i j

and Q( j̄)
ik . This yields the following Hitting Time Decomposition

Theorem, the proof of which can be found in the Appendix.

THEOREM 2. (Hitting Time Decomposition)
The hitting time from node i to node j can be decomposed into an
“avoidance" hitting time component and a “transit" hitting time
component with respect to any node k as follows:

Hi j = Q(k̄)
i j H(k̄)

i j +Q( j̄)
ik H(ǩ)

i j . (3)

The transit and avoidance hitting times can be generalized to an

arbitrary (sub)set of nodes, H(Š1)
i j , H(S̄2)

i j , and combined, H(Š1,S̄2)
i j ,

where the last term represents the hitting time from node i to node
j conditioned on traversing any node in S1 while avoiding all nodes
in S2. Due to space limitation, we will not elaborate here; more
details can be found in [7].

4. NODE PIVOTALITY IN NETWORK
REACH-ABILITY

In this section we examine and quantify how pivotal a role a node
k plays in reachability from a source node s to a target node t using
our proposed avoidance and transit hitting metrics. In particular, we
propose the avoidance-transit hitting time pivotality metric (ATH).
For a given node k with respect to a pair of source and target nodes
s and t, it is defined as follows:

eAT H(k) = Hst −H(ǩ)
st = Hst − (H(t̄)

sk +Hkt). (4)

Note that if all paths from node s to node t go through a node k∗,
then eAT H(k∗) = 0. In this case, k∗ is the most “pivotal” point of
any path from s to t in that all paths rely on k∗. We claim that in
such a case, for any other node k, eAT H(k) ≤ 0; due to space limi-
tation, we will omit the proof here. In general, eAT H(k) can be ei-
ther positive, indicating that paths going through node k are overall
shorter than an “average” path from node s to node t; or negative,
indicating that paths going through node k are overall longer that
an “average” path from node s to node t.

For comparison, we also consider other metrics proposed in the
literature. We define the shortest-path pivotality metric (SHP) to
measure the pivotality of node k using the shortest paths only: eSHP(k)=
shpst−(shpsk +shpkt). The maximum flow pivotality metric (MF),
eMF (k), measures the amount of the maximum flow from s to t that
goes through node k in a flow network, where the weight of edges
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Figure 2: Network Example 2

indicate their capacity. The (classical) hitting time pivotality metric
(CH) is defined as the negative of the (forced) detour cost defined
in [13],

eCH(k) :=−∆H(k)
st = Hst − (Hsk +Hkt). (5)

Notice the similarity between eAT H(k) and eCH(k), except the terms
H(t̄)

sk and Hsk. Due to the triangle inequality of the shortest path dis-
tance and the hitting time, eSHP(k) ≤ 0 and eCH(k) ≤ 0 whereas
by definition, eMF (k) ≥ 0 for all k and all pairs of source and tar-
get nodes, s and t. Despite these differences, in terms of ranking
of nodes based on their pivotality using each metric, what matters
is their relative values: as long as e(k1) < e(k2), node k2 is more
“pivotal” than k1 in terms of reachability from s to t.

4.1 Understanding Pivotality Metrics: Exam-
ples

Using several simple network examples, in this section we il-
lustrate and compare the behavior of the pivotality metrics defined
above. First consider the simple network example shown in Fig. 1
where the weight of all edges is 1, i.e., ai j = 1. With node 1 being
the source and node 4 the target, it is intuitively apparent that node
5 is more “pivotal” than node 2 or node 3, given that it is on the
shorter path. The pivotaliy metrics computed using the four meth-
ods are shown in Table 2. We say that both the MF and CH metrics
fail to rank the nodes correctly in that they are not able to recognize
the higher pivotality of node 5 over nodes 2 and 3.

Figure 2 provides a more general network example which can
help illustrate the different behaviors of the pivotality metrics un-
der study. In this network, there exists a shortest path of length 2
from source s to target t (gray-colored path) interconnected to two
groups of (blue-colored) paths passing through k1 and k2: a three-
hop path from source s via node k1 to target t, whereas there are
N2 parallel paths going through node k2, the length of which are
L2 +1. If L2 = 2 and N2 = 1 the network is symmetric with respect
to k1 and k2 and yields equal pivotality for k1 and k2 in reachabil-
ity from s to t (second row of Table 3). However, if N2 ≈ 1 and
L2 � 2, intuitively node k1 plays a more pivotal role than k2. On
the other hand, as the number N2 of parallel paths going through k2
increases while their length L2 +1 is not significantly much longer
than 3, say, L2 = 3, node k2 will play an increasingly more piv-
otal role in delivering traffic, information or other commodity from
node s to node t. Intuitively, there is a trade-off between N2 and L2:
more parallel paths going through node k2 will increase its pivotal-

Figure 3: Network example 3

Table 2: Pivotality metrics in Network Example 1: source node 1 and target
node 4

nodes 2 3 5
eSHP -1 -1 0
eMF 0.5 0.5 0.5
eCH -3.5 -3.5 -3.5
eAT H -0.5 -0.5 0.5

ity as it enhances the overall “capacity” from node s to node t; how-
ever larger L2 will diminish its pivotality as longer paths increase
the “cost” of using these parallel paths. Despite such intuitions
regarding the relative pivotality values of node k1 and node k2, if
L2 > 2 the SHP pivotality metric will always rank node k1 higher
than k2 independently of N2 (for L2 = 2 gives the same ranking
to them). Whereas, as long as N2 > 1, the MF pivotality metric
will always rank node k2 higher than node k1 independently of L2.
Hence both these two metrics fail to capture the differing roles of
node k2 with varying N2 and L2. To evaluate the performance of
CH and ATH pivotality metrics in capturing the differing roles of
node k2 with varying N2 and L2, some example values are shown
in Table 3. Based on these results, the CH pivotality metric ranks
node k2 higher than node k1 as long as N2 > 1, and ranks them the
same when N2 = 1 no matter how large is L2, behaving the same
as the MF pivotality metric. However, the ATH pivotality metric
ranks successfully node k1 higher than node k2 when N2 is close to
1 and L2 is quite larger than 2.

The subtle difference in the behaviors of the CH and ATH piv-
otality metrics lies in the term Hsk in eq.(5) vs. the term H(t̄)

sk in
eq.(4). Namely, in accounting for the (forced) detour cost, the CH
method allows and includes paths/walks from the source node s to
the third node k that may have already traversed the target node t; in
network example 2, increasing L2 has a destructive effect on the CH
pivotality metric of k1 by accounting the paths passing through t be-
fore hitting k1, such as the walk (s−k2−t−s−k2−t− ...−s−k1),
and increasing the term Hsk1 in eq.(5) as the result. In contrast, the
ATH method excludes such paths/walks in accounting for the de-
tour cost. As a result, the ATH provides a more precise quantifica-
tion of the detour cost when a random walker is “forced” to transit
a third node k, and thereby how pivotal a role node k plays in the
reachability from a source to a target.

The ATH metric allows us to identify nodes that are “superflu-
ous” with respect to the reachability of a source to a target. This
can be best illustrated by the two simple examples shown in Fig. 3.
In both examples, consider node 1 as the source and node 2 as the
target. It is obvious that node 3 is “superfluous” with respect to
this source-target pair in that node 3 plays no part in the reacha-
bility from node 1 to node 2. In other words, if node 3 fails or is
removed from the network, the reachability from node 1 to node 2
(and the associated “capacity”) is not affected at all. This can be
captured by the fact that in both networks in Figs. 3 (a) and (b), the
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Figure 4: Node pivotality ranking in a Fat-tree network for the
reachability of the source node s to target node t: red indicates
highest pivotality and black shows non-pivotality.

Figure 5: Node pivotality ranking in the ESNet network for the
reachability of the source node s to target node t: red indicates
highest pivotality and black shows non-pivotality.

Table 3: Pivotality metrics (CH and ATH only) in Network Example 2 for
various choices of N2 and L2

eCH eAT H
k1,k2 k1,k2

L2 = 1,N2 = 2 -7,-2.5 -0.75,0.36
L2 = 2,N2 = 1 -5.14,-5.14 -0.14,-0.14
L2 = 2,N2 = 2 -8.17,-2.92 -0.17,-0.06
L2 = 20,N2 = 2 -29.17,-10.42 10.33,-7.56
L2 = 20,N2 = 1 -15.14,-15.14 7.86,-10.14

probability of hitting node 3 before node 2 is zero, i.e., Q(2̄)
13 = 0.

Thus the denominator of the term H 2̄
13 in eq.(1) becomes zero and

thus H 2̄
13 = ∞. This renders eAT H(3) = −∞ (see eq.(4)), indicat-

ing the non-pivotality of node 3. In contrast, the CH metric and
SHP metric yield eCH(3) =−3 and eSHP(3) =−3 for Fig. 3(a) and
eCH(3) =−4 and eSHP(3) =−2 for Fig. 3(b) respectively.

4.2 Node Pivotality Ranking using the ATH
Metric

Lastly we apply the node pivotality ranking using our ATH met-
ric to two real-world networks: Fat-Tree [10] and the ESNet [4].
Fat-tree is a special h-ary (h ≥ 2) “tree-shaped” structure first pro-
posed in [10] for efficient communication with uniform bi-section
bandwidth, and for this reason it has been adopted in data center
networks [1]. Fig. (4) shows 3-ary fat-tree structure with 99 nodes,
where the node colors are shaded based on their ATH pivotality
measures with respect to the reachability from the source s to the
target node t. In the figure, the color spectrum from red to white
and then to black shows the range of the ATH value from high to
low: the nodes with the larger ATH value, are more pivotal to the
reachability from s to t are represented with red and “reddish” col-
ors; in contrast, the nodes that play no part in the reachability from
s to t are represented with black color. The results for the ESNet,
the DoE energy science network with 68 nodes [4] are shown in

Fig. (5). Both examples illustrate the efficacy of the ATH metric in
correctly capturing and ranking the pivotality of nodes in the reach-
ability from a source node to a target node. Due to space limitation,
we do not elaborate on them.

5. CONCLUSION
In this paper we have extended and generalized the classical no-

tion of hitting times to include the options of avoiding or transiting
a specific node in random walks. We proved that the classical hit-
ting time can be decomposed into avoidance hitting time and transit
hitting time. We showed that these new metrics provide a powerful
tool for assessing pivotality of nodes in the reachability of a source
node to a target node. Intuitively, high pivotal nodes are the ones
that make the reachability occur in shorter distance as they are tra-
versed by a large of (shorter) paths for the reachability of source
to target. Using some simple network examples, we compare our
pivotality metric – the avoidance-transit hitting time (ATH) met-
ric – with other metrics defined using the shortest paths, maximum
flow or classical hitting time methods and demonstrated that these
existing metrics fail to properly capture and assess the pivotality of
nodes in the reachability from a source to a target while our ATH
metric can. Finally, we applied the ATH method to two real-world
network examples to rank the nodes based on their pivotality for
the reachability from a source to a target. We visualized the results
to demonstrate the performance of our proposed method.
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7. APPENDIX
Proof of Theorem 1:
We divide the nodes into two groups: one consists of node k and
j, and the other one includes the rest. The first group is called
absorbing A and the second one is transient T . Reordering the
nodes, transition probability matrix can be written as follows: P =[

PT T PT A
0 IAA

]
. To obtain the conditional expected time from

node i to node j given that not passing k at all, we need to cal-
culate the conditional probabilities of all possible paths that end in
node j and do not pass through k. In other words, for each path
length l, where l is an integer number, we calculate the conditional
probability Prl(i, j)

∑l Prl(i, j)
of hitting node i at the l-th step conditioned

on hitting node j sooner than node k. Prl(i, j) is the probability
of the random walk being in one of the transient nodes in step 1
to l− 1 and entering node j at its l-th step. ∑l Prl(i, j) is the total
probability of hitting node j sooner than node k.

Prl(i, j) = [Pl−1
T T PT A ](i, j) = eiPl−1

T T PT A (:, j),

where ei is a row vector of all zeros except its i-th entry which
is equal to 1. Note that PT A (:, j) represents the column vector of
transition probabilities from transient nodes to node j. So the con-
ditional expected time from node i to node j avoiding node k can
be calculated as follows:

H(k̄)
i j =

∑l lPrl(i, j)
∑l Prl(i, j)

=
∑l l[Pl−1

T T PT A ](i, j)

∑l [P
l−1
T T PT A ](i, j)

The numerator can be re-written as follows:

∑
l

l[Pl−1
T T PT A ](i, j) = ei(I +2PT T +3P2

T T + ...)PT A (:, j)

= ei(I−PT T )−2PT A (:, j) = eiF2PT A (:, j)

= eiFQ(k̄) = ∑
m

F({k, j})
im Q(k̄)

m j

Also, note that the denominator is simply the probability of ab-
sorption by node j sooner than node k starting from node i, which

is equal to Q(k̄)
i j :

∑
l
[Pl−1

T T PT A ](i, j) = ei(I +PT T +P2
T T + ...)PT A (:, j)

= ei(I−PT T )−1PT A (:, j) = eiFPT A (:, j)

= Q(k̄)
i j .

�

Proof of Theorem 2:
Based on Schur-complement theory and the relation of matrix in-

verse with its sub-matrix inverse [9], the following equation holds:

F({ j,k})
im = F(k)

im −
F(k)

i j F(k)
jm

F(k)
j j

, (6)

where
F (k)

i j

F (k)
j j

can be substituted by Q(k̄)
i j as follows:

Q(k̄)
i j = ∑

m
F({ j,k})

im Pm j = ∑
m
(F(k)

im −
F(k)

i j F(k)
jm

F(k)
j j

)Pm j

= ∑
m

F(k)
im Pm j−

F(k)
i j

F(k)
j j

∑
m

F(k)
jm Pm j = F(k)

i j −
F(k)

i j

F(k)
j j

(F(k)
j j −1)

=
F(k)

i j

F(k)
j j

Taking sum over m for both sides of Eq. (6), the following equa-
tion is obtained:

Hi,{ j,k} = Hik−Q(k̄)
i j H jk (7)

On the other hand, we have the following relation based on the
definition of the avoidance hitting time:

Hi,{ j,k} = Q(k̄)
i j H(k̄)

i j +Q( j̄)
ik H( j̄)

ik (8)

Eq. (7) and (8) together yield the following result:

Hi j = Q(k̄)
i j H(k̄)

i j +Q( j̄)
ik (H( j̄)

ik +Hk j) = Q(k̄)
i j H(k̄)

i j +Q( j̄)
ik H(ǩ)

i j ,

where H(ǩ)
i j = H( j̄)

ik +Hk j.
�
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