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ABSTRACT
Complex networks are becoming indispensable parts of our lives.
The Internet, wireless (cellular) networks, online social networks,
and transportation networks are examples of some well-known
complex networks around us. These networks generate an im-
mense range of big data: weblogs, social media, the Internet traf-
fic, which have increasingly drawn attentions from the computer
science research community to explore and investigate the funda-
mental properties of, and improve the user experiences on, these
complex networks. This work focuses on understanding complex
networks based on the graph spectrum, namely, developing and ap-
plying spectral graph theories and models for understanding and
employing versatile and oblivious network information – asymmet-
rical characteristics of the wireless transmission channels, multi-
plex social relations, e.g., trust and distrust relations, etc – in solv-
ing various application problems, such as estimating transmission
cost in wireless networks, Internet traffic engineering, and social
influence analysis in social networks.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems, Graph algorithms;
H.3.3 [Information Systems]: Information Storage and Re-
trieval—Information Search and Retrieval

General Terms
Theory

Keywords
Spectral Graph Theory; Complex Network Analysis

1. INTRODUCTION
Complex networks arising from many applications can be repre-

sented and studied as graphs. For example, in an ad hoc wireless
network, nodes represent wireless devices, whereas edges charac-
terize the available wireless links among those devices. On an on-
line social network (OSN), users and their social interactions can
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be viewed as nodes and edges in a graph. The topological proper-
ties of the underlying complex networks play an important role in
understanding and solving the application problems.

In mathematics, spectral graph theory, as an enabling tool, es-
tablishes relationship between various properties of a graph and the
characteristic polynomial, eigenvalues, and eigenvectors of matri-
ces associated to the graph, such as its adjacency matrix or Lapla-
cian matrix. For examples, the number of zero eigenvalues of the
graph Laplacian matrix indicates the number of disconnected com-
ponents of the network. The pseudo-inverse of the graph Lapla-
cian matrix infers the hitting time and commute time of a random
walk on the underlying network. These spectral properties of the
graphs can be utilized to tackle application problems in various
seemingly unrelated network settings. In this paper, we summa-
rize works in the literature, that develops and applies spectral graph
theory to study the crucial and unique properties of various types
of graphs, such as directed graphs (digraphs), undirected graphs,
and signed graphs, with applications to wireless networking [11,
12, 15], the Internet traffic engineering [17, 18], and online social
network (OSN) analysis [9, 16, 10].

To our best knowledge, this is the first work that provides com-
prehensive study on applications of spectral graph theory on vari-
ous application problems. The paper is organized as follows. Sec-
tion 2 provides an overview of the spectral graph theory. Section 3
discusses various applications of spectral graph theory under three
graph models, including directed graphs, undirected graphs, and
signed graphs. To be specific, Section 3.1 introduces a generalized
digraph spectral graph theory [13, 14] with applications in estimat-
ing wireless transmission costs [12]. Section 3.2 studies the setting
of undirected graph, with application of Internet traffic engineering.
Section 3.3 discusses the generalization of spectral graph theory to
signed graphs with both positive and negative links, and the ap-
plication scenario is social influence maximization in online viral
marketing. Section 4 discusses the future research directions, and
Section 5 concludes the paper.

2. PRELIMINARIES
Emerging in the 1950s, spectral graph theory studies the prop-

erties of a graph in relationship to the characteristic polynomial,
eigenvalues, and eigenvectors of matrices associated to the graph,
such as its adjacency matrix or Laplacian matrix. Earlier studies
primarily focus on undirected graphs [6, 20, 7, 5, 3, 4], with sym-
metric adjacency matrices, real eigenvalues, and a complete set of
orthonormal eigenvectors. The entire set of eigenvalues and eigen-
vectors form the graph’s spectrum.

We use a triple G = (V,E,A) to denote an undirected and
weighted graph on the node set V = {1, 2, . . . , n}. The n × n
(nonnegative) weight matrixA = [aij ] is symmetric, and is defined
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in such a way that aij = aji > 0, if 〈i, j〉 ∈ E, and aij = aji = 0
otherwise. For 1 ≤ i ≤ n, the degree of node i is di =

∑n
j=1 aij .

The volume of G, denoted by vol(G), is defined as the sum of all
node degrees, d =

∑n
i=1 di, i.e., vol(G) = d.

A random walk on G is a Markov chain defined on G with the
transition probability matrix P = [pij ], where pij = aij/di.
Let D = diag[di] be a diagonal matrix of node degrees, then
P = D−1A. Without loss of generality, we assume that the undi-
rected graph G is connected (i.e., any node can reach any other
node in G). Then it can be shown (see, e.g., [1]) that the Markov
chain is irreducible, and there exists a unique stationary distribu-
tion, {π1, π2, . . . , πn}. Let π = [πi]1≤i≤n be the column vector
of the stationary probabilities. Then πTP = πT , where the super-
script T represents (vector or matrix) transpose. Furthermore, this
Markov chain (random walk) on G is reversible, namely

πipij = πjpji, for any i, j, (1)

and

πi =
di∑
k dk

=
di
d
, i = 1, 2, . . . , n. (2)

[6] uses the normalized graph Laplacian (instead of the unnor-
malized version L = D − A). Given an undirected G, the nor-
malized graph Laplacian of G (also called normalized Laplacian
matrix of G) is defined as follows:

L = D−
1
2 (D −A)D−

1
2 = D

1
2 (I − P )D−

1
2 . (3)

A key property of the graph Laplacian (for an undirected graph)
is that L is symmetric and positive semi-definite [8]. Hence all
eigenvalues of L are nonnegative real numbers. In particular, for a
connected undirected graphG,L has rank n−1 and has exactly one
zero eigenvalue (its smallest one). Let λ1 = 0 < λ2 ≤ · · · ≤ λn

be the n eigenvalues of L arranged in an increasing order, and µi,
1 ≤ i ≤ n, be the corresponding eigenvectors (of unit norm). In
particular, one can show that the (column) eigenvector, µ1, of L
associated with the eigenvalue λ1 = 0, is given by

µ1 = π
1
2 = [

√
πi] = [

√
di√
d

]. (4)

Define Γ := diag[λ1, . . . , λn], the diagonal matrix formed by
the eigenvalues, and U = [µ1, . . . , µn], an orthonormal matrix
formed by the eigenvectors of L, where UUT = UTU = I .
It is easy to see that the graph Laplacian L admits an eigen-
decomposition [8], namely, L = UΓUT . Hitting time Hij cap-
tures the expected number of random walk steps from node i to
first hit node j. Commute time is the expected number of random
walk steps from node i to first hit node j, and return to node i.
Using the eigenvalues and eigenvectors of L, we can compute the
hitting times and commute times using the following formula [19]:

Hij =
∑
k>1

d

λk
(
µ2
kj

dj
− µkiµkj√

didj
), (5)

and

Cij =
∑
k>1

d

λk
(
µki√
di
− µkj√

dj
)2, (6)

where µkj is the jth entry of the column vector µk.

3. COMPLEX NETWORK ANALYSIS
The edges of the graph could exhibit versatile characteristics re-

flecting various underlying entity relations. On undirected graphs,
the edges connecting nodes are symmetric, e.g., the friendship re-
lations in Facebook, while on digraphs, the edges are in general

asymmetric, e.g., the users’ following relations on Twitter, and
the hyperlinking relation on the World Wide Web (WWW) net-
work. On signed graphs, the edges carry heterogeneous weights,
which could be either positive or negative, representing trust and
distrust relations among OSN users. This section discusses appli-
cation problems in three types of graphs, including directed graphs,
undirected graphs, and signed graphs.

3.1 Directed graph model
Graphs arising from many applications are directed, where en-

tity connections in a direct graph can be categorized into two
types, namely, bi-directional links (mutual connections) and uni-
directional links (one-way connections), for example, the users’
following relations on Twitter, and the hyperlinking relations on
the World Wide Web (WWW) network. Differing from undirected
graphs, the direction of links contains crucial information, which
makes it challenging to model and characterize such directed com-
plex networks. This section introduces state-of-the-art works in ex-
tending and generalizing the standard random walk theory and the
intrinsically related spectral graph theory on undirected graphs to
digraphs, which is further applied to solve various practical prob-
lems in wireless networks.
Spectral graph theory for digraphs. Given a directed graph G,
its adjacency matrix is in general asymmetric, thus the relations
(i.e., eq.(1) and (2)) between stationary distribution and node de-
grees no longer hold. Moreover, the Laplacian matrix defined in
eq.(3) is generally asymmetric, thus not eigen-decomposible. [12,
14] focuses on ergodic digraph, which is strongly connected and
aperiodic, i.e., there is a (directed) path from any vertex i to any
other vertex j, and the Markov chain P has a unique stationary
probability distribution. Then, a Diplacian (digraph laplacian)1 is
defined in terms of the node stationary distribution vector in stead
of node degree vector,

L̃ = Π
1
2 (I − P )Π−

1
2 , (7)

where Π = diag[πi] is the diagonal stationary distribution matrix,
and P = [pij ] is the transition probability matrix.

Diplacian matrix L̃ is in general asymmetric and not eigen-
decomposible. Instead, [12, 14] shows that the singular value de-
composition of L̃, i.e., L̃ = UΣV T , captures the spectrum of a
digraph, and has close connections to the hitting time and commute
time representation, Green’s function of L̃, the normalized funda-
mental matrix [19]. For example, the hitting time can be computed
in terms of the spectum space formed by the singluar values and
vectors of L̃.

Hij =
L̃+

jj

πj
−
L̃+

ij√
πiπj

=
∑
k>1

1

σk

(
vkjukj

πj
− vkiukj√

πiπj

)
, (8)

where σi, ui, and vi represent the i-th singular value, left and right
singular vectors, respectively.
Estimating wireless transmission costs. In various wireless sce-
narios, stateless (stochastic) routing is commonly used for the ease
of implementation and the adaptation to the dynamic changes of
network topology. As no routing states are maintained or used,
packages are forwarded in a random walk fashion in wireless net-
works. Given a source-destination pair (s, d), any node in the net-
work G may be involved in the forwarding process of a packet.
Suppose that node i is the current forwarder. After node i’s trans-
mission, a subset of its direct neighbors, N(i), may receive the

1A unnormalized digraph Laplacian is defined in [2].
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packet. For example, the next forwarder may be selected by us-
ing a random back-off mechanism where each node randomly sets
a back-off timer value uniformly chosen from [0, t0] where t0 is
an appropriately chosen contention slot. Hence to track the packet
traversals under stateless routing, we see that the packet stays with
node i if and only if none of its neighbors receive the packet. This
happens with probability pii = Πk(1−aik). Otherwise, the packet
transits or “walks” from node i to node j, j ∈ N(i), with proba-
bility pij =

aij∑
k aik

(1 − Πk(1 − aik)). Hence we have a Markov
Chain with the transition probability matrix P = [pij ] given below,

pij =

{ aij∑
k aik

(1−
∏

k (1− aik)) if i 6= j∏
k (1− aik) if i = j.

(9)

It is easy to verify that
∑

j pij = 1. If the graph is strongly con-
nected and aperiodic, the Markov chain is ergodic. Thus the hitting
time Hij captures exactly the expected number of hops needed to
transmit a packet from node i to j with stateless routing.

To account for other transmission costs, we introduce a transi-
tion cost matrix T = [Tij ] associated with each one-hop transi-
tion, Tij ≥ 0,∀i, j. For example, depending on the context and
modeling objective, Tii can be used to represent the per-node pro-
cessing/transmission latency, duty cycle delay, or per-node energy
consumption; where Tij , j ∈ N(i) the one-hop forwarding latency,
energy consumption, etc. Analogous to the notion of hitting time
Hij , we define the hitting cost, Hs

ij , (also referred as the sojourn
time associated with T ) as the (expected) total cost (or “delay”) in-
curred by a random walk that starts at node i to first reach node
j, where each state at any node k incurring a cost (delay) Tkk and
each transition from node k to node l incurring a cost (delay) of
Tkl. As in the case of Hij , Hs

ij satisfies the following recursive
relation where si =

∑
j pijTij as the average transmission cost

every time a packet visits.

Hs
ij =

{ ∑n
k=1 pik(Tik +Hs

kj) = si +
∑n

k=1 pikH
s
kj if i 6= j

0 if i = j.
(10)

Hence given the appropriately defined Markov chain for a wireless
routing scheme and the transition cost matrix Hs, we can use Hs

sd

to capture the (expected) total cost of transmission when forward-
ing a packet from source s to destination d. We note that if Tij = 1
for all i, j, i.e., T is the all-1 matrix, then Hs

ij = Hij .
The hitting and commute costs can be computed as follows.

Given an (asymmetric) transition cost matrix T = [Tij ], Tij ≥ 0,
with Tij as the per-link transition cost, and Tii as the per-node
transmission cost, define S = diag[si] a diagonal matrix with
si =

∑n
j=1 Tijpij as the average transmission cost every time

a packet visits. We define the normalized cost Laplacian matrix
as L̃s = S−

1
2 L̃S−

1
2 . Let L̃s

+
be the (Penrose-Moore) pseudo-

inverse of L̃s. From eq.(10), the hitting costs Hs
ij can be computed

using L̃s
+

as stated below

Hs
ij = ds(

L̃s
+
jj

πjsj
−

L̃s
+
ij√

πisiπjsj
), (11)

where ds =
∑

k πksk. Analogous to the commute times Cs
ij , we

can also define the commute costs as Cs
ij = Hs

ij + Hs
ji, and they

can be computed easily using eq.(11).

3.2 Undirected graph model
Routing is a critical operation in networks. In the context of data

and sensor networks, routing strategies such as shortest-path, multi-
path, and potential-based (“all-path”) routing have been developed,
which intrinsically represent the tradeoff between the latency and

energy dissipation of paths used for routing, namely, shorter paths
lead to better routing with low latency, while diffusing traffic along
more paths generally reduces energy dissipation. Based on the con-
nection between routing and flow optimization in a network, [17,
18] consider networks as undirected graphs and develop a unify-
ing theoretical framework by considering flow optimization with
mixed (weighted) L1/L2-norms as follows. Consider an n-node
network as an undirected, weighted graph, G = (V,E,W ), where
V = {1, 2, · · · , n} is the set of vertices, E is the set of edges,
and each edge (i, j) is assigned a positive weight wij . As G is
undirected, (i, j) and (j, i) represent the same edge in E, and
wij = wji > 0. Let d = [s, t], s, t ∈ V , denote a source-
destination (or source-sink) pair in the network G. A unit network
flow goes from source s to destination d is mathematically defined
as a function, X : V × V ∈ R+. θ represents the trade-of parame-
ter between L1 and L2-norms.
Mixed L1- and L2-norm Network Flow Optimization:

min
X

n∑
i=1

n∑
j=1

wijX
2
ij + 2θ

n∑
i=1

n∑
j=1

wijXij .

s.t. Xij ≥ 0, 1 ≤ i, j ≤ n.

∑
j:(i,j)∈E

Xij −
∑

k:(k,i)∈E

Xki =

 1 if i = 1
0 if i = 2, . . . , n− 1
−1 if i = n,

Given a trade-off parameter θ ≥ 0, denote the optimal solu-
tion as X∗(θ). Let R(θ) = (V (θ), E(θ)) denote the routing
graph induced by X∗(θ), a subgraph of G = (V,E), where
(i, j) ∈ R(θ) if and only if X∗ij(θ) > 0. Then, X∗(θ) can be
computed by using the graph spectrum, namely, Laplacian matrix
L(θ) = D(θ)−A(θ). Moreover, by analyzing the obtainedX∗(θ)
with different θ’s, a surprising result is observed: When varying
the trade-off parameter θ, the routing graphs induced by the opti-
mal flow solutions span from shortest-path to multi-path to all-path
routing – this entire sequence of routing graphs is referred to as the
routing continuum. We also develop an efficient iterative algorithm
for computing the entire routing continuum. Several generaliza-
tions are also considered in [17, 18], with applications to traffic
engineering and wireless sensor networks.

3.3 Signed Graph Model
In many online social networks, such as Slashdot and Epin-

ions, the edges (i.e., relations between users) carry heterogeneous
weights, which can be either positive or negative, representing trust
(or friend) and distrust (or foe) relations. These networks are re-
ferred to as signed networks, where those signed weights generate
new challenges in understanding and studying the underlying net-
work properties. For example, the matrix representation of a signed
network, namely, the adjacency matrix is no longer non-negative,
and it is not clear how the information is propagated on such graphs.
[9, 10] study the influence diffusion and influence maximization in
social networks with both positive and negative relationships. By
representing such social networks using signed directed graphs, a
novel voter diffusion model is proposed, where the social influence
is propogated in a random walk fashion. Initially, each node in the
signed network has one of two opposite opinions, i.e., “like” and
“dislike” a product. At each step, every node randomly picks one of
its outgoing neighbors, and if the edge to this neighbor is positive,
the node adopts the neighbor’s opinion, but if the edge is negative,
the node adopts the opposite of the neighbor’s opinion. Given such
a signed voter model, [9, 10] investigates if the influence propaga-
tion converges over a long term, what the convergence status is (if it
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exists), and how to choose initial seed nodes to maximize the long
term influence of one opinion vs the other.

Consider a signed directed graph G = (V,E,A), where V is
the set of vertices, E is the set of directed edges, and A is the
signed adjacency matrix with a positive entry Aij representing that
i considers j as a friend or i trusts j, and a negative Aij meaning
that i considers j as a foe or i distrusts j. The absolute value |Aij |
represents the strength of this trust or distrust relationship. A signed
transition matrix is defined as P = D−1A, where D = diag[di] is
the diagonal matrix and di =

∑
j∈V |Aij | is the out-degree of node

i. A key theorem developed in [9, 10] is the convergence analysis
on power series of signed transition matrix P , namely, limt→ P

t

and limt→
∑t−1

i=0 P
i, which has intrinsic relations to the spectrum

of signed graphs. Based these results, [9, 10] develop a complete
characterization of the short-term and long-term dynamics of the
signed voter model, and efficient algorithms to solve both short-
term and long-term influence maximization problems.

4. FUTURE DIRECTIONS
Spectral graph theory, as an enabling tool, can be used to solve

a broad range of application problems in complex networks. Go-
ing beyond the existing works discussed above, it is interesting to
investigate spectral graph theory in multi-attributed complex net-
works.

Entities in complex networks usually possess multiple attributes
that reflect their different characteristics, for example, the num-
bers of users, who follow and be followed by a Twitter user, in-
dicate the popularity and the activeness of the Twitter user, respec-
tively. The emphasis in complex networks has been on analyzing
and characterizing individual attributes separately, e.g., degree dis-
tributions as univariate distributions, which have implications on
issues such as social influence, community formation, resilience,
and epidemics. However, multivariate phenomena that arise as a
result of repeated non-linear interactions among its participants are
mostly ignored, where valuable information about the correlations
across different network attributes is lost. Thus, bringing multivari-
ate probabilistic models and analytics to bear in complex network
analysis will provide a more rigorous theoretical underpinning, and
will lead to deeper insights into many network phenomena. Thus,
it is interesting to investigate the spectral graph properties of multi-
attributed networks, with which as theoretical foundations to de-
sign efficient algorithms to characterize the multivariate statistics
and structures of complex networks through sampling, e.g., joint
in-and out-degree distributions. The results by analyzing the sam-
pled data will infer correlations and causality in complex networks,
which in turn have implications in revealing more precise network
evolution process with respect to multiple attributes, and uncover-
ing hidden social communities in the underlying networks.

5. CONCLUSION
In this paper, we introduce the spectral graph theory, a power-

ful tool in analyzing various complex networks, as directed, undi-
rected, and signed graphs. We discuss a variety of application prob-
lems in wireless networks, Internet traffic engineering, and influ-
ence diffusion in social networks. we also hightlight some future
directions to further extend and develop spectral graph theory in
more general settings, such as multi-attributed networks. This pa-
per aims to help the community better understand and explore this
nascent area.
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