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ABSTRACT
The increasing online availability of scholarly corpora promises
unprecedented opportunities for visualizing and studying
scholarly communities. We seek to leverage this with a
mixed-method approach that integrates network analysis of
features of the online corpora with ethnographic studies of
the communities that produce them. In our development
of tools and visualizations we seek to support the going
back and forth between views of community structures and
the perceptions and research trajectories of individual re-
searchers and research groups. We here present results from
tracking the temporal evolution of community structures
within a research specialty. We explore how the tempo-
ral evolution of these maps can be used to provide insights
into the historical evolution of a field as well as extract more
accurate snapshots of the community structures at a given
point in time. We are currently conducting qualitative in-
terviews with experts in this research specialty to assess the
validity of the maps.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—information networks
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Scientific Communities, Network Analysis, Maps of Science,
Temporal Evolution
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1. INTRODUCTION
The mapping of scientific communities and their collab-

oration networks [9] is flourishing for a number of reasons.
The now pervasive publication of scholarly results in dig-
ital libraries and institutional and disciplinary repositories
provides a comprehensive, machine-readable corpus for this
analysis. Complementing this is the emergence of sophisti-
cated algorithms for the analysis of complex networks [10]
and the wide availability of advanced user-friendly analy-
sis and visualization tools like pajek [2] and gephi [1] for
generic networks, or specialized tools for the analysis and
visualization of scholarly networks, such as VOSviewer [13],
CiteSpace [4] or Rexplorer [11]. This makes it possible to
develop science mappings that visualize characteristic fea-
tures and the evolution of scientific communities. Such map-
pings are of interest to researchers like ourselves who study
those communities, funding agencies who seek to understand
outcomes of funding, policy makers who aim to understand
the effect of science policy, and given increasingly interdis-
ciplinary research contexts also scientists who seek to orient
themselves about research trends and collaboration oppor-
tunities in other fields.

In our previous work [18], we generated static community
maps based on bibliographic data from 20 years of publica-
tions in a field. In this paper, we explore how the temporal
evolution of these maps can be used to provide insights into
the historical evolution of a field as well as extract more
accurate snapshots of the community structures at a given
point in time.

2. BACKGROUND
As described in [16] we take a mixed method approach

to studying social behaviors in scientific communities that
integrates ethnographic field studies with network analytic
methods. The ethnographic field studies involve visits of
several weeks length to the research sites (laboratories, of-
fices) of research groups to observe their research practices
and social behaviors, and to interview group members about
their experiences and perceptions. The ethnographies serve
several functions. Importantly they allow us to study a phe-
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nomenon of interest, e.g. openness and sharing behaviors
between research groups, in great detail. They provide nu-
anced evidence to help interpret behaviors and develop hy-
pothesis about causal relationships. At the same time, they
also support the quantitative, network analytic study of sci-
entific communities that complement the in-depth study of
individual groups. Insights gained during these observations
and interviews of study participants allow us to fine-tune
and optimize the delineation of publication data sets to rep-
resent research specialties, and to calibrate and correctly
interpret network analytic measures of community patterns
such as the co-author links between research groups [18].
Our mixed method approach evolves a tradition of close-up
analysis of scientific networks and communication practices
started by Crane’s work [5] on invisible colleges and taken
up more recently, by Zuccala [19] and Cambrosio et al.[3].

The work presented in this paper extends our hitherto
static approach to the mapping of community structures of
research fields [18] by adding time sensitivity to the anal-
ysis. Our focus is on the evolution of topics within a re-
search field along with the evolution of collaborative links
between research groups, since scientific research specialties
are a complex social and cognitive phenomenon [6]. Socio-
logically, research specialties can be characterized as collec-
tive production communities that emerge from the indirectly
coordinated activity of autonomous actors (research groups)
who aim to contribute to a shared knowledge base [8, 14].
In our tool development we seek to facilitate the going back
and forth between aggregate community-level structures and
the experiences and research trajectories of individual re-
searchers and research groups.

3. METHOD
The basic entities in our analysis are research groups or

research networks as represented by co-author clusters in a
co-author network [16], and topic areas, as represented by
clusters of documents in a direct citation network [18]. For
these entities we then construct two types of visualizations
that complement each other in informational content. First,
a topic affinity network shows the cognitive affinity between
topics based on citation links. Second, we extract the group
level network of collaborative links between research groups
in the field. An overlay map shows for each research group
in this network what topic area it is most active in, thereby
providing a visualization of the socio-cognitive community
structure within the research specialty. By slicing our data
set into three 8-year time periods, we investigate the evolu-
tion of these structures over time1.

3.1 Data
The data used in this study was extracted from biblio-

graphic records of the Thomson Reuters Web of Science re-

1This time window is a compromise between time resolu-
tion and structural cohesiveness of the network to be ana-
lyzed, i.e. allowing sufficient time for relevant connections
to be made. From previous work with this data set [15] we
know that certain features of interest, such as group inter-
nal structures, get expressed in the co-author network only
after publications accumulate over a time frame of at least
5 years. We could have chosen this lower bound but opted
here for the 8-year time window. Depending on the pub-
lication rates of a field, a different time window size will
be appropriate, however what criteria to use to chose the
optimal time resolution is still an open research question.

trieved using the advanced webservice API in October 2013
using a lexical query on the title field of publication records.
The specific database queried was the Science Citation Index
Expanded (SCI) edition of the Web of Science Core Collec-
tion. We searched and retrieved publications for the 22-year
period from 1991 to 2012. The lexical query was developed
during ethnographic field studies between 2007-2009 and op-
timized using methods described in [18] to capture and de-
lineate ’cluster science’, a research specialty in the physical
and chemical sciences. We only included records of docu-
ment type ’article’ in the final data set. The author name
data was disambiguated using a co-author based approach
described in [17]. Before the data is used for the construction
of the co-author network and the direct citation network it
is cleaned and reduced, e.g. to remove one-time authors, as
described in [15]. The resulting data set has 80,760 records
and 99,228 unique authors.

3.2 Topic Area Affinity Networks
We derive topic areas from clustering the direct citation

network generated from the publications in a given time pe-
riod (here: 1991-1998, 1998-2005, 2005-2012). We cluster
the direct citation network using infomap, an information
theoretic algorithm that models information flows [12] twice.
This way we obtain clusters of document clusters to repre-
sent research topics in the field. The distribution of cluster
sizes is fairly uneven with a few larger clusters containing
the majority of documents. For pragmatic reasons (ease of
interpretation of the visualized network) we select the eleven
largest clusters for the construction of the topic affinity net-
work. This way we capture, depending on the time window,
between 80% and 93% of all publications in the giant com-
ponent of the direct citation network.

We operationalize the affinity (or antagonism) between
topic areas by comparing the total strength of citation links
between two areas to a null model that assumes that docu-
ments get assigned to topic areas at random with a probabil-
ity proportional to relative topic area size [18]. The affinity
between a source topic area and a target topic area is calcu-
lated as follows:

Assume:
A11−i: Largest 11 areas except area i
Np(j): Number of papers in topic area j
Cij : Number of citations from topic area i to topic area j

We define the citation based affinity A between two topic
areas i and j as the residual:

Aij =
Actual Countij − Expected Countij√

Expected Countij

where:

Actual Countij = Cij

Expected Countij =
Np(j)∑

k∈A11−i
Np(k)

× (
∑

k∈A11−i

Cik)

In the affinity networks, the existence of a link indicates a
surplus of connectivity between the two topic areas in ques-
tion, whereas the absence of a link may either mean nor-
mal (random) background connectivity or a negative affinity
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value (’antagonism’). We note that affinity as defined here
is a relative property. It expresses the relative preference
given by documents in one topic area to citing documents
in another area given the choice between the ten other topic
areas included in the affinity calculation. Even if a seem-
ingly very strong link is present to one of the other topic
areas in the affinity network, it is possible that the affinity
to document clusters outside the set of topic areas selected
for this analysis or even outside of the data set (external
citations) is significantly greater than to the ones in the set.

3.3 Group Collaboration Networks
The co-author network is clustered using the infomap al-

gorithm [12], the same algorithm we use for clustering the
direct citation network. The co-author clusters retrieved
constitute the nodes of the group-level collaboration net-
work. Links between these group clusters are filtered to
extract only those (more complex and strong links) that in-
dicate actual inter-group collaboration links, filtering out
the residuals due to author migration from one to another
group or the more temporary links of one-off collaborations
(oftentimes service collaborations). We accept links as inter-
group collaboration links if and only if the removal of two
nodes that are members of either cluster does not eliminate
all the links between the two clusters. This algorithm is cal-
ibrated by our previous ethnographic field study of groups
in this field where we found that the resulting network cor-
responds very well to the actual inter-group collaborations
of our study participants [16].

The group collaboration networks of the 8-year time win-
dows reuse the groups as defined for the accumulative inter-
group collaboration network. It merely adapts the group
size to the number of authors actually active during the re-
spective time period and the strength of inter-group links to
the number of co-author links from articles published during
that time period.

3.4 Topic Overlay Maps
The topic overlay maps used in this article are generated

by creating a network partition file that indicates for each
node (group) in the group collaboration network the topic
are that its research is focused on during the given 8-year
time frame. We establish research focus by requiring more
than 50% of a group’s publications to be published in the
respective topic area.

3.5 Temporal Dynamics
To obtain insights into the temporal evolution of topics

and collaboration links in the research specialty, we use
slightly different strategies for research groups and for top-
ics, due to the differing tractability of topics in the much
smaller topic affinity network (11 nodes in the topic affinity
network) versus research groups in the group collaboration
network (629 nodes in the giant component of the collab-
oration network). For the group collaboration network we
delineate the basic entities of our mapping (research groups)
by clustering the accumulative 1991-2012 co-author network.
Then, we introduce temporal dynamics to the group collabo-
ration network by varying the size of topics and their affinity
links, as well as the size of research groups and their collab-
oration links, according to the publications published within
the 8-year window of a given time period.

Depending on the specific purpose of the mapping, a more

dynamic approach would be desirable to account for cases
where within the 22-year period covered by our data, re-
searchers change group membership and groups split or merge.
However, such an approach poses challenges such as how to
track the continuity of a research group (e.g. how to estab-
lish the identity of a research group across time slices) and
how to visualize the resulting trajectories and their inter-
connections for networks of several hundreds nodes in a user
friendly manner. To our knowledge these challenges have
not yet been satisfactorily solved [7].

We apply a more dynamic approach to the smaller topic
affinity network. Instead of delineating topics based on the
accumulative 22-year data set and then merely adjusting
node sizes and links by only counting publications in a given
8-year time window, we re-cluster the document citation net-
work for each 8-year time window. We support the tracking
of continuity between topics across time slices by generat-
ing annotations that indicate at a high-level the content of
the topics. We provide two types of annotations to describe
and distinguish the subject matter of the topic areas, one
derived from the titles of the most popular journals in each
topic area, and another derived from specific keywords and
their relative frequency in the titles of articles the respective
topic area.

4. RESULTS
As a baseline, we show the ’static’ topic affinity network

that is obtained from accumulative (1991-2012) data set,
see Figure 1. It depicts the research specialty as consist-
ing of an almost linear alignment of research topics that
can be associated - according to journal titles - with specific
(sub)disciplines in physics, chemistry and materials science.
It stretches from cluster physics, through surface science,
materials chemistry to cluster chemistry. The map shows a
weak link between the extreme ends of this alignment, be-
tween topic area 1 and topic area 6 (a new development not
yet visible in an earlier 1991-2010 version of this map that
is provided in [18]) that only weakly foreshadows one of our
main findings from the temporally resolved maps discussed
below.

The temporal evolution of the topic affinity network de-
picted in Figure 2 provides further insights into the un-
derlying dynamics. These networks capture changes in the
prominence, alignment and interrelatedness of research top-
ics in the field. Note that for each time slice, topic areas are
strictly numbered by relative size, ranging from A1 (largest),
to A11 (smallest). We observe the following developments::

1. The emergence of a separate topic area focused on the
interaction of clusters with radiation from advanced
light sources such as synchrotrons, x-ray free electron
lasers or femto and atto second lasers.

It first appears in the 1998-2005 map as fifth largest
topic area (A5) and remains visible in the 2005-2012
map as a distinct topic area (A6) whereas in the ear-
lier map (1991-1998) this kind of work was inseparable
from the large ’cluster physics’ topic area (A1).

2. The growth of the surface science orientation within
cluster science and its strengthening link with mate-
rials chemistry. In the 1998-2005 time window the
strengthening of the affinity link between the two areas
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Area1

Area2

Area3

Area4

Area5
Area6

Area7

Area8

Area9

Area10

Area11

Materials Chemistry
A2: materials chemistry

Cluster Chemistry 
A9: Catalysis
A5: Organometallics
A6: Inorganic Chemistry

Cluster Physics
A1: cluster physics
A7: dynamics

Surface Science
A3: surface science
A4: surface science

 

Surface Science
/Cluster Physics
A8: incl. fullerene
A11: Condensed Matter/Materials Science
A10: Interfaces, interactions

'Synthesis'

'Catalysis'

'Van der Waals'

'Intense Lasers'

'Nanoparticle'

Figure 1: ’Static’ view on the topic affinity network. This network is based on the accumulative 1991-2012
publication data. Nodes represent the 11 largest topic areas that were extracted from the direct citation
network. Directed links represent topic area affinity based on surplus of direct citations relative to a random
null model. Link color indicates source node of the link. Annotations indicate the substantive matter of the
topic areas based on the disciplinary orientation of the most frequent journal titles in each topic area and on
distinctive keywords in the article titles in each topic area (boxed terms).

A2 and A3 is very visible; In the time window 2005-
2012 surface science has become the dominating topic
area among the eleven largest topic ares within the
field (A1), and the materials chemistry areas A5 and
A7 have tight affinity links with it.

3. The emergence and strengthening of a link between
the extreme ends of the cluster science topic area align-
ment such that the topology is no longer long stretched
but a closed circle.The dynamic topic clustering shows
for the 2005-2012 time window the emergence of A3, a
large (3rd in size) hybrid topic area that combines (In-
organic) Cluster Chemistry and Cluster Physics and
connects Cluster Physics with Materials Chemistry with-
out the Surface Science intermediary. This is amplified
by a corresponding dense clustering of groups working
in A3 in the group collaboration network in Figure 2.

Of particular interest to us, as we design studies of field
differences in behavioral patterns among and within sci-
entific communities, is how these changes in the cognitive
structures in the field project onto the social network of
inter-group collaborations and what we may learn about im-
portant actors in the field and how topic focus and collabo-
rative interconnectivity interact.

As shown on the right hand side of Figure 2 an overall
feature of the group level collaboration network structure
through all three time periods is its division into two parts.
This division seems to reflect the disciplinary orientation of
groups towards either chemistry or physics. Initially the sep-
aration is evidenced by the network having two unconnected
large network components. In the later two time periods, an
interconnected giant component has formed, however it still

exposes a structural subdivision into two parts. This divi-
sion seems to be slowly diminished by growing collaborative
connections between the two parts of the network.

In addition, the topic affiliation of some of the groups
seems to transcend the boundary, that is groups in certain
topic areas can be found on both sides of the collabora-
tion network. In the early time window (1991-1998) groups
focused on research in surface science topic areas (A3, A6
and A11) appear in both network components, thereby tran-
scending this division. In the second time window (1998-
2005) groups contributing mainly to the materials chemistry
and cluster chemistry topic areas A2 and A3 are visible in
both parts of the network. Finally, in the most recent period
(2005-2012) there seems to be some intermixing by groups
mainly active in A4 (cluster physics/surface science).

Groups that connect major parts of the network tend to
be white in this set of overlay maps indicating their pub-
lication output is shared between several topic areas. One
example is the large white node in the middle of the left
component of the 1991-1998 group collaboration network in
Figure 2. It connects three major branches in this early col-
laborative network and seems to be well positioned to pro-
vide insights into the evolution of the field from the specific
sub-disciplinary perspective represented by this group. We
can trace this group’s activity through the entire time period
covered by our data. It follows a trajectory from A5 (also A4
and A9) in 1991-1998, and A9 (also A11 and A3) in 1998-
2005, to A11 (also A1) in 2005-2012. Its major affiliation at
the level of accumulative data is A5 (+ 2 and 9), reflecting a
sub-disciplinary orientation towards organometallics and in-
organic chemistry, a specialization that is confirmed by the
professional website of one of its lead authors.
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5. DISCUSSION
The picture that emerges is one in which, on the one hand,

(sub-)disciplinary orientations of the groups that publish in
the research specialty remain a rather stable feature. A
group that is specialized in one sub-disciplinary area rarely
changes its disciplinary orientation entirely. This is in agree-
ment with our ethnographic field studies of research special-
ties in the physical and chemical sciences. We witnessed
occasional strategic hires into a group to extend its local
skill set, e.g. to add a synthetic chemistry capability into
a largely experimental physics group. However, the foun-
dation of the group remains the sub-disciplinary training of
its leader that provides continuity to the research trajec-
tory of the group. Further, for some topic areas, large parts
of the inter-group collaboration network are constituted by
collaboration links within that topic area. Therefore a sig-
nificant part of the collaborative work in the field seems to
not transcend topic areas that generally correlate with sub-
disciplinary orientations.

That said, there are also clear ’connectors’, groups that
work across two or more areas. Due to their activity we see
an overall integration of the collaboration network. Also,
there are those (fewer) topic areas that are hybrid in their
(sub)disciplinary orientations such as A 3 in the 2005-2012
time window. These topic areas and the research groups
contributing to them may be of particular interest for the
study of interdisciplinary collaboration and exchange in the
field.

6. CONCLUSIONS
We have generated time resolved views into the co-evolution

of topics and collaborative links between research groups in
a research specialty. We have developed an interpretation
of these time resolved maps regarding trends in the field.
Further, the maps provide a valuable resource that suggests
individuals and groups that would be of particular interest
to include in future qualitative studies that aim to develop
a deeper understanding of the community structures within
this field and their evolution over time. A next step in our
research will be to validate these maps in interviews with
researchers in the field.

7. ACKNOWLEDGMENTS
We acknowledge funding support from two grants: 1) OCI

1301874 Understanding Conditions for the Emergence of
Virtual Orgs, and 2) SMA 1258891 EAGER: Collaborative
Research: Scientific Collaboration in Time.

8. REFERENCES
[1] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an

open source software for exploring and manipulating
networks. ICWSM, 8:361–362, 2009.

[2] V. Batagelj and A. Mrvar. Analysis and visualization
of large networks. In Graph Drawing Software, pages
77–103. Springer, Berlin, 2003.

[3] A. Cambrosio, P. Keating, and A. Mogoutov. Mapping
collaborative work and innovation in biomedicine a
computer-assisted analysis of antibody reagent
workshops. Social Studies of Science, 34(3):325–364,
2004.

[4] C. Chen. Citespace ii: Detecting and visualizing
emerging trends and transient patterns in scientific

literature. Journal of the American Society for
Information Science and Technology, 57(3):359–377,
2006.

[5] D. Crane. Invisible Colleges - Diffusion of Knowledge
in Scientific Communities. The University of Chicago
Press, 1972.

[6] Y. Ding. Community detection: Topological vs.
topical. Journal of Informetrics, 5(4):498–514, 2011.

[7] M. Giatsoglou and A. Vakali. Capturing social data
evolution using graph clustering. Internet Computing,
IEEE, 17(1):74–79, 2013.
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