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ABSTRACT
In this paper we exploit knowledge from Linked Data to
ease the process of analysing scholarly data. In the last
years, many techniques have been presented with the aim of
analysing such data and revealing new, unrevealed knowl-
edge, generally presented in the form of “patterns”. How-
ever, the discovered patterns often still require human in-
terpretation to be further exploited, which might be a time
and energy consuming process. Our idea is that the knowl-
edge shared within Linked Data can actuality help and ease
the process of interpreting these patterns. In practice, we
show how research communities obtained through standard
network analytics techniques can be made more understand-
able through exploiting the knowledge contained in Linked
Data. To this end, we apply our system Dedalo that, by
performing a simple Linked Data traversal, is able to auto-
matically label clusters of words, corresponding to topics of
the different communities.

Categories and Subject Descriptors
I.5 [Pattern Recognition]; I.5.4 [Pattern Recognition]:
Application—Text Analysis; J.5 [Computer Application]:
Administrative data processing—Education

Keywords
Linked Data, Educational Data, Community Detection

1. INTRODUCTION
Interest for research and scholarly data has sensibly in-

creased in the last years, due to the large and constantly in-
creasing amounts of published data. Many techniques have
been applied and presented in the literature in order to mine
and visualise such data, with the aim to reveal unrevealed
knowledge, highlighting hidden patterns (to be intended, as
in [4], as “a statement describing an interesting relation-
ship among a subset of the data”) and forecasting interesting
trends.
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However, the interpretation of the revealed knowledge is
still an intensive process, since it requires the intervention of
a human expert, whose role is to analyse the trends and give
them a meaning before they can be further exploited. This
makes interpretation a crucial step in the process, where
some knowledge might still remain unrevealed.

The use-case we adopt here is the detection of topic com-
munities within data provided by our university; i.e. a cor-
pus of thousands of papers that have been published by each
faculty of the Open University in recent years1. For the sim-
ple aim of detecting which research areas are being studied,
we process documents using basic text-mining techniques to
obtain groups of similar documents, corresponding more or
less to research areas. The techniques generally employed
for purposes like ours tend to probabilistically extract top-
ics as groups of co-occuring words, which eventually need a
human to interpret and label them with the right research
area.

The nature of Linked Data can facilitate the process of
understanding scholarly data: the idea we bring here is not
only that educational data are one of the biggest portions
within Linked Data (as reported in April 20142), but also
that the structured and linked form they are represented
with allows the spanning of datasets and the discovery of
unrevealed knowledge about them with very little effort.
We highlight the Web of (Linked) Data potential of link-
ing RDF datasets across different disciplines, making new
sources of knowledge accessible by the machines but also
allowing the discovery of unrevealed, multi-domain knowl-
edge. With such an amount of information shared through
Linked Data, it should therefore be possible to automatise,
or at least facilitate, the interpretation of results such as the
ones described above.

What we intend to achieve in this work is automatis-
ing the interpretation of topic communities, by using the
Linked Data connected information as background knowl-
edge. In this paper, we use an automatic framework travers-
ing Linked Data, Dedalo [13], that uses an A* search strat-
egy over the graph of Linked Data, to identify common ex-
planations (labels) for the the research communities that it
found.

2. RELATED WORK
Our work finds its place at the intersection between the se-

mantic publishing field, which comprehends Semantic Web-
based approaches enriching published data and facilitating

1http://oro.open.ac.uk/
2http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/
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their analysis, and the subfield of social network analysis
defined as topical community detection, consisting in those
approaches using the documents’ textual information to de-
tect topics of the identified communities.

Semantic publishing. The pioneer works to explore aca-
demic data have been built based on citation-indexes. Among
those, we include the very well known Google Scholar3, the
DBLP database4 and the CiteSeerX [8] search engine. Ar-
guing that those were only focusing on data exploration,
a more recent generation including the Microsoft Academic
Search5 and ArnetMiner [12] systems has highlighted the im-
portance trend discovery and prediction, and proposed novel
features for those purposes. Recently, the Rexplore [10] sys-
tem pointed out that the lack of semantic information in the
former works prevents a proper data exploration in a gran-
ular way, and introduced information from external Linked
Data datasets such as GeoNames, DBpedia or DBLP++ to
overcome this issue.

The importance of the Semantic Web for scholarly data
has also been highlighted in the literature through the use of
ontologies and vocabularies to enhance the representation of
those data. A whole set of vocabularies, now available as the
SPAR suite6, include ontological models in OWL 2.0 DL for
publishing and referencing bibliographic records and docu-
ments in various aspects of the publication process. Since
those models did not take into account the time factor (e.g.
author’s role changing), the work of [11] presented two on-
tologies including the time-indexed value in context ontology
pattern tackling this issue.

Topical community detection. Relevant literature in-
cludes a wide range of works for topic labelling (for a full sur-
vey on the area, see [3]). Our work is part of those works that
make use of external datasources to label topics. In [1, 2,
7], topics are extracted from Wikipedia’s structured knowl-
edge, also verifying the topics against a search engine [1, 7].
Moving away from Wikipedia and built-in knowledge bases
into Linked Data, [5] proposes to use DBpedia categories as
labels for topics. This work is certainly the most similar to
our research, but with a significant difference: [5] relies on
the use of SPARQL queries to retrieve the DBpedia cate-
gories. This introduces some (human) a priori knowledge,
and limits the benefits of the Linked Data interconnected
knowledge, intended as a more serendipitous knowledge dis-
covery process.

3. PROBLEM STATEMENT
To detect communities that talk about similar things, we

can perform clustering on the set of available documents.
Given a dataset D = {d0,. . . ,dm} of m publications and a
corpus W= {w0,. . . ,wn} of n words occurring in each dk ∈
D, a community is defined as a group of similar words C=
{w0, . . . , wj} (where C ⊆ W) associated to a topic T , that we
aim at defining automatically by estimating it on the words’
similarity (see next section for details). Once obtained, we
can use the 10 words top10(Ci) ⊆ Ci that are closest to the
centroid of the cluster Ci to label the community.

3http://scholar.google.com
4http://www.informatik.uni-trier.de/ ley/db/
5http://academic.research.microsoft.com/
6http://purl.org/spar

Figure 1 shows clusters representing our university’s com-
munities. We obtained a network of communities (the size
represents the number of documents belonging to it) whose
connections intensity shows their relatedness (the stronger is
the connection, the thicker is the line). The network reveals
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Figure 1: The Open University community network.

indeed different areas; however, quickly identifying commu-
nities is hard since, unless being an expert of the domain,
words in each cluster remain meaningless. For instance, we
distinguish a red group that we call Cy1, Cy2, Cy3, for which:

• top10(Cy1) = media, twentieth, paint, begin, religion,
rich, church, write, century, movement

• top10(Cy2) = inertia, instantaneous, smooth, zonal, ad-
justment, kolmogorov, france, steeper, ethnic, longer

• top10(Cy3) = mania, within, complete, one, emerge,
open, shape, space, highlight, bring

To interpret them, one needs to be an expert that, us-
ing his own background knowledge, defines a super concept
relating them. And even so, this might not be enough to ex-
plain the whole community. One could say that Cy1 and Cy2
might correspond respectively to arts and mathematics, but
Cy3 would probably remain unexplained to many people.

In [13] we presented Dedalo, a framework to explain clus-
ters of items using knowledge extracted from Linked Data.
Dedalo is based on three main assumptions:

• if items are in the same cluster, there is an underlying
characteristics that makes items appearing together,
and this goes beyond the clustering process;

• Linked Data knowledge is a graph of URI entities con-
nected through RDF properties, that can be blindly
navigated in order to serendipitously discover new knowl-
edge (possibly across different datasources), using a
simple Linked Data traversal and URI dereferencing
process;

• some entities in this graph can have a common walk −→w
(expressed in the form of a chain of contiguous RDF
properties) to a specific entity.

Given those assumptions, the main insight is that if items of
a cluster share the same walk to a specific (unknown) entity
in the Linked Data graph, then these walks can be used as
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an explanation to their grouping. Dedalo then applies an
A* graph search strategy, aiming at finding the least-cost
path from the set of initial nodes to a goal node, i.e. the
entity they have in common somewhere in the graph, and
uses the entropy measure to estimate the costs of the walks
in the graph. Because Linked Data can be traversed by URI
dereferencing, Dedalo explores the graph trying to improve
the accuracy of the explanations by iteratively deepening
the graph exploration.

Our general challenge is summarised as follows: given the
cluster of words, whose understandability remain difficult,
Linked Data, providing information about concepts in mul-
tivariate domains and Dedalo, which is able to find Linked
Data explanations for the grouping of some patterns, we
want to set up a process to automatically label communities
and ease the process of their interpretation.

4. APPROACH
To label communities, we performed three tasks: (i) data

pre-processing, (ii) network building and (iii) community la-
belling.

4.1 Data pre-processing
The first step consisted in pre-processing the input data.

We started from a corpus of publication abstracts D =
{d0,. . . , dn} and applied common text preprocessing steps
to clean them. We intentionally chose the abstracts for
their accessibility, as well as because we considered they were
enough to represent the research topic of a paper. The use
of full texts is left for future work.

(1) Text normalisation. This includes reducing words to
lower case as well as removing (English) stopwords, numbers
and punctuation.
(2) Stemming and stem completion. Words are first
reduced to their stemma, and then each stem is replaced
with its shortest possible raw form inW. This improves the
words readability and the chances to map them with the
same one DBpedia entity. For instance, the words religion,
religious and religiously are first all stemmed as religi-, and
this one is then transformed to religion.
(3) Term filtering. We set the minimum characters length
for a term wi to 3, as we considered words below this bound-
ary as pointless to our purposes. This, of course, is a choice
purely adapted to our data, and might not be applicable to
a different dataset.
(4) DBpedia lookup. We removed from W words that
could not be mapped with DBpedia. Because Dedalo re-
lies on link traversal, we do not have to worry about words
ambiguity nor ranking the top(k) relevant DBpedia entities
for a word: either a DBpedia entity exists (as in the triple
〈db:Religion,dc:subject,db:category:Religion〉), and therefore
Dedalo would normally dereference it by collecting its prop-
erties and values, or the entity has a redirection property
(expressed in DBpedia by the dbo:wikiPageRedirects prop-
erty) that Dedalo would naturally follow as any other prop-
erty, as when discovering the triple 〈db:Religiosity,dbo:wiki-
PageRedirects,db:Religion〉.

4.2 Network building
We applied the mathematical technique of Latent Seman-

tic Analysis (LSA) to extract and infer relations of expected
contextual usage of words in texts [6]. Words have been

represented first as high dimensional vectors, so that we
obtained a TF-IDF weighted term-document matrix M in
which each column was a unique word and each row a doc-
ument of the corpus. We cropped M at its upper and lower
boundaries, i.e. removing words appearing in more than
25% of D, or less than twice. With respect to the power
law distribution7, we considered that boundaries would be
helpful in detecting the truly meaningful words with respect
to our data.

Secondly, the matrix was reduced into a lower dimensional
space, the latent semantic space, using a form of factor anal-
ysis called the single value decomposition (SVD). This space
reveals semantic connections between words beyond the lexi-
cal level, reproducing the human judgment of meanings sim-
ilarity. With the SVD, M is first split in three sub-matrices
(the term vector T-matrix, the document vector D-matrix
and the diagonal matrix S-matrix) and then reduced into
a space Sk of k dimensions, i.e. the latent semantic space.
The dimensions reduction collapses the sub-matrices in such
a way that words occurring in similar contexts will appear
with a greater (or lesser) estimated frequency, therefore au-
tomatically reproducing the words’ grouping (into what a
human would define as a topic).

Once obtained the LSA space Sk, we clustered the words
according to the Euclidean distance between them, and for-
med the set of clusters C={C0, . . . , Ci} corresponding to the
communities. To highlight the communities relatedness, we
kept only the connection (the edge) between a given clus-
ter Ci and its closest one according to the distance between
their centroids. The result is a network graph, as already
shown in Figure 1, in which clusters are nodes of different
size (the number of words belonging to it), and the edges
are the top(1) connections between the nodes. The thicker
the edge, the closest the two centroids are, the more the two
communities are related.

4.3 Communities labelling
The last step is to run Dedalo on each cluster Ci in order

to find explanations revealing why its words wi are part of
it. Dedalo’s process is inspired by the Inductive Logic Pro-
gramming approach [9], in which, starting from a group of
positive and negative examples (in our case, words wi ∈ W)
and some knowledge about them, a set of theories entail-
ing all the positive and none of the negative examples are
automatically derived. In this context, given:

• Ci, a cluster of words corresponding to the community
that we want to label;

• W\Ci, the remaining words wi in W to use as counter
examples;

• B, the knowledge in Linked Data, encoded as walks −→w
of RDF properties between a group of items in W and
a final entity ei, i.e. εi =〈−→w .ei〉;

Dedalo’s aim is to find the best explanation top(εi) for the
words in Ci, where best is intended as representing the biggest
number of words of Ci and the least of the words outside
it. An A*-driven link traversal is used to iteratively ex-
plore new parts of the Linked Data graph, and to collect the
most promising explanations. To start this graph search,
we created a URI entity for each word wi, and linked it

7http://en.wikipedia.org/wiki/Zipf law
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Figure 2: Example of the Linked Data graph traversal. The search starts at the top with the words in Cy1.
The walks they share in the graph are collected and then evaluated in order to find the most suitable ones.

to its DBpedia correspondent wD
i (found in the DBpedia

lookup step) with a RDF property skos:relatedMatch, so
that Dedalo’s graph initially contains n triples in the form
of 〈ddl:wi,skos:relatedMatch,db:wD

i 〉 with n being the size
of the words corpus W.

The graph is iteratively expanded, as follows: first, the
best walk −→w i is taken from the queue of all the possible
walks that could be followed in the graph; second, the en-
tities at the end of this walk are dereferenced; third, new
walks of length l+1 (l being the length of the best walk
−→wi) are collected by chaining −→wi to the properties obtained
by dereferencing the new URIs; finally, those new walks are
added to the queue, and a new iteration begins. Each time
a new walk −→wi is discovered, we also build new explanations
εi=〈−→wi.ei〉, using each of the entities ei that −→wi walks to.
Figure 2 gives a non-exhaustive graph search example on
Cy1. For readability clarity, Table 1 presents a legend of the
walks that will be used further on.

Table 1: Walks label of our running example.

id. −→wi−→w1 {skos:relatedMatch}
−→w2 {skos:relatedMatch,dc:subject}
−→w3 {skos:relatedMatch,dc:subject,skos:broader}
−→w4 {skos:relatedMatch,dc:subject,skos:broader,

skos:broader,skos:broader}
−→w5 {skos:relatedMatch,dc:subject,skos:broader,

skos:broader,skos:broader}

If we assume the best walk at a given iteration is−→w3 ={skos:
relatedMatch,dc:subject,skos:broader}, we dereference the
entities at the end of −→w3, i.e. e1=db:category:Creativity and
e2=db:category:Spirituality. Thus, we build the new walk
−→w4={skos:relatedMatch,dc:subject,skos:broader,skos:broade
r} by adding to −→w3 the new property p=skos:broader discov-
ered by dereferencing e1 and e2, and add it to the queue of
walks. Finally, we create a new explanation ε=〈−→w4.db:cate-
gory:Concepts in aestethics〉, evaluate it, and start a new
iteration.

The explanations accuracy is statistically evaluated using
the F-Measure F = 2 ∗ P∗R

P+R
. Given an explanation εi =

〈−→wi.ei〉, Precision and Recall are defined as follows:

(1) P = sources(εi)∩Ci
sources(εi)

(2) R = sources(εi)∩Ci
|Ci|

where sources(εi) is the number of words wi ∈ W walking to
ei through the walk −→wi and Ci is the cluster of words we want

to explain. For instance, 5 sources are covered by the expla-
nation ε1=〈−→w4.db:category:Concepts in aesthetics〉, while the
explanation ε2=〈−→w3.db:category:Creativity〉 covers only 3, so
we consider ε1 as the most valuable explanation for the clus-
ter.

Finally, the best explanation is can be used as label of
communities, as in Figure 3.
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Social sciences
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Management
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Meteorites
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Figure 3: Replacing the clusters of words with the
DBpedia categories. Each community is labelled
with the best explanation that Dedalo found after
5 iterations.

5. EXPERIMENTS
Below we give some details about our experiments. All the

data, experiments and tests are publicly available online8.

5.1 Data and process details
Data preprocessing. Our dataset D was composed of
17,142 English abstracts, retrieved from the ORO reposi-
tory using a simple SPARQL query9. The set of words W,
initially composed of 65,564 words, was reduced to 18,396
words after the preprocessing step.

8http://linkedu.eu/dedalo/
9http://data.open.ac.uk/sparql
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Table 2: Explanations found by Dedalo after 5 iterations, their F-Measure score (FM), the number of sources
sources(εi) in Ci covered by εi, and the size of the cluster Ci.

εi FM |sources(εi) ∩ Ci| |Ci|
〈−→w2.db:Category:Meteorites〉 40.0 4 16
〈−→w5.db:Category:Geology〉 32.9 25 125
〈−→w4.db:Category:Chemical Properties〉 26.7 2 8
〈−→w5.db:Category:Branches of Biology〉 26.4 21 73
〈−→w5.db:Category:Organs〉 26.1 9 52
〈−→w4.db:Category:Educational Institutions〉 23.5 4 28
〈−→w5.db:Category:Chemistry〉 22.9 28 160
〈−→w5.db:Category:Astronomy〉 22.2 12 81
〈−→w3.db:Category:Social Sciences〉 21.3 5 31
〈−→w5.db:Category:Mathematics〉 21.1 22 150
〈−→w5.db:Category:Telecommunications Engineering〉 20.8 5 36
〈−→w4.db:Category:Subfields of Political Science〉 20.1 3 21
〈−→w3.db:Category:Concepts in Epistemology〉 19.5 4 32
〈−→w4.db:Category:Creativity〉 18.2 7 49
〈−→w4.db:Category:Abstraction〉 17.9 6 31
〈−→w4.db:Category:Branches of Psychology〉 17.9 5 33
〈−→w4.db:Category:Management〉 16.7 3 25
〈−→w5.db:Category:Leadership〉 16.7 3 23
〈−→w5.db:Category:Materials Science〉 16.5 7 45
〈−→w4.db:Category:Philosophy of Social Science〉 16.3 4 35
〈−→w5.db:Category:Branches of Geography〉 14.7 5 42
〈−→w3.db:Category:Philosophy of Language〉 13.3 3 38

LSA space extraction. To obtain the LSA space Sk out
of W, we used the R LSA package10. We produced several
k-dimensional spaces S, with k either manually set to 150
and 250 or automatically set to 899. Since no significant
difference was seen between the clusters produced by S150,
S250 and S899, we chose S250 as a trade-off among them.

Clustering. We used the K-means algorithm and the Weka
tool11 to cluster the words represented in S250 and obtain
communities of words. In order to test different granular-
ities, we ran several tests, with the clusters number K set
to 20, 30, 50, 100 and 150. For the communities visual-
isation and as a running example of this work, we chose
the K = 30 as it was giving a good idea of the connections
between communities. Some of Dedalo’s explanations with
more fine-grained or general clusters are presented in the
next section, while the full results are available online. We
filtered out of the process clusters whose size |Ci| was less
than 10 or above 500 elements, as we considered them noise.
The final W corpus consisted of 1,192 words.

Networking. The network graph was obtained using the
Gephi tool12.

5.2 Experiments and discussion
Our evaluation is focused on showing the benefits of in-

cluding Dedalo’s strategy to label clusters.

Improvement over iterations. As explained in the pre-
vious section, Dedalo iteratively builds a graph and finds ex-
planations while traversing Linked Data. This means that
the more the graph is traversed, the more an explanation
is likely to be shared by a bigger number of elements, and
therefore to improve its accuracy. In Figure 2, for instance,
we can see that the ε1= 〈−→w3.db:category:Creativity〉 covers

10http://cran.r-project.org/web/packages/lsa/lsa.pdf
11http://www.cs.waikato.ac.nz/ml/index.html
12https://gephi.github.io/

three items of Ci, while ε2 = 〈−→w4.db:category:Concepts in ae-
sthetics〉 covers 5 of them. Table 3 gives an overview of the
explanations improvement for the clusters Cy1, Cy2 and Cy3,
by showing the best explanation at each iteration, as well as
its F-Measure.

As one can see, within few iterations we automatically
span from our initial dataset to DBpedia, and manage to
build explanations that generalise the clusters and explain
why words appear together. Dedalo’s A* search detects in
a first instance that the DBpedia property dc:subject is the
most promising walk (where promising means the one that
is more likely to reveal a good explanation in terms of F-
Measure), followed by the property skos:broader. For this
reason, most of the explanations after few iterations have
already walked up the taxonomy of DBpedia concepts by
following two or three skos:broader properties (shown by the
walks’ apex in the Table). With this strategy, we can see
how the explanation for a cluster significantly improves in a
short time (we pass from “2% of the words in Cy2 match the
DBpedia concept db:Scale” to “20% of the words in Cy2 are
subcategories of the category Mathematics”).

Table 3: Example of explanations for Cy1, Cy2 and Cy3
found at each iteration.

Ci iter best explanation ε F(%)

Cy1

1 〈−→w1.db:Century〉 7.8
2 〈−→w2.db:Category:Writing〉 11.3
3 〈−→w3.db:Category:Problem solving〉 13.5
4 〈−→w4.db:Category:Creativity〉 18.2

Cy2

1 〈−→w1.db:Scale〉 2.6
2 〈−→w2.db:Category:Concepts in Physics〉 10.3
3 〈−→w3.db:Category:Physics〉 14.3
4 〈−→w4.db:Category:Fields of Mathematics〉 18.5
5 〈−→w5.db:Category:Mathematics〉 21.1

Cy3

1 〈−→w1.db:Social〉 6.0
2 〈−→w2.db:Category:Concepts in Logics〉 10.8
3 〈−→w3.db:Category:Logic〉 15.0
4 〈−→w4.db:Category:Abstraction〉 17.9
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Fine-grained clusters labelling. Table 2 shows the best
explanation that has been found for each of the 23 clusters
after 5 iterations. The others columns are: F-Measure, the
numbers of sources covered by the explanations and the size
of the cluster Ci. Dedalo exploits Linked Data knowledge
to give an automatic label to each community, and we can
see that labels do not only give more sense to the groups of
words, but also reflect the distinction of different research ar-
eas. Those labels facilitate the user’s analysis: for instance,
labelling the three clusters Cy1, Cy2 and Cy3 respectively as
Creativity, Mathematics and Abstraction reveals an hidden
connection between the communities that could not be that
visible simply by using the cluster’s top10 words.

Finally, we can observe how the labelling process reflects
the granularity of the clustering process: the more clusters
we create, the more fine-grained is the explanation; while the
less there are, the more general the topic is. For instance,
for K = 20, we observed a community whose best expla-
nation is: ε1 = 〈−→w5.db:Category:Culture〉 (13% F-Measure),
while we notice that its second and third best ones, ε2 =
〈−→w3.db:Category:Philosophy of Language〉 and ε3 = 〈−→w4.db:
Category:Social Science〉 do correspond to the labels of two
different clusters when K=30. Inversely, for K=50, we have
obtained different communities, each of one explained by
mathematics subcategories, for instance, (i) ε1=〈−→w4.db:Pro-
bability and statistics〉, (ii) ε2=〈−→w2.db:Category:Elementa-
ry Mathematics〉, and (iii) ε3=〈−→w4.db:Category:Reasoning〉.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a use-case for labelling schol-

arly data represented as groups of related words, by ex-
ploiting knowledge from Linked Data. To achieve this, we
used Dedalo, a system able to find explanations from Linked
Data for a group of items using a graph search strategy
and a Linked Data traversal. We automatically obtained
labels for a group of “semantically related words” that oth-
erwise would have required the experts background knowl-
edge to be explained. We have shown that the explana-
tions serendipitously found by Dedalo can ease the process
of understanding the words grouping. The result is a more
human-readable network of academic communities that only
relies on the knowledge contained in Linked Data.

As future work, we will consider other approaches to ex-
ploit Dedalo and Linked Data to ease the analysis of pub-
lished data, as well as using them for prediction purposes.
Another axis of research is combining the explanations to
obtain a more precise explanation of the cluster.
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