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ABSTRACT
Statements about RDF statements, or meta triples, provide
additional information about individual triples, such as the
source, the occurring time or place, or the certainty. In-
tegrating such meta triples into semantic knowledge bases
would enable the querying and reasoning mechanisms to be
aware of provenance, time, location, or certainty of triples.
However, an efficient RDF representation for such meta knowl-
edge of triples remains challenging. The existing standard
reification approach allows such meta knowledge of RDF
triples to be expressed using RDF by two steps. The first
step is representing the triple by a Statement instance which
has subject, predicate, and object indicated separately in
three different triples. The second step is creating assertions
about that instance as if it is a statement. While reification
is simple and intuitive, this approach does not have formal
semantics and is not commonly used in practice as described
in the RDF Primer.
In this paper, we propose a novel approach called Singleton
Property for representing statements about statements and
provide a formal semantics for it. We explain how this sin-
gleton property approach fits well with the existing syntax
and formal semantics of RDF, and the syntax of SPARQL
query language. We also demonstrate the use of singleton
property in the representation and querying of meta knowl-
edge in two examples of Semantic Web knowledge bases:
YAGO2 and BKR. Our experiments on the BKR show that
the singleton property approach gives a decent performance
in terms of number of triples, query length and query execu-
tion time compared to existing approaches. This approach,
which is also simple and intuitive, can be easily adopted for
representing and querying statements about statements in
other knowledge bases.
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Table 1: Sample queries for different types of meta
knowledge, each query example is assigned an iden-
tifier (P, T, S, and C) for references

Query type Examples

Provenance P1. Where is this fact from?
P2. When was it created?
P3. Who created this fact?

Temporal T1. When did this event occur?
T2. What is the time span of this event?
T3. Which events were in the same year?

Spatial S1. What is the location of this event?
S2. Which events were at the same place?

Certainty C1. What is the confidence of this fact?

Keywords
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RDF Singleton Property

1. INTRODUCTION
Representing and querying meta knowledge for triples in-

cluding provenance, trust, certainty, time, and location have
been emerging demands in creating and sharing Semantic
Web knowledge bases [8, 15, 16, 17, 19]. Here we use the ex-
ample from YAGO2 [8] for demonstrating the requirements
of meta knowledge for triples and motivating our approach.

1.1 Motivating example
Resource Description Framework (RDF) [5, 12] has been

well adopted for creating and sharing various knowledge
bases. Knowledge bases that provide a comprehensive col-
lection of facts (e.g., YAGO [20]) have been widely used by
various applications. These facts are usually in the form of
triples, or subject-predicate-object such as:

BobDylan isMarriedTo SaraLownds

BarackObama isPresidentOf TheUnitedStates.
Here we simplify the syntax of resource URIs for readabil-

ity by eliminating their prefixes. While these facts are useful
for finding spouses or political positions of a person, they do
not provide sufficient information for answering many types
of challenging questions involving meta knowledge. Such
lists of query types and their examples are listed in Table 1.

Additional information about the triples must be provided
in order to address those queries. Recent knowledge bases
such as YAGO2 [8] provide such temporal and spatial in-
formation. For example, the information about the sources
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Table 2: Reified statements and their meta knowl-
edge assertions for the same fact BobDylan isMar-

riedTo SaraLownds occuring in two documents

Subject Predicate Object

BobDylan isMarriedTo SaraLownds
stmt#1 rdf:type Statement
stmt#1 rdf:subject BobDylan
stmt#1 rdf:predicate isMarriedTo
stmt#1 rdf:object SaraLownds
stmt#1 hasSource wk:Bob Dylan
stmt#1 extractedOn 2009-06-07

stmt#2 rdf:type Statement
stmt#2 rdf:subject BobDylan
stmt#2 rdf:predicate isMarriedTo
stmt#2 rdf:object SaraLownds
stmt#2 hasSource wk:Sara Dylan
stmt#2 extractedOn 2009-08-08

and dates of the fact BobDylan isMarriedTo SaraLownds

would help find the answers for question P1 (where is the
fact from?) and P2 (when was it created?) in Table 1.

We assume that this fact could be extracted from the
wiki pages of Bob Dylan on 2009-06-07 and Sara Dylan on
2009-08-08. Using the reification approach, the whole reified
statements and their assertions about sources and extraction
dates are provided in Table 2.

The fact is represented as an instance of class Statement
with three different properties for its subject, predicate and
object. Since we need to represent two occurrences of the
same statement in two different documents, we create two
resources: stmt#1 and stmt#2 because if we create only one
stmt#1 for both occurrences, the association of each occur-
rence with its source and date of extraction together is not
distinguishable. The meta information about the fact is rep-
resented by hasSource and extractedOn properties.

The lack of formal semantics connecting a statement and
the resource describing it is one of the main drawbacks of
using reification for describing triples. Since the resource
stmt#1 describing a statement is not associated with that
statement, assertions created for this resource are not the
same as assertions created for the original statement as ex-
plained in the RDF Primer [12]. Moreover, it is obvious
that the reification approach requires four additional triples
for representing one statement per document as a resource.
This would increase the size of the data sets by at least four
times, which is not a scalable approach. It would also make
query patterns lengthy for finding when the couple was mar-
ried or divorced.

1.2 Our approach
In this paper, we address the problem of representing and

querying statements about statements, or meta knowledge
of triples, by looking at it from a different perspective. Our
motivation arises from the question as to whether or not
a more efficient mechanism for describing a statement us-
ing RDF exists. A good design should provide a formal
semantics, use existing syntax and be compatible with ex-
isting Semantic Web languages, tools, and methods. The
proposed formal semantics should be compatible with the
existing model-theoretic semantics in order to avoid conflicts

Table 3: Singleton properties and their meta knowl-
edge assertions for the same fact BobDylan isMar-

riedTo SaraLownds occuring in two documents

No Subject Predicate Object

T1 BobDylan isMarriedTo#1 SaraLownds
T2 isMarriedTo#1 singletonPropertyOf isMarriedTo
T3 isMarriedTo#1 hasSource wk:Bob Dylan
T4 isMarriedTo#1 extractedOn 2009-06-07

T5 BobDylan isMarriedTo#2 SaraLownds
T6 isMarriedTo#2 singletonPropertyOf isMarriedTo
T7 isMarriedTo#2 hasSource wk:Sara Dylan
T8 isMarriedTo#2 extractedOn 2009-08-08

in the RDF/RDFS interpretation. Using the existing RDF
syntax would ensure the compatibility of meta triples and
existing triple datasets. Such design would overcome the
need to develop new or revise available tools and methods
for making them work with new meta triples.

This paper proposes a novel approach called Singleton
Property for representing statements about statements us-
ing RDF with regard to the three requirements above. Our
approach is based on the intuition that the nature of ev-
ery relationship is universally unique. The uniqueness of
the relationship can be a key for any statement using the
new type of property called singleton property. A singleton
property is a property instance representing one specific re-
lationship between two particular entities under one specific
context. Singleton properties can be viewed as instances of
generic properties whose extensions contain a set of entity
pairs. Similar to the way we assign URIs for generic prop-
erties, we assign a URI for each singleton property. For ex-
ample, for the same statement BobDylan isMarriedTo Sar-

aLownds, we can create two singleton property instances de-
scribing the occurrences of this statement in two documents
as provided in Table 3.

For each document (or context of the fact), we create one
separate singleton property instance representing that fact
(in T1, T5). Particularly we create two singleton properties
isMarriedTo#1 and isMarriedTo#2 for the relationships ex-
tracted from the Wiki pages of Bob Dylan (wk:Bob_Dylan)
and Sara Dylan (wk:Sara_Dylan), respectively. Meta knowl-
edge about the fact from one document can be added as as-
sertions for the singleton property from that document (in
T3, T4, T7, and T8).

These two singleton properties and their generic prop-
erty isMarriedTo (in T2, T6) are interconnected via the new
property called singletonPropertyOf. Since the relation-
ship between a generic property and a singleton property
can be viewed as a special binary class and an instance, we
define the singletonPropertyOf property as a sub property
of rdf:type. We will provide a more detailed explanation
on how we come up with the set of triples listed in Table 3
in the next section.

Our contributions in this paper include:

• A novel approach for representing and querying state-
ments about statements using RDF/SPARQL syntax,

• A formal semantics for interpreting the singleton prop-
erty terms in RDF/RDFS,

• Two real use cases in existing knowledge bases,
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• And a comparison between the singleton property ap-
proach and the existing approaches based on three
quantitative metrics: number of triples, query length
and query execution time.

The remaining sections are organized as follows. Section
2 explains the approach in detail and justifies our design
choices for the singleton property. Section 3 provides a
formal semantics for the singleton property. The querying
mechanism is described in Section 4. We also discuss issues
related to how this singleton property could be adopted by
existing Semantic Web technologies and standards by pro-
viding two use cases in Section 5. We finally report the
experiments of the approach in Section 6, and the related
work in Section 7. We discuss about the possible future work
in Section 8 and conclusion in Section 9.

2. SINGLETON PROPERTY
In this section, we will explain our intuition for the pro-

posed approach and justify our design choices for the single-
ton property. Here we explain our rationale accounting for
the novel perspective that leads to our approach.

2.1 Singleton property as unique key for state-
ment within a context

Back to the motivating example we used in Section 1.1, the
reification process represents a triple as a resource, which is
an instance of the Statement class [5]. Reifying a statement
requires two steps. The first step is to find a resource that
uniquely identifies a statement. The second is to create as-
sertions for that statement via that resource. The first step
involves finding which resource among the three elements of
a triple could fundamentally distinguish statements.

In the Semantic Web, everyone can create any statement.
It is possible that the same statements may be created in
different datasets by different organizations. Therefore, we
need to find a resource that can distinguish any two state-
ments. Given that the statements may be the same, they
may be associated with different contextual information when
they are created. The information capturing the context
when a statement is created could be helpful for identify-
ing statements. Such contextual information of a statement
could be described by various dimensions of meta knowl-
edge, including the source recording that statement, the
time or place that statement occurs, the certainty of the
author about that statement, etc. We can conclude that a
statement within a context is unique. Now the next question
is, what can represent that uniqueness of a statement within
a context? If the same statements are associated with dif-
ferent contexts, are they the same in nature? What remains
the same? What becomes different?

From a philosophical point of view, we believe that the
existence of two entities in the subject and the object of one
statement is independent from the contexts creating that
statement. Particularly, they already exist before the state-
ment is created. For example, the existences of Bob Dylan
and Sara Lownds do not depend on their marriage, and ob-
viously they also exist before they marry each other. While
creating a new statement, what we actually do is connect two
existing entities and establish a new relationship between
them. Therefore, the contextual information in establishing
a new relationship can play the role of a key for any state-
ment. We can manifest that key by creating a new property

instance that represents the newly established relationship
associated with a context and enforces it to be unique. We
call it singleton property. The singleton concept is taken
from set theory. A singleton set has only one element.

We define a singleton property as a unique property in-
stance representing a newly established relationship between
two existing entities in one particular context. For example,
a new relationship is established for Bob Dylan and Sara
Lownds according to two Wiki pages. We can consider each
Wiki page as a context associated with the new relationship.
Note that here we merely give examples of context and leave
the questions of how exactly context is described and how to
identify it for data publishers because those are subjective
to them. As a result, we can create two singleton prop-
erties isMarriedTo#1 and isMarriedTo#2 to represent the
new relationships associated with these two contexts. The
statements asserting the new relationships become:

T1: BobDylan isMarriedTo#1 SaraLownds, and
T5: BobDylan isMarriedTo#2 SaraLownds.

Obviously, the number of such singleton properties would
be as enormous as the number of facts and contexts in any
real RDF datasets. We need to provide a mechanism to
cluster them into groups for higher level abstraction. Such
a mechanism allows us to group similar singleton properties
into a more general one. We observe that, although state-
ments are fundamentally distinguishable based on their con-
text, they do share common characteristics in their nature
which are captured by generic properties. The relationship
between singleton and generic properties can be considered
from two different perspectives: the singleton property is
either a sub property, or an instance of the generic property.

Sub property. Singleton property can be considered as
a specialization, or sub property of a generic property in one
particular context. In this case, if we create one singleton
property for each fact via rdfs:subPropertyOf, the number
of singleton property nodes below the generic property in the
property hierarchy would become enormous. For example,
YAGO has 23,770 facts1 using the property isMarriedTo.
A schema with such a large amount of child nodes in the
property hierarchy of rdfs:subPropertyOf is not desirable.

Property instance. In this view, while generic proper-
ties are properties whose extension contains a set of entity
pairs, each singleton property is unique to one particular
entity pair. Intuitively, we can consider singleton properties
as instances of generic properties. In that sense, a single-
ton property is interconnected to its generic property via
rdf:type. However, the property rdf:type as a generic
property may also have its own instances. For example, since
YAGO contains 9,019,948 facts using rdf:type, a triple like
this may cause ambiguity: type#1 rdf:type rdf:type.

Considering the nature of the relationship from both per-
spectives, we invent a new property, singletonPropertyOf
to connect singleton properties with their generic property.
The extension of a generic property contains the set of sin-
gleton property instances created in all contexts. In the
example described in Table 3, we use singletonPropertyOf

in both T2 and T6.

T2: isMarriedTo#1 singletonPropertyOf isMarriedTo
T6: isMarriedTo#2 singletonPropertyOf isMarriedTo.

1http://www.mpi-inf.mpg.de/yago-
naga/yago/statistics.html
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We will provide further explanations of how singleton prop-
erties can be interpreted in RDF and RDFS in Section 3.

2.2 Asserting meta knowledge for triples
Here we demonstrate how to assert metadata for a state-

ment, such as provenance, time, location, or certainty. Please
note that we are not attempting to model complex contex-
tual information involving these four dimensions for a state-
ment because context modeling is out of the scope of this
paper. We also note that meta properties used in the exam-
ples such as hasSource, extractedOn, hasStart, hasEnd,
tookPlaceAt, and hasScore, are only for demonstration.
While adopting this approach, one may want to use vocab-
ularies of meta knowledge recommended by W3C such as
PROV [10] or OWLTime [7] for enhancing the interoper-
ability with other Semantic Web knowledge bases and ap-
plications.

Provenance. Provenance of a statement explains the
origin of that statement [13, 18]. It includes many kinds of
metadata for answering questions such as the ones listed in
Table 1. For example, the triple T1 and T2 are extracted
from the Wiki page of Bob Dylan and Sara Lownds. We
can assert the provenance of two triples using the properties
hasSource and extractedOn as follows:

T3: isMarriedTo#1 hasSource wk:Bob Dylan
T4: isMarriedTo#1 extractedOn 2009-06-07

T7: isMarriedTo#2 hasSource wk:Sara Dylan
T8: isMarriedTo#2 extractedOn 2009-08-08

Time. The validity of a statement may be associated
with a specific time or a time span. For example, a person
is born at one specific time, and a marriage between two
persons may last for one period of time. Here we represent
the time span of the marriage between Bob Dylan and Sara
Lownds using hasStart and hasEnd:

isMarriedTo#1 hasStart 1965-11-22 .
isMarriedTo#1 hasEnd 1977-06-29 .

Location. A statement may be associated with a spatial
dimension. For example, the Wiki page of Sara Lownds
stated that the marriage of Bob Dylan and Sara Lownds
took place at Mineola, Long Island. We assert this meta
knowledge for isMarriedTo#2 as follows:

isMarriedTo#2 tookPlaceAt Mineola .

Certainty. The certainty of a statement reflects the con-
fidence of the authors while creating that statement. For
example, if the confidence score of the tool extracting the
statement T2 is 0.7, we can represent it as follows:

isMarriedTo#2 hasScore 0.7 .

From the assertions created for provenance, time, location
and certainty above, we observe that they share the same
triple pattern, which is singleton-property meta-property meta-
value. In our example, meta properties are hasStart, hasEnd,
hasSource, hasScore, and tookPlaceAt. We can generalize
this pattern for representing all dimensions of meta knowl-
edge as follows.

Singleton Graph Pattern. In general, given a fact (s,
p, o), let p#i be the singleton property representing this fact
in one particular context, mp#j be the meta property, mv#j
be the value of meta property, the set of triples forming a
singleton graph pattern asserting meta knowledge for this
fact is provided in Table 4. We will use this singleton graph
pattern for querying meta knowledge in Section 4.

Table 4: Singleton graph pattern asserting meta
knowledge for data triple (s,p,o)

Subject Predicate Object

p#i singletonPropertyOf p
s p#i o
p#i mp#j mv#j

2.3 Enforcing the singleton-ness of property
instances

If the property isMarriedTo#1 is asserted another triple
such as BarackObama isMarriedTo#1 MichelleObama, this
together with the existing assertion isMarriedTo#1 has-

Start 1965-11-22 would imply the marriage date of the
Obamas is 1965-11-22, which is not true. In order to avoid
this, we need to ensure the singleton property isMarriedTo#1

occurs as a property in only one triple.
This constraint has to be enforced for all URIs of singleton

property instances. Data publishers may combine their URI
prefix, the generic property name and the timestamp when
the instance is created into the URI of a singleton property
to make it unique. However, there are still cases where two
instances may share the same URI. Therefore, data publish-
ers may employ the Universally Unique Identifier (UUID)
[9], which is also supported by SPARQL and various pro-
gramming languages, to ensure the singleton-ness of their
property instances. The validation of this uniqueness con-
straint is straightforward, by counting the number of triple
occurrences per singleton property. As the current RDF
syntax does not allow blank nodes as properties, we do not
represent singleton properties as blank nodes, although one
advantage of using blank nodes in the property is providing
the completeness for deduction rules [11].

3. MODEL-THEORETIC SEMANTICS
This section explains how the singleton property can fit

well with the existing formal semantics. We reuse the model-
theoretic semantics described in [6] with three levels of in-
terpretation: simple, RDF and RDFS. For each interpreta-
tion we add additional criteria for supporting the singleton
property. While we explain the new vocabulary elements in
detail, elements without further explanation remain as they
are in the original model-theoretic semantics described in
[6].

Given a vocabulary V, the original simple interpretation
I consists of:

• IR, a non-empty set of resources, alternatively called
domain or universe of discourse of I,

• IP, the set of generic properties of I,

• IEXT , a function assigning to each property a set of
pairs from IR
IEXT : IP → 2IR×IR where IEXT (p) is called the ex-
tension of property p,

• IS , a function, mapping URIs from V into the union
set of IR and IP,

• IL, a function from the typed literals from V into the
set of resources IR,
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Table 5: Singleton property approach representing
facts and their temporal assertions

Subject Predicate Object

BobDylan isMarriedTo SaraLownds
BobDylan isMarriedTo#1 SaraLownds
isMarriedTo#1 rdf:singletonPropertyOf isMarriedTo
isMarriedTo#1 hasStart 1965-11-22
isMarriedTo#1 hasEnd 1977-06-29

BobDylan isMarriedTo CarolDennis
BobDylan isMarriedTo#2 CarolDennis
isMarriedTo#2 rdf:singletonPropertyOf isMarriedTo
isMarriedTo#2 hasStart 1986-06-##
isMarriedTo#2 hasEnd 1992-10-##

• LV , a subset of IR, called the set of literal values.

We define IPs as a set of singleton properties and IS EXT (ps)
as the function mapping a singleton property into a pair of
resources.

Simple interpretation of vocabulary V is an original
simple interpretation I of the vocabulary V ∪ VSIM that
satisfies the additional criteria:

• IPs, called the set of singleton properties of I, as a
subset of IR,

• IS EXT (ps), the function mapping a singleton property
to a pair of resources. IS EXT : IPs → IR × IR.

Note that the mapping function IS EXT is not a one-to-one
mapping; multiple singleton properties may be mapped to
the same pair of entities.

RDF interpretation of a vocabulary V is a simple in-
terpretation I of the vocabulary V ∪ VRDF that satisfies
the criteria from the original RDF interpretation and the
following criteria:

• xs ∈ IPs if 〈xs, rdf : SingletonPropertyI〉 ∈ IEXT

(rdf : typeI), a singleton property xs is an instance of
class SingletonProperty if they are interconnected by
the property rdf:type.

• xs ∈ IPs if 〈xs, xI〉 ∈ IEXT (rdf : singletonPropertyOf I),
x ∈ IP. A singleton property xs is an instance of a
generic property x if they are interconnected by the
property rdf:singletonPropertyOf, where x is called a
generic property. Since the singletonPropertyOf is de-
fined here, we use rdf:singletonPropertyOf from now
on.

• if xs ∈ IPs then ∃!〈u, v〉 : 〈u, v〉 = IS EXT (xs
I), and u,v

∈ IR. This enforces the singleton-ness for the property
instances.

Given the set of triples with singleton properties and their
temporal assertions in Table 5, let VEX be the vocabulary
consisting of all the names of subjects, predicates and ob-
jects in those triples, the RDF interpretation of the vocab-
ulary VEX is provided in Table 6.

In the RDFS interpretation, we will reuse the function
ICEXT : IR → 2IR where ICEXT (y) is called (class) extension
of y, ICEXT (y) = {x | ∀x ∈ IR : 〈x, y〉 ∈ IEXT (rdf : typeI)}.

Table 6: RDF interpretation for the vocabulary VEX

from Table 5

IS = BobDylan 7→ α
SaraLownds 7→ β
CarolDennis 7→ γ
isMarriedTo 7→ δ
isMarriedTo#1 7→ θ
isMarriedTo#2 7→ λ
hasStart 7→ σ
hasEnd 7→ φ

IR = {α, β, γ, δ, θ, λ}
IP = {δ, θ, λ, σ, φ}
LV = {1965-11-22, 1977-06-29,

1986-06-##, 1992-10-##}
IEXT = θ 7→ {〈α, β〉}

λ 7→ {〈α, γ〉}
σ 7→ {〈θ, 1965-11-22 〉,
〈λ, 1986-06-## 〉}
φ 7→ {〈θ, 1977-06-29〉,
〈λ, 1992-10-## 〉}
rdf:singletonPropertyOf 7→ {〈θ, δ〉,〈λ, δ〉}
δ 7→ {〈α, β〉,〈α, γ〉}

IPs = {θ, λ}
IS EXT = θ 7→ 〈α, β〉

λ 7→ 〈α, γ〉

RDFS interpretation of a vocabulary V is an RDF in-
terpretation I of the vocabulary V ∪ VRDFS that satisfies
criteria from the original RDFS interpretation and the fol-
lowing criteria:

• 〈rdf : SingletonPropertyI , rdfs : ClassI〉 ∈ IEXT

(rdf : typeI).
rdf:SingletonProperty is defined as a class. The ex-
tension of rdf:SingletonProperty is the set IPs of all
singleton properties, or
IPs = ICEXT (rdf : SingletonPropertyI).

• 〈rdf : SingletonPropertyI , rdfs : ResourceI〉 ∈ IEXT

(rdfs : subClassOfI), this causes IPs ⊂ IR,
every singleton property is an RDF resource.

• if 〈xs, x〉 ∈ IEXT (rdf : singletonPropertyOf I), xs ∈
IPs, and x ∈ IP , then IS EXT (xs) ∈ IEXT (x). IEXT (x)
is called property extension of the generic property x.
The set of singleton properties connected to that prop-
erty via rdf:singletonPropertyOf is a sub set of the
property extension of its generic property.

• Let 〈xs, x〉 ∈ IEXT (rdf : singletonPropertyOf I), and
〈x, y〉 ∈ IEXT (rdfs : domain), if 〈u, v〉 ∈ IS EXT (xs),
then u ∈ ICEXT (y) where ICEXT (y) is the class ex-
tension of y. A singleton property shares domain with
its generic property.

• Let 〈xs, x〉 ∈ IEXT (rdf : singletonPropertyOf I), and
〈x, y〉 ∈ IEXT (rdfs : rangeI), if 〈u, v〉 = IS EXT (xs),
then v ∈ ICEXT (y). A singleton property also shares
range with its generic property.
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4. QUERYING
In Section 2, we described the singleton graph pattern

for representing meta knowledge. This section explains the
principle for querying such meta knowledge based on that
singleton graph pattern. We will use the example from Table
5 for demonstrating how we query meta knowledge.

Since all these triples in singleton graph patterns are rep-
resented in RDF, they can be queried using any RDF query
language. Here we consider SPARQL as it is recommended
for querying RDF by W3C [4].

In principle we can distinguish two basic types of query
patterns: data vs. metadata. Both query patterns can be
constructed as a graph pattern in the SPARQL queries.

Data query contains graph patterns created from a set
of factual data triples in the form of (s, p, o) by replacing
any of subject s, property p or object o with variables. For
example, given two data triples of Table 5,

BobDylan isMarriedTo SaraLownds
BobDylan isMarriedTo CarolDennis

we can construct a data query asking for spouses of Bob-
Dylan as follows:
SELECT ?obj WHERE { BobDylan isMarriedTo ?obj}

This query type is commonly used in Semantic Web ap-
plications. Using the singleton property approach for rep-
resenting meta knowledge of data triple, we can also easily
query such meta knowledge.

Metadata query contains graph patterns created from a
set of triples in the singleton graph pattern by replacing any
subject, property and object of any triple with variables.
One sample of a meta query pattern asking for the meta
values of any meta property mp could be:
SELECT ?mp ?mv

WHERE {?pi rdf:singletonPropertyOf p .

s ?pi o . ?pi ?mp ?mv . }

The query instance asking for the dates of BobDylan’s
marriages is as follows.
SELECT ?startOrEnd ?dates

WHERE {?pi rdf:singletonPropertyOf isMarriedTo .

BobDylan ?pi ?o . ?pi ?startOrEnd ?dates . }

In practice, one may mix data patterns and metadata pat-
terns into one query pattern for more complicated queries.
The next section will provide more queries of different kinds
of metadata in detail.

5. USING SINGLETON PROPERTY IN EX-
ISTING KNOWLEGE BASES

5.1 BKR and Provenance
The Biomedical Knowledge Repository (BKR) is an ex-

tensive knowledge base that integrates biomedical knowl-
edge from multiple sources while tracking their provenance
using a unified provenance framework [15, 16]. A triple in
the BKR may be extracted from PubMed articles and is
associated with a confidence score from its extraction tool.
Given a triple (s, p, o) extracted from PMID#1 with confi-
dence score 0.3, from PMID#2 with confidence score 0.8, the
current representation of provenance of a triple with PaCE
[16] is provided in Table 7, note that the confidence score
cannot be represented by this approach.

The basic idea of PaCE is to create one instance of subject,
property, and object per context, and asserting the source
of those instances. PaCE offered three flavors: minimalist

Table 7: PaCE approach for (s, p, o) with meta
knowledge (PMID#1, 0.3) and (PMID#2, 0.8)

Subject Property Object

s PMID#1 rdf:type s
p PMID#1 rdf:type p
o PMID#1 rdf:type o
s PMID#1 p PMID#1 o PMID#1
s PMID#1 derivedFrom PMID#1
p PMID#1 derivedFrom PMID#1
o PMID#1 derivedFrom PMID#1

s PMID#2 rdf:type s
p PMID#2 rdf:type p
o PMID#2 rdf:type o
s PMID#2 p PMID#2 o PMID#2
s PMID#2 derivedFrom PMID#2
p PMID#2 derivedFrom PMID#2
o PMID#2 derivedFrom PMID#2

Table 8: Singleton Property approach for (s,
p, o) with meta knowledge (PMID#1, 0.3) and
(PMID#2, 0.8)

Subject Property Object

p#1 rdf:singletonPropertyOf p
s p#1 o
p#1 derivedFrom PMID#1
p#1 hasScore 0.3

p#2 rdf:singletonPropertyOf p
s p#2 o
p#2 derivedFrom PMID#2
p#2 hasScore 0.8

(C1), intermediate (C2) and exhaustive (C3). The source
of the triple is inferred from the common source of sub-
ject (C1), subject - property (C2), and subject - property
- object (C3) instances. Among the three flavors, C1 was
proven to be better than the reification approach in terms
of number of triples and query performance in [16]. However,
this approach is limited in supporting different dimensions
of meta knowledge because it can only represent the source
of a triple. Here we have at least two metadata associated
with a triple, but it can only represent the source. For in-
stance, if there exists another triple (s, p’, o’) with a different
confidence score 0.2 extracted from the PMID#1, then this
score cannot be represented correctly. Since (s, p, o) and (s,
p’, o’) are from the same PMID#1, the instance s PMID#1
representing both triples in the PMID#1 is used to assert
the meta property hasScore: s_PMID#1 hasScore 0.3. This
automatically infers the confidence score of (s, p’, o’) in
PMID#1 is 0.3, which is incorrect because its score is 0.2.

Using the Singleton Property approach, we can represent
the complete metadata information as provided in Table 8.
Moreover, if we need to represent more meta knowledge di-
mensions for the triple (s, p, o), we can simply add assertions
into the singleton properties p#1 and p#2.

Provenance query. Since the BKR integrates data from
multiple sources, it is common to ask about the provenance
of a triple, such as the sources, the publication date, the con-
fidence score, etc. For example, one may query the sources
of a triple that has a high confidence score (above 0.7). This
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Table 9: Overall statistics of the SP-YAGO2 dataset

Number of triples 292,166,376

Number of generic properties 83

Number of singleton properties 62,643,969

Table 10: Sample meta properties in SP-YAGO2
including temporal, spatial and provenance

Generic property # of singleton properties

extractionSource 32,598,374

isLocatedIn 1,262,563

hasLongitude 393,717

hasLatitude 393,250

occursSince 553,116

occursUntil 337,116

wasBornOnDate 804,816

query cannot be supported by PaCE approach because the
confidence score is not present. Using the Singleton Prop-
erty approach, and adopting the metadata query discussed
in Section 4, we can create a query like the following:
SELECT ?source ?score

WHERE {s ?pi o . ?pi rdf:singletonPropertyOf p .

?pi derivedFrom ?source . ?pi hasScore ?score .

FILTER (?score > 0.7) }

In the next section, we provide a more thorough compar-
ison in the performance of the singleton property approach
versus existing approaches.

5.2 YAGO2 and Temporal-Spatial Enhance-
ment

While YAGO [20] provides an extensive collection of fac-
tual triples extracted from Wiki and other sources, YAGO2
[8] enhances this knowledge base with temporal and spatial
information for those factual triples. This knowledge base
becomes aware of times and places and, hence, is capable of
answering more complex queries involving such metadata.

Here we reuse the example from [8] to demonstrate the
requirements of representing meta knowledge in YAGO2.
We put the set of facts from the example into Table 11.
YAGO2 uses fact identifiers to represent the facts, and as-
serts the occurring time and place of the facts by using their
fact identifiers as subjects of the meta assertions. It also
provides a SPARQL-like query language which allows it to
incorporate fact identifiers in the query pattern. Here we
propose to replace the fact identifier by the singleton prop-
erty in representing a statement and asserting its temporal
and spatial information. This would enable the interoper-
ability between this dataset with other RDF datasets and
allow them to be queried using standard query language.
This RDF representation is compatible with existing RDF
datasets and interoperable with other Semantic Web appli-
cations that use existing standards such as SPARQL. We do
not attempt to compare the query performance or expres-
siveness between SPARQL and SPARQL-like language used
in YAGO2.

Table 11: YAGO2 uses fact ID for representing fact
and asserting meta knowledge

Id Subject Predicate Object

#1 GratefulDead performed TheClosingOfWinterland
#2 #1 occursIn SanFrancisco
#3 #1 occursOn 1978-12-31

Table 12: Singleton property replaces fact ID in as-
serting meta knowledge

Subject Predicate Object

performed#1 singletonPropertyOf performed
GratefulDead performed#1 TheClosingOfWinterland
performed#1 occursIn SanFrancisco
performed#1 occursOnDate 1978-12-31

The YAGO2 is available in the RDF Turtle format 2 .
However, the link between the triple identifier and the triple
itself doesn’t exist. We created a new version of YAGO2
using the singleton property to link the triples and their
identifiers. The fact identifiers in commented lines become
the property of the fact. The statistics of the SP-YAGO2S
version are provided in Table 9 and Table 10.

Temporal-spatial query in the YAGO can be specified
in its query language SPARQL-like. For example, for finding
concerts that took place near San Francisco, one may create
a SPARQL-like query as follows:

?id: ?s performed ?o .
?id occursIn ?l .
?l hasGeoCoordinates ?g .
SanFrancisco hasGeoCoordinates ?sf .
?g near ?sf .

We may also create an equivalent SPARQL query using
the singleton property approach as follows:

?performed#1 rdf:singletonPropertyOf performed .
?s ?performed#1 ?o .
?performed#1 occursIn ?l .
?l hasGeoCoordinates ?g .
SanFrancisco hasGeoCoordinates ?sf .
?g near ?sf .

Given that near is a proximate predicate, it may need to
be elaborated in the graph pattern of SPARQL query.

6. EXPERIMENTS
In this section we report the experiments comparing five

approaches including the singleton property (denoted by
SP), standard RDF reification (R) and the three flavors
of PaCE (C1, C2, and C3). We will repeatly use these
important notions in the entire section.

To the best of our knowledge, a benchmarking dataset
with SPARQL queries for metadata at triple level is not
available. Therefore, in these experiments, we used the BKR
dataset previously described in Section 5.1. For evaluating
the query performance, we used two set of queries: set A and
set B. The set A is obtained from the experiments conducted
in [16]. Since all 5 queries of set A include one block of

2http://www.mpi-inf.mpg.de/yago-
naga/yago/downloads.html
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provenance-specific triple patterns related to one data triple,
one may wonder how the approaches perform with longer
queries. Therefore, we created the set B with longer queries,
where the lengths of data triple patterns range from 1 to 3.
Although the lengths of data triple patterns look small, their
corresponding SPARQL query patterns is relatively long, up
to 21 triple patterns.

The comparison is based on three quantitative criteria:
number of triples, query length and query execution time.
Section 6.1 describes the comparison based on the number of
triples in the five flavors of the same BKR dataset in detail.
Section 6.2 and 6.3 describe the query experiments.

The datasets and queries used in the experiments are pro-
vided for reproducing the experiments3.

6.1 RDF Datasets
In addition to four different RDF datasets from four rep-

resentation approaches (C1, C2, C3 and R) implemented by
Sahoo et al. in [16], we created another dataset SP for our
singleton property approach. Instead of reporting the total
and provenance-specific triples as in [16], here we analyzed
the number of triples in detail based on the triple pattern,
whether it is for data triples, meta triples or statement han-
dling triples. This analysis would be useful for understand-
ing how each type of triples would contribute to the total
number of triples when the data input increases.

We classified all triples into three main categories: data
triples, metadata triples and triple handlers.

Data triples are original triples without any metadata
association. The BKR dataset has approximately 23M triples
without provenance information. With the provenance in-
formation, the number of distinct data triples is 33M be-
cause if the same triple occurs in two different articles, it is
counted as two data triples. Therefore, we have 33M data
triples in the BKR. We denote n = 33M for later use in the
total number of triples for each dataset.

Triple handlers are created to represent data triples as
individual resources. Particularly, they are statement in-
stances reified by four triple patterns from R, singleton prop-
erties from SP, subject instances from C1, subject-property
instances from C2, and subject-property-object instances for
C3. While the R approach needs 4n = 112M triples to rep-
resent statement instances, the SP approach needs only n
= 33M triples. The C1 approach needs only 22M triples
because it contains duplicate subject instances in the same
source. In the worst case, C1 approach would need n triples
if all the triples do not share any metadata values.

Metadata triples are additional triples created by each
approach in order to attach metadata into triple handlers.
Both R and SP need n = 33M triples for this category be-
cause one meta property is asserted for each singleton prop-
erty and statement instance. Again, in the case of C1, within
22M triples representing triple handlers, only 16M subject
instances were asserted the derives from information; the
remain 6M are for declaring the type of subject instances.

We present the number of triples of each category in Fig-
ure 1. The total number of triples in SP and R datasets
is 3n and 6n, respectively. The sizes of C1, C2 and C3 are
application-specific and do not depend only on the number
of data triples as the SP and R.

Discussion. The size of SP dataset is half of the size

3Datasets and queries are vailable at
http://wiki.knoesis.org/index.php/Singleton Property
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Figure 1: Number of triples in million of 3 categories
contributing to the total number of triples.

of R dataset and is relatively comparable with C2 and C3.
The C1 dataset is approximately 30% smaller than the SP
dataset due to duplicated triples. However, if the BKR is ex-
tended to support provenance at a finer-grain level, such as
at sentence level, this C1 approach would lose the advantage
and its size will become the same as the size of SP.

6.2 Query Set A
In this experiment, we repeated the query experiments

performed in [16]. We reused the sets of queries in [16] for
evaluating the performance among four representation ap-
proaches (C1, C2, C3, and R). In order to compare the per-
formance of these four approaches with our singleton prop-
erty approach, we created one more equivalent set of queries
SP. Therefore, the set A have 5 sets of queries in total. We
used Virtuoso Open Source 6.1.7 on a Linux server with 8GB
RAM for this experiment. Each query run starts with a cold
cache. The set of queries are run in two phases.

In the first phase, each query is evaluated for fixed values.
Figure 2 presents the average of the last 5 of a total of 20
runs. In the second phase, each query is executed with a set
of 100 random values. The set of those 100 queries are run
in 5 times and Figure 3 presents the average of 100 queries
in the last run. We eliminate the execution times of Q1
because they are too small (less than 1 msec) to be readable
in the two charts.
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Figure 2: Query performance in msec.: fixed values.
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Discussion. For the set of fixed values in phase 1, Figure
2 shows that all the SP queries are the fastest ones. For the
set of 100 random values, Figure 3 shows that SP queries are
faster than all others in Q3 and Q5, and also faster than two
approaches in Q2 and Q4. Therefore, we can conclude that
for most of the queries in this experiment, the SP queries
give better query performance than other approaches.

6.3 Query set B
In this experiment, we created a set of queries of varying

path lengths. Particularly, we created three queries (Q1,
Q2, and Q3), each query contains a path of 1, 2, and 3
data triple patterns respectively. After incorporating the
metadata triples involving the source into their SPARQL
queries, the total number of triple patterns become varying
among the five representation approaches. The sizes of their
corresponding SPARQL queries are presented in Figure 4.
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Figure 4: Number of triple patterns within three
queries Q1, Q2, and Q3 of query set B.

Since each triple pattern is translated to one query join
operator in the query plan, queries with shorter patterns
tend to be executed faster. Among all the approaches, the
SP queries are the shortest one. Therefore, we expect the
SP queries perform better than others in terms of query exe-
cution time. We ran the set of queries of each approach in 3
times in cold cache and reported the average execution time
in Figure 5. This experiment was performed on a Ubuntu
12.04 desktop with 4GB of RAM.

Discussion. While all the queries in the set A are exe-
cuted in seconds or minutes, some of the queries in the set
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Figure 5: Query performance in msec. of the set B.

B take longer time. Particularly, the longest query of the
C1 approach with 18 patterns is in hours, and that of the
C2 and C3 approaches with 20 and 21 patterns is in days
because of full index lookups in their query plan. On the
other hand, the queries in the two approaches, SP and R,
still remain being executed in seconds, and the SP queries
are little faster than the R queries.

6.4 Overall Discussion
Our experiments show that the SP approach gives a decent

performance in terms of number of triples, query size and
query execution time. Here we do not conclude that our ap-
proach is better than other approaches in all the cases. For
the number of triples, the C1 approach is the most compact
one in the case of BKR where multiple predications share
the same source. However, this C1 approach will have the
same size with the SP approach in the cases where the data
triples do not share metadata values, such as at a finer-
grained level of provenance (e.g. statement level instead
of article level), or discrete values for the temporal, spa-
tial and certainty properties. For the query performance,
the SP queries give the best performance, which is expected
and consistent with the query length comparison. Since only
default indexes were created, and no optimization was pro-
vided, this leaves a room for query optimization in order to
obtain a better query performance.

7. RELATED WORK
Many approaches have been proposed to address the prob-

lem of representing and querying statements about state-
ments. We can divide these approaches into three main cat-
egories: triples [15, 16], quadruples [1, 3, 19] and quintuples
[17] based on the number of elements in the structure each
approach employs. Each approach reflects one perspective
on how meta knowledge for triples could add elements into
tuples. We will discuss about the contribution of each ap-
proach, and how our approach fits into the scheme.

Triples. Representing different dimensions of meta knowl-
edge for triples using RDF triples in order to retain the com-
patibility and interoperability with existing Semantic Web
knowledge bases, tools, languages and methods is the main
goal of this kind of approach. The reification approach [12,
5] allows meta knowledge to be asserted from reified state-
ments. The singleton property approach differs from the
reification in that it provides a formal semantics. Moreover,
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it requires one triple for creating a singleton property while
a reified statement requires four triples. That would make it
more efficient because of smaller number of triples, shorter
query patterns, and thereby smaller number of joins in query
processing.

Sahoo et al. [16] propose the PaCE approach for rep-
resenting the provenance of a triple by creating different
instances for its subject, property and object for different
contexts and asserting provenance for those instances. The
source of the triple is derived from the source of its individ-
ual components. The singleton property approach is similar
to PaCE in that it creates different instances for capturing
different contexts. However, the main difference between the
two approaches has to do with which instances are created
for each context. We ground our approach on shifting the
focus from entities to properties. That is, within a new con-
text, a new relationship is established between two already
existing entities.

Quadruples. In the reification approach, we need to cre-
ate statement instances and indicate the subject, property,
and object for those instances. Intuitively, this verbosity
can be avoided by adding one more element into a triple to
make it a quadruple. Named graph [1] and other work on
top of named graph such as [3, 14] follow the approach, us-
ing the fourth component to represent the provenance of a
set of triples. Although technically we can restrict a named
graph to a single triple and use it to assert meta knowledge
to that triple, it does not naturally serve this purpose be-
cause originally the named graph is designed for representing
provenance and trust of a set of triples. On the other hand,
the singleton property approach is complementary to the
named graph approach in representing provenance for dif-
ferent granularity levels of triples: one is for an individual
triple, the other one is for a set of triples. Data publishers
may choose the approach that fulfills specific requirements
of their applications.

Straccia et al. [19] also annotate the meta knowledge such
as temporal and certainty for RDF triples. We classify this
approach into quadruples because it annotates every RDF
triple with an annotation term. It proposes a new alge-
braic structure with well-defined operators for manipulating
meta information. This approach is followed up with the
RDFS reasoning supported by [2]. Our approach differs from
this approach in that we leverage RDF triples for the rep-
resentation of meta knowledge assertions, allowing them to
be queried and entailed using existing languages and tools,
while this approach does not.

Quintuples. The RDF+ approach [17] defines the ab-
stract syntax of RDF+ statement as a quintuple by ex-
tending the named graph quad with a statement identifier.
The statement identifier is used as the subject of the meta
knowledge assertion, which is an RDF triple. Since the for-
mal semantics is defined in RDF+, mappings from RDF
to RDF+ and vice versa have to be made. Additionally,
the SPARQL syntax and semantics have to be extended
to support querying RDF+. The singleton property ap-
proach differs from the RDF+ approach in two main design
points. First, while a statement identifer is defined in the
RDF+ statement which is a quintuple, our approach rep-
resents singleton property instances in RDF triples. As a
result, our approach does not need any mapping while the
RDF+ does. Secondly, our approach does not require any

extension to the syntax or semantics of SPARQL because it
is completely compatible with SPARQL.

8. DISCUSSION AND FUTURE WORK
Here we discuss some of the possible future work related

to the singleton property approach.
OWL Compatibility. In previous sections, we have

shown the compatiblity of the singleton property with RDF,
RDFS and SPARQL. The question of whether or not an
RDF dataset with singleton properties is compatible with
OWL also arises, so we devised and conducted a small ex-
periment for testing this. Since BKR, YAGO2S, and any
other datasets are comprised of a number of singleton graph
patterns, we used one example from the BKR to construct
a set of RDF triples by adding class memberships for all
RDF resources. We validated this set of triples against all
OWL 2 profiles4, and we found that they are compatible.
This initial experiment encouraged us to study and apply
the singleton property in the management of metadata for
ontologies such as the Gene Ontology.

Deduction rules. Since a singleton property is an in-
stance of a generic property, intuitively the subsumption rule
may be applicable to this relationship. More of these deduc-
tion rules for dealing with reasoning in the generic property
hierarchy may be desirable. In addition to syntactic rules,
we may also study the domain-specific rules for inferring new
triples using provenance, temporal or spatial information.

Meta query optimization. Our experiments were car-
ried out with Virtuoso RDBMS, certain optimization tech-
niques for relational databases can also be applied to ob-
tain better query performance. For example, since the meta
query has certain singleton graph patterns, creating indexes
or views of those patterns might help.

9. CONCLUSION
We have presented our approach for representing and query-

ing meta knowledge using the singleton property. Regular
RDF properties are viewed as generic properties in our ap-
proach, and the set of singleton properties are viewed as
instances of those generic properties. Both singleton prop-
erties and meta knowledge assertions are represented using
RDF syntax, ensuring their compatibility with existing RDF
knowledge bases. The meaning of such a singleton property
is defined in the formal semantics that is extended from the
current model-theoretic semantics in all three steps of inter-
pretation: simple, RDF, and RDFS. This singleton property
approach also fits nicely the syntax of SPARQL query lan-
guage. Because of those, we are able to demonstrate how this
approach can be easily used for representing and querying
meta triples, and indeed, we implemented it in two existing
knowledge bases, BKR and YAGO2.

Therefore, adopting this approach in representing, query-
ing, and sharing knowledge bases that are aware of meta
knowledge would allow those knowledge bases to be com-
patible with a wide range of Semantic Web languages, tools,
and methods.
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