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ABSTRACT
We consider a model of repeated online auctions in which
an ad with an uncertain click-through rate faces a random
distribution of competing bids in each auction and there is
discounting of payoffs. We formulate the optimal solution
to this explore/exploit problem as a dynamic programming
problem and show that efficiency is maximized by making
a bid for each advertiser equal to the advertiser’s expected
value for the advertising opportunity plus a term propor-
tional to the variance in this value divided by the number
of impressions the advertiser has received thus far. We then
use this result to illustrate that the value of incorporating
active exploration into a machine learning system in an auc-
tion environment is exceedingly small.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

Keywords
Auctions; Explore/Exploit; Machine Learning; Online Ad-
vertising

1. INTRODUCTION
In standard Internet auctions in which bidders bid by

specifying how much they are willing to pay per click, it
is standard to rank the advertisers by a product of their bid
and their click-through rate, or their expected cost-per-1000-
impressions (eCPM) bids. While this is a sensible approach
to take for determining the best ad to show for a particular
query, it is potentially a suboptimal approach if one cares
about showing the best possible ads in the long run. In on-
line auctions, new ads that may compete in the auctions are
constantly entering the system, and for these ads one will
typically have uncertainty in the true eCPM of the ad due
to the fact that one will not know the click-through rate
of a brand new ad with certainty. In this case, it can be
desirable to show an ad where one has a high amount of
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uncertainty about the true eCPM of the ad so one can learn
more about the ad’s true eCPM by observing whether the
ad received a click and using this information to refine one’s
estimate about the true click-through rate and eCPM of the
ad. Thus even if one believes that a high uncertainty ad is
not the best ad for this particular query, it may be valuable
to show this ad so one can learn more about the eCPM of
the ad and make better decisions about whether to show
this ad in the future.

While there is an extensive literature that analyzes strate-
gic experimentation in these types of multi-armed bandit
problems, the online advertising setting differs substantially
from these existing models. In online auctions there is a
tremendous amount of random variation in the quality of
competition that an ad with unknown eCPM faces in the
auction due to the fact that the ad is constantly competing
in a wide variety of auctions that may differ in a myriad
of different ways. In these settings, there will always be
a certain amount of free exploration that takes places due
to the fact that there will be some auctions in which there
simply are no ads with eCPMs that are known to be high,
and one can use these opportunities to explore ads with un-
certain eCPMs. Almost all existing models of multi-armed
bandits that can be applied to online auctions fail to take
this possibility into account.

This paper presents a model of repeated auctions in which
an ad with an uncertain click-through rate faces a random
distribution of competing bids in each auction and there is
discounting of payoffs in the sense that an auctioneer values
a dollar received in the distant future less highly than a dol-
lar received today. We formulate this problem as a dynamic
programming problem and show that the optimal solution
to this problem takes a remarkably simple form. In each pe-
riod, the auctioneer should rank the advertisers on the basis
of the sum of an advertiser’s expected eCPM plus a term
that represents the value of learning about the eCPM of a
particular ad. One then runs the auction by ranking the ads
by these social values rather than their expected eCPMs.

While there have been previous papers on multi-armed
bandits that have proposed ranking arms by a term equal
to the expected value of showing an ad plus an additional
term representing the value of learning about the true value
of that arm,1 the value of learning in the problem that we

1In addition, [24] illustrates that bidders may have an in-
centive to make a bid equal to their expected value plus
a term proportional to their value of learning about their
value if bidders have uncertainty about their own value for
an advertisement.
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consider is dramatically different than the value of learn-
ing in standard multi-armed bandit problems. In standard
multi-armed bandit problems [5] where there is no discount-
ing of payoffs and no random variation in the competition
that an arm faces in a given period, typical solutions involve
ranking the ads according to a sum of the expected value of
the arm plus a term proportional to the standard deviation
in the arm’s value. By contrast, we find that the value of
learning in our setting is proportional to the variance in an
ad’s expected eCPM divided by the number of impressions
that an ad has received. Thus the incremental increase in
the probability that a particular ad is shown varies with 1

k2
,

where k denotes the number of impressions this ad has re-
ceived so far. This is an order of magnitude smaller than
the corresponding incremental increase in standard machine
learning algorithms. In fact, we show that if we attempted
to rank the ads on the basis of the sum of an advertiser’s
expected eCPM plus a term equal to a constant times the
standard deviation in the advertiser’s eCPM, the optimal
constant in such a ranking scheme would be zero.

A consequence of these small incremental changes in the
probability that an ad is shown is that the total value from
adding active exploration to a machine learning system in
the online auction setting is exceedingly small. Not only
does the incremental increase in the probability that a par-
ticular ad is shown vary with 1

k2
, but on top of that, the ex-

pected payoff increase that one obtains conditional on show-
ing a different ad than would be shown without active learn-
ing also varies with 1

k2
. This implies that the total value of

adding active exploration to a machine learning system in
the setting we consider will vary with 1

k4
for large numbers

of impressions k, an exceedingly small amount.
We further obtain finite sample results illustrating that for

realistic amounts of uncertainty in the eCPMs of ads with
unknown eCPMs, the maximum total efficiency gain that
could ever be achieved by adding active learning to a ma-
chine learning system in this auction environment is exceed-
ingly small, typically only a few hundredths of a percentage
point. Finally, we empirically verify these findings through
simulations and illustrate that adding active learning to a
machine learning system in the auction environment we con-
sider only changes overall efficiency by a few hundredths of
a percentage point.

Perhaps the most closely related paper to our work is [31].
This paper is the only other paper we are aware of that con-
siders questions related to the value of learning about the
eCPM bids of ads with uncertain eCPMs in a setting where
there is discounting in payoffs as well as random variation
in the quality of the competition that an ad faces from com-
peting ads in the auction. In [31], the authors show that
the value of showing an ad with an uncertain eCPM will
generally exceed the immediate value of showing that ad
because one will learn information about the eCPM of the
ad that will enable one to make better ranking decisions in
the future. However, in [31], the authors do not attempt to
characterize the optimal solution in this setting, as we do in
the present paper.

There is also an extensive literature in statistics and ma-
chine learning that addresses questions related to multi-
armed bandits ([5], [6], [22], [29]) as well as some papers that
focus specifically on the auction context ([1], [7], [18], [41]).
However, none of these papers considers appropriate meth-
ods for exploring ads in a context when there is discounting

of payoffs, and none of these papers considers appropriate
methods for exploring ads when there is random variation in
the quality of the competition that an ad faces from compet-
ing ads in the auction. The optimal methods for exploring
ads in such a scenario turn out to be completely different
from any of the methods considered in any of these previous
papers, and as such, our work is completely different from
existing machine learning literature.

Finally, there is an extensive literature within economics
related to questions on strategic experimentation. Within
economics, this literature has considered a variety of ques-
tions including consumers trying to learn about the quality
of various products ([11], [12], [13]), firms trying to learn
about the demand curve ([3], [19], [25], [32], [36]), learning
to play repeated games ([4], [21]), learning about untried
policies in a political economy setting ([17], [38]), learning
from the actions of others ([8], [20], [39]), as well as gen-
eral theoretical results on experimentation ([2], [9], [14], [15],
[16], [26], [27], [33], [35], [37], [40]). However, the economics
literature has not considered strategic experimentation in
the online auction setting, as we do in the present paper.

2. THE MODEL
There is a new ad with an uncertain eCPM that will bid

into an auction with competing advertisers. Throughout we
let x denote the actual, unknown value for showing the new
ad and z denote the bid that this ad places in the auction
(on an eCPM scale). We also let k denote the number of
impressions the ad has received so far. Finally we assume
that the ad has some underlying type θ∗ in the set Θ, where
Θ denotes the set of all possible types of the ad. One can
think of θ∗ as representing all possible qualities of the ad
that are relevant towards determining the eCPM of the ad
such as the clickability or the quality score of the ad.

For any fixed type of the ad, θ∗, there will be an associated
eCPM of the ad. We allow for the possibility that, even if
the underlying type of the ad is known and fixed, the eCPM
of the ad may evolve over time as the ad is shown. This is
relevant, for instance, with wear-out of ads. For certain ads,
even if the underlying type or quality of the ad is known with
certainty, it is possible that this ad will lose its effectiveness
over time if the ad is shown over and over again because
users become used to the ad and are less inclined to click
on the ad than before. Thus for any fixed type of the ad,
θ∗, there is some associated eCPM of the ad x(θ∗, k) that
depends both on the underlying type of the ad as well as the
number of impressions the ad has received so far.

While our model allows for the possibility of wear-out of
an ad, empirical studies of wear-out in online advertising
suggest that this wear-out is exceedingly small for ads that
have already been shown a large number of times [30]. In our
paper, we model this by assuming that x(θ∗, k)− x(θ∗, k +
1) = o(1/k) for all possible underlying types of the ad, θ∗.
Our formulation also implicitly assumes that the number of
impressions an ad has received can influence the ad’s eCPM,
but not when these impressions occurred. While this as-
sumption may not be perfect in every situation, it seems
reasonable in situations where overexposure is the reason
that the number of impressions an ad has received influ-
ences the ad’s eCPM, and it is a standard assumption in the
multi-armed bandits literature.

At any given point in time, the auctioneer does not neces-
sarily observe the exact type of the ad. Instead the auction-
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eer only knows that this type is drawn from some distribu-
tion. We let θ̃ denote a generic distribution corresponding
to the auctioneer’s estimate of the distribution of types that
the ad may assume. This distribution will evolve over time
as an ad has received more impressions and we have a bet-
ter sense of the underlying eCPM of the ad. We sometimes
write θ̃k to denote the auctioneer’s estimate of the distri-
bution of types for the ad after the ad has been shown k
times.

Throughout we also let x(θ̃, k) denote an unbiased esti-
mate of the true value of x given the estimated distribution
of types for the ad, θ̃, and the number of impressions that
the ad has received, k. This value of x(θ̃, k) is just equal
to the integral of the possible values of x(θ∗, k) weighted by
the relative likelihoods that the type of the ad is θ∗ in the
distribution θ̃.

We also let σ2
k denote the variance in our estimate of the

eCPM for the new ad when the ad has been shown k times.
In the limit when k is large, σ2

k will be well approximated

by s2(x(θ̃,k))
k

for some constant s2(x(θ̃, k)) that depends only

on x(θ̃, k). In addition, we let δ ∈ (0, 1) denote the per-
period discount rate so that the mechanism designer only
values advertising opportunities that take place at time T
by a factor of δT as much as opportunities that take place
at the present time period.

In the model we consider we restrict attention to settings
in which there is a single advertising opportunity that is
being sold at an auction, and the auction is being conducted
using a second price format. We suppose throughout that
the distribution of the values of the competing advertisers is
such that the highest eCPM for a competing ad is a random
draw from some cumulative distribution function F (·) with
corresponding density f(·).

3. DYNAMIC PROGRAMMING PROBLEM
In this section we formulate the value of a particular ad as

a dynamic programming problem and use this formulation to
derive the optimal bidding strategy for a particular ad. First
we derive the total social value that arises in a particular
period when a new ad makes a particular bid.

Note that if the new ad places a bid of z in the auction
and the actual value of showing this particular ad is x, then
the total social welfare that arises as a result of running the
auction once is

u =

∫ ∞
z

yf(y) dy +

∫ z

0

xf(y) dy

= −y(1− F (y))|∞z +

∫ ∞
z

(1− F (y)) dy + xF (z)

= z(1− F (z)) +

∫ ∞
z

(1− F (y)) dy + xF (z)

In general placing a bid of z rather than x in a one-shot
auction will result in some inefficiencies in the one-shot auc-
tion since it would be optimal for social welfare if the new
ad placed a bid exactly equal to x in a one-shot auction.
If u(z, x) denotes the total social welfare that arises when
a new ad with value x places an eCPM bid of z, then the
social loss that arises in a one-shot auction as a result of
placing a bid of z instead of x is

L = u(x, x)− u(z, x)

= x(1− F (x)) +

∫ ∞
x

(1− F (y)) dy + xF (x)

−z(1− F (z))−
∫ ∞
z

(1− F (y)) dy − xF (z)

= (x− z)(1− F (z)) +

∫ z

x

(1− F (y)) dy

=

∫ z

x

F (z)− F (y) dy

Now let Vk(x(θ̃k, k)) denote the value of the dynamic pro-
gram from displaying an ad that has an expected value of
x(θ̃k, k) if the ad has been shown k times. Note that we

can express x as x = x(θ̃k, k) + σkε, where σk denotes the
standard deviation in our estimate of the eCPM for the new
ad when the ad has been shown k times, and ε is a ran-
dom variable with mean zero and variance one. We use this
notation in proving the following result:

Theorem 1. The value of the dynamic programming prob-
lem can be expressed as Vk(x(θ̃k, k)) =

1

1− δ

(
max
z
Eε

[
−
∫ z

x(θ̃k,k)+σkε

F (z)− F (y) dy+

δF (z)(Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))]− Vk(x(θ̃k, k)))

])
Proof. Suppose an ad has been shown k times and has

an estimated distribution of types θ̃k and expected value of
x equal to x(θ̃k, k). The value of the dynamic programming
problem that arises from placing the optimal bid z in the
current period, Vk(x(θ̃k, k)), is equal to the immediate re-
ward from bidding z (or the negative of the loss function)
that arises in the current period plus δ times the expected
value of the dynamic programming problem that arises in
the next period.

Now if the new advertiser places a bid of z, then the prob-
ability the advertiser wins the auction is F (z), in which case
the expected value of the dynamic programming problem
that arises next period is Eθ̃k+1

[Vk+1(x(θ̃k+1, k+1))], where

the expectation is taken over the randomness in the changes
in the estimates of the distribution of types θ̃ that arise as a
result of showing this ad. The probability the advertiser does
not win the auction is 1 − F (z), in which case the value of
the dynamic programming problem that arises next period
remains at Vk(x(θ̃k, k)). Thus the expected value of the dy-
namic programming problem that arises in the next period
is F (z)Eθ̃k+1

[Vk+1(x(θ̃k+1, k+1))]+(1−F (z))Vk(x(θ̃k, k))).

At the same time we have already seen that the social
value from bidding z that arises in the current period equals
−
∫ z
x(θ̃k,k)+σkε

F (z) − F (y) dy. By combining this with the

insights in the previous paragraphs, it follows that Vk(x(θ̃k, k)) =

max
z
Eε

[
−
∫ z

x(θ̃k,k)+σkε

F (z)− F (y) dy+

δ(F (z)Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))] + (1− F (z))Vk(x(θ̃k, k)))

]
By subtracting δVk(x(θ̃k, k)) from both sides and dividing

both sides by 1− δ, it then follows that Vk(x(θ̃k, k)) =
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1

1− δ

(
max
z
Eε

[
−
∫ z

x(θ̃k,k)+σkε

F (z)− F (y) dy+

δF (z)(Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))]− Vk(x(θ̃k, k)))

])

By using the expression for the value of the dynamic pro-
gramming problem in the previous theorem, we can derive
the bid that an advertiser should place to maximize social
welfare in this setting. This is done in the theorem below:

Theorem 2. The optimal bidding strategy in the dynamic
programming problem when an ad has been shown k times,
has an estimated distribution of types θ̃k, and has an ex-
pected value of x equal to x(θ̃k, k) entails setting z = x(θ̃k, k)+

δ(Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))]− Vk(x(θ̃k, k))).

Proof. By differentiating the expression in Theorem 1
with respect to z, we see that the first order condition for z
to be an optimal bid is

0 = Eε

[
−
∫ z

x(θ̃k,k)+σkε

f(z) dy+

δf(z)(Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))]− Vk(x(θ̃k, k)))

]
= Eε

[
−f(z)(z − x(θ̃k, k)− σkε)+

δf(z)(Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))]− Vk(x(θ̃k, k)))

]
= f(z)(x(θ̃k, k)− z+

δ(Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))]− Vk(x(θ̃k, k))))

From this it follows that the optimal bidding strategy
in the dynamic programming problem entails setting z =
x(θ̃k, k) + δ(Eθ̃k+1

[Vk+1(x(θ̃k+1, k+ 1))]− Vk(x(θ̃k, k))).

Thus the optimal bidding strategy in this dynamic pro-
gramming problem can be written in the form whereby the
bidder with uncertain eCPM makes a bid equal to the bid-
der’s expected eCPM plus a term that represents the value
of learning about the true eCPM of that bidder,
δ(Eθ̃k+1

[Vk+1(x(θ̃k+1, k + 1))] − Vk(x(θ̃k, k))). In order to

calculate this value of learning, we need to get a sense of the
size of the Vk(x(θ̃k, k)) terms.

4. VALUE OF DYNAMIC PROGRAM FOR
LARGE NUMBERS OF IMPRESSIONS

In the previous section we have given exact expressions
for the value of the dynamic programming problem and the
optimal bidding strategy that should be followed under this
dynamic programming problem. In this section, we seek
to derive accurate estimates of the value of this dynamic
programming problem in the limit when an ad has already
been shown a large number of times.

The main purpose of this section is to illustrate that the
value of learning term given in the previous section will vary
with 1

k2
for large k. We prove this by first showing that the

expected efficiency loss arising due to the uncertainty in the

eCPM of the ad varies with 1
k

for large k, and then use this

to show that the value of learning term varies with 1
k
− 1
k+1

,

which varies with 1
k2

for large k.
When an ad has already been shown a large number of

times, the value of σk that is estimated for the ad is likely
to be very small. For small values of σk, we can use a Taylor
expansion to approximate the value of the above dynamic
programming problem. In particular, we obtain the follow-
ing result:

Theorem 3. Eε[
∫ z
x(θ̃k,k)+σkε

F (z)−F (y) dy] =
∫ z
x(θ̃k,k)

F (z)−
F (y) dy + 1

2
σ2
kf(x(θ̃k, k)) + o(σ2

k) for large k.

Proof. If J(σk) = Eε[
∫ z
x(θ̃k,k)+σkε

F (z)− F (y) dy], then

J(0) =
∫ z
x(θ̃k,k)

F (z) − F (y) dy, J ′(σk) = −Eε[ε(F (z) −
F (x(θ̃k, k)+σkε))], J

′(0) = 0, and J ′′(0) = Eεε
2f(x(θ̃k, k)) =

f(x(θ̃k, k)). From this it follows that the second-order Tay-
lor approximation to Eε[

∫ z
x(θ̃k,k)+σkε

F (z)− F (y) dy] is∫ z
x(θ̃k,k)

F (z)− F (y) dy + 1
2
σ2
kf(x(θ̃k, k)) + o(σ2

k).

Using the results from the previous theorem, one can im-
mediately illustrate that Vk must be on the order of 1

k
for

large values of k.

Theorem 4. Vk(x(θ̃k, k)) = Θ( 1
k

) for large k.

Proof. First note that it must be the case that Vk(x(θ̃k, k)) =
Ω( 1

k
) for large k. We know that σ2

k = Θ( 1
k

) for large k, and
we also know from the expression in the previous theorem
that the immediate reward in any given period is at least
on the same order as 1

k
. Thus we know that Vk(x(θ̃k, k)) =

Ω( 1
k

) for large k. But we also know that Vk(x(θ̃k, k)) = O( 1
k

)
for large k. To see this, note that the auctioneer can en-
sure that his loss in any given period is O( 1

k
) by bidding

z = x(θ̃k, k). And if the auctioneer’s loss in any given pe-
riod is O( 1

k
), then the auctioneer’s total loss from the game

will also be no greater than O( 1
k

) because the present value

of the sum of losses that are Θ( 1
k

),
∑∞
j=k δ

j−k v
j
, is also

Θ( 1
k

) since 1 <
∑∞
j=k δ

j−k k
j
<
∑∞
j=k δ

j−k = 1
1−δ implies

1
k
<
∑∞
j=k δ

j−k 1
j
< 1

(1−δ)k . Thus Vk(x(θ̃k, k)) = Θ( 1
k

) for

large k.

To understand the intuition behind this result, note that
the average error in the estimate of the eCPM of the ad is
proportional to the standard error of this estimate, σk, which
varies with 1√

k
, so the probability that the auctioneer will

display the wrong ad as a result of misestimating the eCPM
of the ad varies with 1√

k
. At the same time, conditional

on displaying the wrong ad as a result of misestimating the
eCPM of the ad, the average efficiency loss that one suffers
varies with 1√

k
. Thus the expected efficiency loss that the

auctioneer incurs varies with 1
k

, which in turn implies the
result in Theorem 4.

Theorem 4 suggests that we may be able to express Vk(x(θ̃k, k))

by Vk(x(θ̃k, k)) = − v(x(θ̃k,k))
k

+ o( 1
k

) for large k, where v is

a function that depends only on x(θ̃k, k). To prove that

Vk(x(θ̃k, k)) can be expressed this way, it is necessary to

show that kVk(x(θ̃k, k)) indeed converges to a function of

x(θ̃k, k) in the limit as k →∞. This is done in the following
theorem:
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Theorem 5. kVk(x(θ̃k, k)) converges to a function of x(θ̃k, k)
in the limit as k →∞. Furthermore, it must be the case that
limk→∞ kVk(x(θ̃k, k)) = − 1

2(1−δ)s
2(x(θ̃k, k))f(x(θ̃k, k)).

Proof. Since Vk(x(θ̃k, k)) = Θ( 1
k

) for large k, it must be

the case that Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))] − Vk(x(θ̃k, k)) =

O( 1
k

) for large k. Thus since the optimal bidding strategy

entails setting z = x(θ̃k, k)+δ(Eθ̃k+1
[Vk+1(x(θ̃k+1, k+1))]−

Vk(x(θ̃k, k))), it must be the case that z = x(θ̃k, k)+O( 1
k

) for
large k. From this it follows that

∫ z
x(θ̃k,k)

F (z)− F (y) dy =

O( 1
k2

) under the optimal bidding strategy z for large k.

Now we have seen in Theorem 3 that Eε[
∫ z
x(θ̃k,k)+σkε

F (z)−
F (y) dy] =

∫ z
x(θ̃k,k)

F (z)−F (y) dy+ 1
2
σ2
kf(x(θ̃k, k)) + o(σ2

k)

for large k. Since we know that
∫ z
x(θ̃k,k)

F (z) − F (y) dy =

O( 1
k2

) under the optimal bidding strategy z and we have as-

sumed that σ2
k = s2(x(θ̃,k))

k
+o( 1

k
) for large k, it then follows

that Eε[
∫ z
x(θ̃k,k)+σkε

F (z)−F (y) dy] = 1
2k
s2(x(θ̃k, k))f(x(θ̃k, k))+

o( 1
k

) for large k.
But −Eε[

∫ z
x(θ̃k,k)+σkε

F (z) − F (y) dy] represents the per-

period utility that one obtains at each point in the game.
Since Vk(x(θ̃k, k)) can alternatively be expressed as the dis-
counted sum of the per-period utility that one can obtain at
each point in the game, it then follows that |kVk(x(θ̃k, k))| ≤∑∞
j=k δ

j−k[ 1
2
s2(x(θ̃k, k))f(x(θ̃k, k))] + o(1), meaning

|kVk(x(θ̃k, k))| ≤ 1
2(1−δ)s

2(x(θ̃k, k))f(x(θ̃k, k)) + o(1) and

|kVk(x(θ̃k, k))| ≥
∑∞
j=k δ

j−k[ k
2j
s2(x(θ̃k, k))f(x(θ̃k, k))]+o(1) =

1
2(1−δ)s

2(x(θ̃k, k))f(x(θ̃k, k)) + o(1) in the limit as k → ∞.

From this it follows that |kVk(x(θ̃k, k))| =
1

2(1−δ)s
2(x(θ̃k, k))f(x(t̃k, k))+o(1) and limk→∞ kVk(x(θ̃k, k)) =

− 1
2(1−δ)s

2(x(θ̃k, k))f(x(θ̃k, k)).

From Theorem 5, it follows that we can express Vk(x(θ̃k, k))

by Vk(x(θ̃k, k)) = − v(x(θ̃k,k))
k

+o( 1
k

) for large k, where v is a

function that satisfies v(x(θ̃k, k)) = 1
2(1−δ)s

2(x(θ̃k, k))f(x(θ̃k, k)).

In order to complete our approximation of the solution the
dynamic programming problem for large k, it is also neces-
sary to bound the expression Eθ̃k+1

[Vk+1(x(θ̃k+1, k + 1))]−
Vk(x(θ̃k, k)) that appears in the dynamic programming prob-
lem. This is done in the following theorem:

Theorem 6. Eθ̃k+1
[Vk+1(x(θ̃k+1, k+1))]−Vk(x(θ̃k, k)) =

v(x(θ̃k,k))
k(k+1)

+ o
(

1
k2

)
for large k.

Proof. Note that if an ad is displayed, then one of two
possible things will happen to the ad—either the ad will re-
ceive a click or the ad will not receive a click. Let p denote
the probability that the ad will receive a click, let θ̃c de-
note the estimated distribution of types for the ad if the ad
receives a click, and let θ̃n denote the estimated distribu-
tion of types for the ad if the ad does not receive a click.
Note that if θ̃k denotes the estimated distribution of types
for the ad before the ad was displayed, then it must be the
case that pθ̃c + (1 − p)θ̃n = θ̃k. And if xc ≡ x(θ̃c, k + 1),

xn ≡ x(θ̃n, k+ 1), and x ≡ x(θ̃k, k+ 1), then it also must be
the case that pxc + (1− p)xn = x.

Now note that the second-order Taylor approximations for
Vk+1(xc) and Vk+1(xn) are

Vk+1(xc) ≈ Vk+1(x) + V ′k+1(x)(xc − x) +
1

2
V ′′k+1(x)(xc − x)2

and

Vk+1(xn) ≈ Vk+1(x)+V ′k+1(x)(xn−x)+
1

2
V ′′k+1(x)(xn−x)2.

Thus if x′ denotes the actual realization of the estimated
eCPM after the ad has been shown k+1 times (x′ will equal
xc with probability p and xn with probability 1 − p), then
by utilizing the fact that pxc + (1− p)xn = x and by taking
a weighted average of the two previous equations, we find
that

E[Vk+1(x′)] = pVk+1(xc) + (1− p)Vk+1(xn)

≈ Vk+1(x) +
1

2
V ′′k+1(x)E[(x′ − x)2].

From this it follows that E[Vk+1(x′)− Vk(x(θ̃k, k))] is

≈ Vk+1(x)− Vk(x(θ̃k, k)) +
1

2
V ′′k+1(x)E[(x′ − x)2]

≈ v(x(θ̃k, k))

k
− v(x(θ̃k, k + 1))

k + 1
− v′′(x(θ̃k, k + 1))

2(k + 1)
E[(x′ − x)2]

=
(k + 1)v(x(θ̃k, k))− kv(x(θ̃k, k + 1))

k(k + 1)
− v′′(x(θ̃k, k + 1))

2(k + 1)
E[(x′ − x)2]

=
v(x(θ̃k, k))

k(k + 1)
− v(x(θ̃k, k))− v(x(θ̃k, k + 1))

k + 1

− v′′(x(θ̃k, k + 1))

2(k + 1)
E[(x′ − x)2].

If c denotes the number of clicks that an ad has received
so far, then the predicted click-through rate for an ad that
has received a large number of impressions, k, will be ap-
proximately c

k
. Thus if b denotes the bid per click that the

ad places, then the eCPM for an ad that has received c clicks
and has been shown k times will be x ≈ bc

k
. From this it

follows that xc ≈ b(c+1)
k+1

, xn ≈ bc
k+1

, xc − x ≈ b(k−c)
k(k+1)

, and

xn − x ≈ − bc
k(k+1)

. Thus x′ − x = O( 1
k

) for all possible

realizations of x′, and (x′ − x)2 = O( 1
k2

) for all possible
realizations of x′ as well. We thus know that

v′′(x(θ̃k, k + 1))

2(k + 1)
E[(x′ − x)2] = O

(
1

k3

)
. (1)

Now it must be the case that x(θ̃k, k)−x(θ̃k, k+1) = o( 1
k

)
because x(θ∗, k) − x(θ∗, k + 1) = o(1/k) for all θ∗ ∈ Θ by

assumption. Thus x(θ̃k, k)−x(θ̃k, k+ 1) = o( 1
k

), and it also
follows that

v(x(θ̃k, k))− v(x(θ̃k, k + 1)) = o

(
1

k

)
(2)

as well.
By using the results in equations (1) and (2), we see

that it must be the case that v(x(θ̃k,k))−v(x(θ̃k,k+1))
k+1

= o( 1
k2

)

and v′′(x(θ̃k,k))
2(k+1)

E[(x′ − x)2] = o( 1
k2

) as well. Substituting

these results in to our earlier approximation for the value of
E[Vk+1(x′)− Vk(x(θ̃k, k))] then gives

11



E[Vk+1(x′)− Vk(x(θ̃, k))] =
v(x(θ̃, k))

k(k + 1)
+ o

(
1

k2

)
.

The intuition behind this result is that since the efficiency
loss that the auctioneer incurs due to uncertainty in the
eCPM of an ad varies with 1

k
, the value of learning will

be proportional to the reduction in the future efficiency loss
that the auctioneer suffers as a result of learning more about
the eCPM of the ad, meaning the value of learning will
vary with 1

k
− 1

k+1
, which varies with 1

k2
. The fact that

E[Vk+1(x′) − Vk(x(θ̃k, k))] = v(x(θ̃k,k))
k(k+1)

+ o
(

1
k2

)
varies with

1
k2

indicates that the incremental increase in an advertiser’s

bid also varies with 1
k2

in the limit when k is large. This in
turn also implies that the incremental increase in an adver-
tiser’s probability of winning the auction will also vary with
1
k2

in the limit when k is large.
The result in Theorem 6 suggests that the optimal method

for adding active exploration into a machine learning system
in online auctions will only rarely have an effect on which
ad wins the auction, as the probability that this active ex-
ploration changes which ad is shown varies with 1

k2
for large

k. This result about the value of learning varying with 1
k2

for large k stands in marked contrast to algorithms that
have been proposed for active exploration in standard multi-
armed bandit problems with no discounting of payoffs and
no random variation in the competition that an arms faces
in a given period (e.g. [5]). In these types of algorithms,
the value of learning tends to vary with 1√

k
, which means

the value of learning is an order of magnitude smaller in
our setting than in standard multi-armed bandit problems.
Thus the value of learning is dramatically different in an on-
line auction setting than in a standard multi-armed bandit
problem.

5. PERFORMANCE GUARANTEES
The results in the previous sections suggest a possible

algorithm that will well approximate the optimal bidding
strategies for an auctioneer who seeks to show the adver-
tisement that will lead to the greatest social welfare, where
this welfare includes the value of learning about the eCPM’s
of the advertisers with unknown eCPM’s. This algorithm
would proceed by computing the expected eCPM for an ad-
vertiser with unknown eCPM, x, the density for the distri-
bution of competing eCPM bids at this value of x, f(x),
the variance s2(x) in the eCPM for an ad with estimated
eCPM x that has only received one impression, and the
number of impressions k that the ad has received. One then
decides which ads to show by computing a score equal to
x+ δ

2(1−δ)k(k+1)
s2(x)f(x) for each of the advertisers, where

δ is the auctioneer’s discount factor, and showing the ad
from the advertiser with the highest such score. We refer to
this strategy as the approximately optimal bidding strategy,
and in this section we address questions related to the pay-
offs that the auctioneer can obtain by using this algorithm
and related algorithms.

First we address questions related to how the algorithms
we have considered in this paper will compare to other plau-
sible algorithms that have been considered in the machine
learning literature. One other algorithm that is standard for

multi-armed bandit problems in the machine learning liter-
ature is an algorithm which involves ranking the arms by
a term equal to the expected value of the arm plus a term
that is proportional to the standard deviation in the arm [5].
More generally, one can rank advertisers by a term equal to
the eCPM of the advertiser plus a term that is proportional
to 1

kα
for any α ≤ 1

2
, where k denotes the number of im-

pressions that the ad has received so far. However, these
algorithms are not well-suited towards the auction environ-
ment, as the following theorem illustrates:

Theorem 7. Suppose the auctioneer uses a bid for the
advertiser with unknown eCPM that is of the form z =

x(θ̃k, k) + c(x(θ̃k,k))
kα

, where c(x(θ̃k, k)) is a bounded non-

negative constant that depends only on the term x(θ̃k, k)
(and the distribution of competing bids), and α ≤ 1

2
. Then

the optimal constant c(x(θ̃k, k)) for any such algorithm is

c(x(θ̃k, k)) = 0 for sufficiently large k.

Proof. Recall from the proof of Theorem 3 that the
auctioneer’s per-period payoff if the auctioneer uses a bid
for the advertiser with unknown eCPM that is equal to
z is −Eε[

∫ z
x(θ̃k,k)+σkε

F (z) − F (y) dy] = −
∫ z
x(θ̃k,k)

F (z) −
F (y) dy − 1

2
σ2
kf(x(θ̃k, k)) + o(σ2

k) for large k. Now if z =

x(θ̃k, k) + c(x(θ̃k,k))
kα

for some constant c(x(θ̃k, k)), then∫ z
x(θ̃k,k)

F (z)−F (y) dy =
∫ x(θ̃k,k)+

c(x(θ̃k,k))

kα

x(θ̃k,k)
f(x(θ̃k, k))(x(θ̃k, k)+

c(x(θ̃k,k))
kα

−y) dy+o( 1
k2α

) = f(x(θ̃k, k)) c
2(x(θ̃k,k))2

2k2α
+o( 1

k2α
).

Thus the auctioneer’s per-period payoff is if the auctioneer
uses a bid for the advertiser with unknown eCPM of the
form z = x(θ̃k, k) + c(x(θ̃k,k))

kα
is − c

2(x(θ̃k,k))

2k2α
f(x(θ̃k, k)) −

1
2
σ2
kf(x(θ̃k, k)) + o(σ2

k).

Now if c(x(θ̃k, k)) = 0, then the auctioneer’s per-period

payoff is− 1
2
σ2
kf(x(θ̃k, k))+o(σ2

k) = − 1
2k
s2(x(θ̃k, k))f(x(θ̃k, k))+

o( 1
k

). We then know from the reasoning in the proof of The-
orem 5 that if this is the auctioneer’s per-period payoff, then
the auctioneer’s total payoff from the game is
− 1

2(1−δ)k s
2(x(θ̃k, k))f(x(θ̃k, k)))+o( 1

k
) regardless of the learn-

ing rate. Similarly, if c(x(θ̃k, k)) 6= 0 and α = 1
2
, then the

auctioneer’s per-period payoff is
− 1

2k
f(x(θ̃k, k))(s2(x(θ̃k, k)) + c2(x(θ̃k, k))) + o( 1

k
), and we

know from identical reasoning that the auctioneer’s total
payoff from the game is − 1

2(1−δ)kf(x(θ̃k, k))(s2(x(θ̃k, k)) +

c2(x(θ̃k, k))) + o( 1
k

), which is strictly less than the auction-

eer’s total payoff from the game when c(x(θ̃k, k)) = 0 for
sufficiently large k.

Finally, if c(x(θ̃k, k)) 6= 0 and α < 1
2
, then the auctioneer’s

per-period payoff is − c
2(x(θ̃k,k))

2k2α
f(x(θ̃k, k)) + o( 1

k2α
). Since

the auctioneer’s payoff from the game is equal to the dis-
counted sum of the auctioneer’s per-period payoffs, it then
follows that if Vk denotes the auctioneer’s total payoff from
the game from using this strategy, then k2αVk(x(θ̃k, k)) ≤∑∞
j=k δ

j−k[− 1
2
( k
j
)2αc2(x(θ̃k, k))f(x(θ̃k, k))] + o(1) =

− 1
2(1−δ)c

2(x(θ̃k, k))f(x(θ̃k, k))+o(1) in the limit as k →∞.

Thus if c(x(θ̃k, k)) 6= 0 and α < 1
2
, then the auctioneer’s

payoff from the game is no greater than
− 1

2(1−δ)k2α c
2(x(θ̃k, k))f(x(θ̃k, k))+o( 1

k2α
), which is less than

− 1
2k
s2(x(θ̃k, k))f(x(θ̃k, k)) + o( 1

k
), the auctioneer’s payoff

from using the constant c(x(θ̃k, k)) = 0 for sufficiently large
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k. From this and the result in the previous paragraph it
follows that if the auctioneer is using the strategy given in
the statement of this theorem, the auctioneer’s total payoff
for the game will be maximized when c(x(θ̃k, k)) = 0 for
sufficiently large k.

This result immediately implies that standard existing
machine learning algorithms for exploration which involve
adding a term proportional to the standard deviation to the
eCPM of the ad, such as the UCB algorithm, are actually
dominated by the simple greedy approach of just always
making a bid equal to the eCPM of the ad in an auction
environment with discounting of payoffs. These existing al-
gorithms do too much exploration, and as a result of this,
lead to lower payoffs than the simple approach of not doing
any active exploration at all.

Next we turn to the question of what guarantees can be
given about the size of the performance improvement that
could be obtained by using the approximately optimal bid-
ding strategy rather than the simple greedy algorithm. Our
next result illustrates that one will indeed obtain a per-
formance improvement by using the approximately optimal
bidding strategy, but the size of the performance improve-
ment is likely to be very small.

Theorem 8. Suppose the auctioneer follows the approx-
imately optimal bidding strategy. Then the expected payoff
that the auctioneer will obtain by using this algorithm will
exceed the expected payoff that the auctioneer would obtain
by using the purely greedy approach by an amount

δ2

8(1−δ)3k4 s
4(x(θ̃k, k))f3(x(θ̃k, k)) + o( 1

k4
).

Proof. We know from Theorem 6 that
Eθ̃k+1

[Vk+1(x(θ̃k+1, k + 1))] − Vk(x(θ̃k, k)) = v(x(θ̃k,k))
k(k+1)

+

o
(

1
k2

)
for large k, where v(x(θ̃k, k)) =

1
2(1−δ)s

2(x(θ̃k, k))f(x(θ̃k, k)), and we also know from the

proof of Theorem 2 that the derivative of the seller’s ex-
pected payoff from making a bid of z with respect to z is
f(z)(x(θ̃k, k)−z+δ(Eθ̃k+1

[Vk+1(x(θ̃k+1, k+1))]−Vk(x(θ̃k, k)))).

Thus if we let ∆V ≡ Eθ̃k+1
[Vk+1(x(θ̃k+1, k+1))]−Vk(x(θ̃k, k))),

then the difference between the auctioneer’s expected payoff
from making a bid of x(θ̃k, k)) and the auctioneer’s expected

payoff from making a bid of x(θ̃k, k) +
δ

2(1−δ)k(k+1)
s2(x(θ̃k, k))f(x(θ̃k, k)) is

∫ x(θ̃k,k)+δ∆V+o(∆V )

x(θ̃k,k))

f(z)(x(θ̃k, k)− z + δ(∆V ) + o(∆V ))

1− δ dz

=
f(x(θ̃k, k))δ2(∆V )2

2(1− δ) + o((∆V )2)

And since ∆V = Eθ̃k+1
[Vk+1(x(θ̃k+1, k+1))]−Vk(x(θ̃k, k)) =

v(x(θ̃k,k))
k(k+1)

+o
(

1
k2

)
= s2(x(θ̃k,k))f(x(θ̃k,k))

2(1−δ)k(k+1)
+o
(

1
k2

)
, it then fol-

lows that the difference between the auctioneer’s expected
payoff from making a bid of x(θ̃k, k)) and the auctioneer’s

expected payoff from making a bid of x(θ̃k, k) +
δ

2(1−δ)k(k+1)
s2(x(θ̃k, k))f(x(θ̃k, k)) is

δ2

8(1−δ)3k4 s
4(x(θ̃k, k))f3(x(θ̃k, k)) + o( 1

k4
). The result then

follows.

Theorem 8 indicates that the performance improvement
that can be obtained as a result of using the approximately

optimal bidding strategy is only on the order of 1
k4

, where k
denotes the number of impressions that an ad has received.
This follows from the fact that the incremental increase in
the probability that a particular ad is shown varies with 1

k2
,

and on top of that, the expected payoff increase that one
obtains conditional on showing a different ad than would
be shown without active learning also varies with 1

k2
. Since

this represents a fourth-order improvement in performance
relative to the purely greedy approach, this result indicates
that the performance improvement that can be obtained by
following our algorithm rather than simply ranking the ads
by their eCPM’s becomes small very quickly.

It is worth noting, however, that the result in Theorem 8 is
not due to our algorithm being a suboptimal implementation
of incorporating active exploration into a machine learning
system. Our next result illustrates that while the size of the
performance improvement that can be obtained by using our
algorithm is small, this algorithm will, in fact, obtain nearly
the maximum possible performance improvement over the
purely greedy approach of ranking ads by their eCPM’s.

Theorem 9. Suppose the auctioneer uses the approximately
optimal bidding strategy. Then the difference between the
auctioneer’s payoff under this strategy and the maximum
possible payoff the auctioneer could obtain under the theoret-
ically optimal strategy becomes vanishingly small compared
to the difference between the auctioneer’s payoff under this
strategy and the auctioneer’s payoff under the greedy strategy
for large k.

Proof. The theoretically optimal strategy for the auc-
tioneer would entail submitting a bid of z = x(θ̃k, k)) +

Eθ̃k+1
[Vk+1(x(θ̃k+1, k + 1))] − Vk(x(θ̃k, k)) in each time pe-

riod. By the same reasoning as in the proof of Theorem
8, it follows that the difference between the auctioneer’s ex-
pected payoff from making a bid of x(θ̃k, k)) and the auction-

eer’s expected payoff from making a bid of z = x(θ̃k, k)) +

Eθ̃k+1
[Vk+1(x(θ̃k+1, k+1))]−Vk(x(θ̃k, k)) is f(x(θ̃k,k))δ2(∆V )2

2(1−δ) +

o((∆V )2). Since the auctioneer’s payoff from using the ap-

proximately optimal bidding strategy is also f(x(θ̃k,k))δ2(∆V )2

2(1−δ) +

o((∆V )2), it then follows that the difference between the
auctioneer’s payoff under the approximately optimal bid-
ding strategy and the maximum possible payoff the auction-
eer could obtain under the theoretically optimal strategy is
o((∆V )2) = o( 1

k4
).

But we know from Theorem 8 that the difference between
the auctioneer’s payoff under the approximately optimal bid-
ding strategy and the auctioneer’s payoff under the greedy

strategy is δ2

8(1−δ)3k4 s
4(x(θ̃k, k))f2(x(θ̃k, k)) + o( 1

k4
). From

this it follows that the difference between the auctioneer’s
payoff under this strategy and the maximum possible payoff
the auctioneer could obtain under the theoretically optimal
strategy becomes vanishingly small compared to the differ-
ence between the auctioneer’s payoff under this strategy and
the auctioneer’s payoff under the greedy strategy for large
k.

The results in the previous theorems suggest that the max-
imum possible payoff increase that can be achieved by in-
corporating active exploration into a machine learning sys-
tem for online auctions is quite small for auctions involving
ads that have already received a large number of impres-
sions. However, in many auctions it is frequently the case
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that there are advertisers that have only received a small
number of impressions, so it is desirable to know whether
these conclusions for ads that have received large numbers
of impressions will also hold for ads that have only received a
small number of impressions. We present a result addressing
this question next in Theorem 10.

Theorem 10. Suppose the bidder with unknown eCPM
has a CPC bid of 1 and a click-through rate drawn from a
beta distribution. Also suppose that this bidder’s expected
eCPM is ω and the standard deviation in this bidder’s true
eCPM is γω. Then the difference between the maximum
possible payoff the auctioneer could obtain under the theo-
retically optimal strategy and the auctioneer’s payoff from

the greedy strategy is no greater than δ2γ8ω6f
3

8(1−δ)3(1−ω)2
, where f

denotes the supremum of f(·).

The proof of Theorem 10 is lengthy and relegated to the
appendix of the full version of the paper [23]. Theorem
10 presents bounds on the maximum performance improve-
ment that can be achieved over the purely greedy strategy
by using active learning, but it is not immediately clear from
this result whether these bounds imply there are significant
limitations on the performance improvement that can be
achieved by using active learning. We thus seek to shed
some light on this under empirically realistic values of the
parameters.

If the typical eCPM bids for the winning advertisers in an
auction are roughly ξω, then the auctioneer’s total payoff for
the game will be roughly ξω

1−δ , and the result in Theorem 10
indicates that the maximum fractional increase in expected
payoff that one can achieve as a result of using the theoreti-
cally optimal strategy rather than the greedy strategy is on

the order of δ2γ8ω5f
3

8ξ(1−δ)2(1−ω)2
.

Furthermore, if the typical eCPM bids for the highest
competing advertisers in an auction are roughly ξω, then
f is likely to also be on the order of 1

ξω
. This holds, for

example, if the highest competing eCPM bids are drawn
from a lognormal distribution, as the largest value of the
density of a lognormal distribution with parameters µ and

σ2 is equal to c(σ2)
ξω

, where ξω is the expected value of the

lognormal distribution and c(σ2) ≡ eσ
2

√
2πσ2

is a constant that

depends only on σ2. Furthermore c(σ2) is likely to be close
to 1 for realistic values of σ2 since c(σ2) ∈ [0.93, 1.09] for val-
ues of σ2 ∈ [0.2, 1]. The lognormal distribution is a realistic
representation of the distribution of highest competing bids
in online auctions since both [28] and [34] have noted that
the distribution of highest bids can be well-represented by
a lognormal distribution using data from sponsored search
auctions at Yahoo!.

By using the facts that the value of f is likely to be on
the order of 1

ξω
and the maximum fractional increase in ex-

pected payoff that one can achieve as a result of using the
theoretically optimal strategy rather than the greedy strat-

egy is on the order of δ2γ8ω5f
3

8ξ(1−δ)2(1−ω)2
, it then follows that the

maximum fractional increase in expected payoff that one
can achieve as a result of using the theoretically optimal
strategy rather than the greedy strategy is on the order of

δ2γ8ω2

8ξ4(1−δ)2(1−ω)2
.

There is empirical evidence that indicates that the typi-
cal click-through rates for ads in online auctions tend to be

on the order of 1
100

or 1
1000

for search ads and display ads

respectively [10], so (1 − ω)2 will be very close to 1 and ω2

is likely to be less than 10−4 (for search ads) or 10−6 (for
display ads). Furthermore, even for a brand new ad, the
typical errors in a machine learning system’s predictions are
unlikely to exceed 30% of the true click-through rate of the
ad, so γ ≤ 0.3 is likely to hold in most practical applica-
tions. Finally, ξ is a measure of by how much the highest
bid in an auction exceeds the typical eCPM bid of an av-
erage ad in the auction. Since there are normally hundreds
of ads competing in online auctions, it seems that one can
conservatively estimate that ξ ≥ 3 is likely to hold in most
real-world online auctions.

By combining the estimates in the previous paragraph,

it follows that γ8ω2

8ξ4(1−ω)2
will almost certainly be less than

10−11 in search auctions and 10−13 in display auctions. Now

if δ ≤ 0.9999, δ2

(1−δ)2 will be no greater than 108, and if

δ ≤ 0.99999, δ2

(1−δ)2 will be no greater than 1010. Thus even

for values of δ that are exceedingly close to 1 (δ = 0.9999 for

search ads and δ = 0.99999 for display ads), γ8ω2

8ξ4(1−ω)2
δ2

(1−δ)2

will be no greater than 0.001. Thus as long as δ ≤ 0.9999 (or
δ ≤ 0.99999 for display auctions), the bound given in Theo-
rem 10 guarantees that under empirically realistic scenarios,
the maximum possible performance improvement that can
be achieved by incorporating active learning into a machine
learning system is at most a few hundredths of a percentage
point. This is a finite sample result that does not require a
diverging number of impressions in order to hold.

6. SIMULATIONS
The results of the previous section suggest that the overall

benefit that can be obtained by incorporating active explo-
ration into a machine learning system in an auction envi-
ronment is exceedingly small. We now seek to empirically
verify that the benefit that can be obtained from active ex-
ploration is indeed quite small by conducting simulations
under some empirically realistic scenarios.

To do this, we consider a scenario in which there is a re-
peated auction in which a cost-per-click (CPC) bidder com-
petes against a CPM bidder in each auction. The CPC bid-
der has a CPC bid of 1 and a fixed unknown click-through
rate for all periods that is a random draw from the beta dis-
tribution with parameters αC and βC . The CPM bidder’s
CPM bid varies from period to period, and in each period
we assume that the CPM bidder’s CPM bid is a random
draw from the beta distribution with parameters αM and
βM . We let f(·) denote the probability density function cor-
responding to this distribution. Throughout we assume that
payoffs are discounted at a rate of δ = 0.9995 and that there
are T = 10000 time periods.

While the CPM bidder’s bid is drawn from the same dis-
tribution in every period, the auctioneer’s beliefs about the
distribution from which the CPC bidder’s click-through rate
is drawn changes over time. In particular, just before the
auction in period t, the auctioneer believes that the CPC
bidder’s true click-through rate is a random draw from the
beta distribution with parameters αt,C and βt,C where αt,C
is equal to αC plus the number of clicks the CPC bidder has
received so far and βt,C is equal to βC plus the number of
times the CPC bidder’s ad was shown but did not receive a
click.
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We compare total social welfare under two possible sce-
narios. The first scenario we consider is a standard rank-
ing algorithm in which the ads are ranked purely on the
basis of their expected eCPM bids. The second scenario
we consider is one in which the CPC bidder makes a bid
of the form xt + δ(1−δT−t)

2(1−δ)
αt,Cβt,C

(αt,C+βC)2(αt,C+βt,C+1)2
f(xt) for

the CPC bidder in each period t, where xt denotes the CPC
bidder’s expected click-through rate just before the auction
in period t, and the CPM bidder bids in the same way as
in the first scenario. This second scenario corresponds to
adding a term equal to the value of learning to the CPC
bidder’s expected eCPM bid in the game with finite time
horizons.

Throughout we focus on scenarios that are motivated by
empirical evidence on the likely expected click-through rates
for ads in online auctions. In particular, since empirical evi-
dence indicates that the typical click-through rates for ads in
online auctions tend to be on the order of 1

100
or 1

1000
[10], we

focus on situations in which the expected click-through rate
of the CPC bidder is small. Thus in all the simulations we
conduct, we assume that the CPC bidder’s expected click-
through rate is on the order of 1

100
. We further assume that

the CPM bidder’s expected CPM bid is also on the order of
1

100
in each auction.

Similarly, since it is unlikely that there will be substantial
errors in the estimate of a new ad’s predicted click-through
rate, we also focus on situations in which there is only mod-
erate uncertainty in the click-through rate of a new ad. In
particular, throughout we consider distributions of the CPC
bidder’s bid such that the standard deviation in the adver-
tiser’s click-through rate is no greater than 20 or 30% of the
expected value. However, since there is likely to be consid-
erable variation in the distribution of competing CPM bids
that an advertiser faces, we focus on distributions of the
CPM bidder’s bid for which the variance in this bid is quite
substantial.

Conditions Efficiency Increase

αC = 10, βC = 1000, αM = 2, βM = 100
-0.0011%
(0.0149%)

αC = 10, βC = 1000, αM = 2, βM = 200
-0.010%
(0.032%)

αC = 20, βC = 2000, αM = 2, βM = 100
0.0086%

(0.0087%)

αC = 20, βC = 2000, αM = 2, βM = 200
0.013%

(0.017%)

Table 1: Average percentage increase in efficiency
from incorporating active learning into a machine
learning system (with standard errors in parenthe-
ses) after 2500 simulations. None of these results
are statistically significant at the p < .05 level.

Table 1 reports the results of the simulations that we have
conducted. The conclusions from these simulations are strik-
ing. While we have conducted enough simulations to esti-
mate the efficiency gain that can be obtained from adding
active exploration to within a few hundredths of a percent-
age point, none of the resulting estimated efficiency gains
realized in Table 1 are statistically significant. Indeed one
can conclude from all of these simulations that the maxi-
mum possible efficiency gain that could be achieved in these

settings is at most a few hundredths of a percentage point.
These empirical results provide further support for our the-
oretical conclusions that the value of adding active explo-
ration to a machine learning system in an auction setting is
exceedingly small.

The reason for the results observed in Table 1 is that an
optimal exploration algorithm in these auction settings will
only do a tiny additional amount of exploration compared
to a purely greedy strategy of simply always submitting a
bid for the CPC bidder equal to the CPC bidder’s bid. For
instance, for the first simulation considered in Table 1, the
incremental increase in an advertiser’s bid in the first period
of the game as a result of active exploration is only 3.6%,
implying only about a 1.3% increase in the probability that
the CPC bidder will be shown as well as only about a 1.8%
increase in expected payoff conditional on the auctioneer
showing a different ad under active exploration than under
the purely greedy strategy. Thus the incremental expected
payoff increase that can be achieved by incorporating active
exploration into an existing machine learning system in this
auction setting is at most a few hundredths of a percentage
point.

The results in Table 1 make use of distributions that we
regard as empirically realistic in the sense that there is a re-
alistic amount of uncertainty about the click-through rate of
the CPC bidder as well as a realistic amount of variation in
the distribution of competing CPM bids. It is worth noting
that if one relaxes the requirement that there be a realis-
tic amount of uncertainty about these variances, then it is
possible for the algorithm we have proposed to substantially
outperform the purely greedy strategy of simply making a
bid for the CPC bidder that always equals the CPC bid-
der’s expected eCPM. In particular, if we instead assume
that there is substantially more uncertainty about the CPC
bidder’s bid than we have assumed in the simulations in
Table 1 and we also assume that there is substantially less
variance in the distribution of competing CPM bids than we
have allowed for in Table 1, then there will be considerably
greater benefits to adding active exploration because there
is both more to learn about the CPC bidder’s true eCPM
bid as well as less exploration that will take place for free
solely due to random variation in the competing bids. In
this case, there may well be significant benefits to adding
active exploration to a machine learning system.

Conditions Efficiency Increase

αC = 2, βC = 200, αM = 15, βM = 1000
0.70%

(0.13%)

αC = 5, βC = 500, αM = 15, βM = 1000
0.20%

(0.06%)

Table 2: Average percentage increase in efficiency
from incorporating active learning into a machine
learning system (with standard errors in parenthe-
ses) after 5000 simulations. These results are all
statistically significant at the p < .001 level.

Table 2 reports the results of simulations that were con-
ducted using distributions in which there is substantially
more uncertainty about the CPC bidder’s click-through rate
and substantially less variance in the CPM bidder’s compet-
ing CPM bid than in the distributions considered in Table 1.
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These simulations indeed reveal statistically significant effi-
ciency gains as a result of active exploration. Nonetheless it
is worth noting that the efficiency gains reported in Table 2
are still fairly small. Even when we make assumptions that
bias the case in favor of active exploration being important,
none of the efficiency gains reported in Table 2 are greater
than a few tenths of a percentage point.

7. CONCLUSIONS
In online auctions there may be value to exploring ads

with uncertain eCPM’s to learn about the true eCPM of
the ad and be able to make better ranking decisions in the
future. But the online auction setting is very different from
standard multi-armed bandit problems in the sense that
there may be tremendous variation in the quality of com-
petition that an advertiser with unknown eCPM faces in an
auction, and as a result there will typically be plenty of free
opportunities to explore an ad with uncertain eCPM in auc-
tions where there simply are no ads with eCPM bids that
are known to be high.

We have presented a model of the explore/exploit prob-
lem in online auctions that explicitly considers this random
variation in competing bids that is present in real auctions.
We find that the optimal solution for ranking the ads in this
setting is dramatically different than the optimal solution in
standard multi-armed bandit problems, and in particular,
that the optimal amount of active exploration that results
is considerably smaller than in standard multi-armed ban-
dit problems. This in turn implies that the improvement
in the auctioneer’s expected payoff that can be achieved by
adding active learning to a machine learning system in on-
line auctions is also exceedingly small. Thus while it is the-
oretically possible to improve performance by incorporating
active learning into a machine learning system for online auc-
tions, in a practical exchange environment, a purely greedy
strategy of simply ranking the ads by their expected eCPM’s
is likely to lead to nearly as strong a performance as any
other conceivable strategy.

The model we have used in this paper considers a simple
situation in which there a single advertiser with unknown
eCPM that competes in each period against an advertiser
with known eCPM whose eCPM bid is a random draw from
some distribution. But our conclusions about the value of
learning are not restricted to this simple model. In the full
version of the paper [23] we present a variety of more compli-
cated models including models in which there are multiple
advertisers with unknown eCPMs who need to be ranked as
well as models in which there is both correlation between the
unknown eCPMs of multiple different advertisers as well as
correlation between the highest known eCPM bid and the
true eCPMs of the advertisers with uncertain eCPMs from
auction to auction. The substantive conclusions in this pa-
per about the optimal bidding strategies and the value of
learning all extend to these more complicated models, so we
expect our conclusion about the value of active learning be-
ing quite small in a practical exchange environment to be
robust to a variety of natural extensions of the model.
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multi-choice bandit problems. Journal of Economic
Dynamics and Control, 25(1):1585–1594, 2001.

[15] P. Bolton and C. Harris. Strategic experimentation.
Econometrica, 67(2):349–374, 1999.

[16] M. Brezzi and T. L. Lai. Optimal learning and
experimentation in bandit problems. Journal of
Economic Dynamics and Control, 27(1):87–108, 2002.

[17] S. Callander. Searching for good policies. American
Political Science Review, 105(4):643–662, 2011.

[18] N. R. Devanur and S. M. Kakade. The price of
truthfulness for pay-per-click auctions. In Proceedings
of the 10th ACM Conference on Electronic Commerce
(EC), pages 99–106, 2009.

16



[19] A. Fishman and R. Rob. Experimentation and
competition. Journal of Economic Theory,
78(2):299–320, 1998.

[20] D. Gale. What have we learned from social learning?
European Economic Review, 40(3-5):617–628, 1996.

[21] D. Gale and R. W. Rosenthal. Experimentation,
imitation, and stochastic stability. Journal of
Economic Theory, 84(1):1–40, 1999.

[22] J. C. Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society, Series
B, 41(2):148–177, 1979.

[23] P. Hummel and R. P. McAfee. Machine learning in an
auction environment. Google Inc. Typescript, 2013.

[24] K. Iyer, R. Johari, and M. Sundarajan. Mean field
equilibria of dynamic auctions with learning. Cornell
University Typescript, 2013.

[25] G. Keller and S. Rady. Optimal experimentation in a
changing environment. Review of Economic Studies,
66(3):475–503, 1999.

[26] G. Keller and S. Rady. Strategic experimentation with
poisson bandits. Theoretical Economics, 5(2):275–311,
2010.

[27] G. Keller, S. Rady, and M. Cripps. Strategic
experimentation with experimental bandits.
Econometrica, 73(1):39–68, 2005.

[28] S. Lahaie and R. P. McAfee. Efficient ranking in
sponsored search. In Proceedings of the 7th
International Workshop on Internet and Network
Economics (WINE), pages 254–265, 2011.

[29] T. L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

[30] R. A. Lewis. Where’s the ’wear-out?’ online display
ads and the impact of frequency. Massachusetts
Institute of Technology Typescript, 2010.

[31] S.-M. Li, M. Mahdian, and R. P. McAfee. Value of
learning in sponsored search auctions. In Proceedings
of the 6th International Workshop on Internet and
Network Economics (WINE), pages 294–305, 2010.

[32] L. J. Mirman, L. Samuelson, and A. Urbano.
Monopoly experimentation. International Economic
Review, 34(3):549–563, 1993.

[33] G. Moscarini and L. Smith. The optimal level of
experimentation. Econometrica, 69(6):1629–1644,
2001.

[34] M. Ostrovsky and M. Schwarz. Reserve prices in
internet advertising auctions: A field experiment.
Stanford University Typescript, 2009.

[35] M. Rothschild. A two-armed bandit theory of market
pricing. Journal of Economic Theory, 9(2):185–202,
1974.

[36] A. Rusitchini and A. Wolinsky. Learning about
variable demand in the long run. Journal of Economic
Dynamics and Control, 19(5-7):1283–1292, 1995.

[37] K. H. Schlag. Why imitate, and if so how? a
boundedly rational approach to multi-armed bandits.
Journal of Economic Theory, 78(1):130–156, 1998.

[38] B. Strulovici. Learning while voting: Determinant of
collective experimentation. Econometrica,
78(3):933–971, 2010.

[39] X. Vives. Learning from others: A welfare analysis.
Games and Economic Behavior, 20(2):177–200, 1997.

[40] M. L. Weitzman. Optimal search for the best
alternative. Econometrica, 47(3):641–654, 1979.

[41] J. Wortman, Y. Vorobeychik, L. Li, and J. Langford.
Maintaining equilibria during exploration in sponsored
search auctions. In Proceedings of the 3rd
International Workshop on Internet and Network
Economics (WINE), pages 119–130, 2007.

17




