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ABSTRACT

Online controlled experiments, also called A/B testing, have
been established as the mantra for data-driven decision mak-
ing in many web-facing companies. A/B Testing support
decision making by directly comparing two variants at a
time. It can be used for comparison between (1) two can-
didate treatments and (2) a candidate treatment and an
established control. In practice, one typically runs an ex-
periment with multiple treatments together with a control
to make decision for both purposes simultaneously. This is
known to have two issues. First, having multiple treatments
increases false positives due to multiple comparison. Second,
the selection process causes an upward bias in estimated ef-
fect size of the best observed treatment. To overcome these
two issues, a two stage process is recommended, in which
we select the best treatment from the first screening stage
and then run the same experiment with only the selected
best treatment and the control in the validation stage. Tra-
ditional application of this two-stage design often focus only
on results from the second stage. In this paper, we propose a
general methodology for combining the first screening stage
data together with validation stage data for more sensitive
hypothesis testing and more accurate point estimation of
the treatment effect. Our method is widely applicable to
existing online controlled experimentation systems.
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1. INTRODUCTION
Controlled experiments have been used in many scientific

fields as the gold standard for causal inference, even though
only in the recent decade has it been introduced to online
services development (Christian 2012; Kohavi et al. 2009;
Manzi 2012) where it gained the name A/B testing. At Mi-
crosoft Bing, we test everything via controlled experiments,
including UX design, backend ranking, site performance and
monetization. Hundreds of experiments are running on a
daily basis. At any time, a visitor to Bing participates in
fifteen or more concurrent experiments, and can be assigned
to one of billions of possible treatment combinations (Kohavi
et al. 2013).

Surprisingly, the majority of the current A/B testing lit-
erature focuses on single stage A/B testing, where one ex-
periment (with one or more treatments) is conducted and
analyzed at a time. A likely cause could be that A/B test-
ing is traditionally conducted at the end of a feature de-
velopment cycle, to make final feature ship decision and
measure feature impact on key metrics. As A/B testing
gains more recognition as one of the most effective sources
of data-driven decision making, and with scaling of our ex-
perimentation platform, A/B testing is now employed earlier
in feature development cycles. Thus comes the need for mul-
tiple stages of experiment, in which the results of an earlier
screening stage can inform the design of a later validation
stage. For example, when there are multiple shipping can-
didates, we design the screening stage experiment to select
the most promising one. If such a best candidate exists, we
conduct a second validation run to make final ship decision
and measure treatment effect. This type of two stage exper-
iments with treatment selection and validation is commonly
used in practice. The space of treatment candidates ranges
from 2 to 5 or even 10 in the screening stage. When candi-
date number exceeds 10, we can aggressively sift candidates
via offline measurement or “paired test” such as interleaving
(Radlinski and Craswell 2013) to boost statistical power in
the data analysis.

In this paper, we focus on statistical inference in this
two-stage design with treatment selection and validation.
The validation stage involves only winner from the screen-
ing stage and a control. It is analyzed in the traditional A/B
testing framework and is well-understood (Section 2.1). The
first screening stage, however, includes simultaneous analy-
sis of multiple treatments. We need to adjust hypothesis
testing procedure to control for inflated false positives in
multiple comparison (Section 2.2). We improve on tradi-
tional adjustments such as Bonferroni and Holm’s method
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(Holm 1979), as they are typically too conservative. In Sec-
tion 3 we propose a sharp adjustment method that is exact
in the sense that it touches the claimed Type I error. Point
estimation is also nontrivial as the treatment selection in-
troduces an upward bias (Lemma 4). One might wonder
why this is important since in A/B testing people are gen-
erally only interested in finding the best candidate to ship.
We found in a data driven organization it is equally cru-
cial to keep accurate records of impacts made by each in-
dividual feature. These records help us understand the re-
turn on investment, and prioritize development to benefit
users/customers. In Section 4 we propose several methods
to correct the bias and investigate more efficient estimators
by combining data from both stages. In Section 2.3, we show
an insightful theoretical result to ensure we can almost al-
ways treat the treatment effect estimates from two stages as
independent, given treatment procedures which assign inde-
pendently, despite overlap of experiment subjects in the two
stages. With this result, we propose our complete recipe of
hypothesis testing in Section 3 and several options for point
estimation in Section 4.

To the knowledge of the authors, this is the first paper
in the context of online controlled experiments that stud-
ies the statistical inference for two-stage experiment with
treatment selection and validation. This framework can be
widely usable in existing online A/B testing systems. Key
contributions of our work include:

• A theoretic proof showing negligible correlation be-
tween treatment effect estimates from two stages, given
the treatment assignment procedure in the two stages
are independent, which is generally useful in theoreti-
cal development for all multi-staged experiments.

• A more sensitive hypothesis testing procedure that
correctly adjusts for multiple comparison and utilized
data from both stages.

• Several novel bias correction methods to correct the
upward bias from the treatment selection, and their
comparison in terms of bias and variance trade-off.

• Demonstration from empirical evidence that we get
more sensitive hypothesis test and more accurate point
estimates by combining data from both stages.

2. BACKGROUND AND WEAK DEPEND-

ENCE BETWEEN ESTIMATES IN TWO

STAGES
Before diving into two-stage model, we first briefly cover

the analysis of one stage test. Here we follow the notation
in (Deng et al. 2013).

2.1 Treatment vs. Control in One Stage A/B
Test

We focus on the case of the two-sample t-test (Student
1908; Wasserman 2003). Suppose we are interested in a
metric X (e.g. Clicks per user). Assuming the observed
values of the metric for users in the treatment and control
are independent realizations of random variables X(t) for
treatment and X(c) for control respectively, we can apply
the t-test to determine if the difference between the two
groups is statistically significant. Under the random user
effect model, for user i in control group,

X
(c)
i = µ + αi + ǫi, (1)

where µ is the mean of X(c), αi represents user random effect
and ǫi is random noise. Random user effect α has mean 0
and variance Var(α). Residual E[ǫ|α] = 0. The random pair
(αi, ǫi) are i.i.d. for all user. However, we don’t assume
independence of ǫi and αi, as the distribution of ǫ might
depend on α, e.g. users who click more might also have
larger random variation in their clicks. However ǫi and αi

are uncorrelated by construction since E(ǫα) = E[E(ǫ|α)] =
0.

For treatment group,

X
(t)
i = µ + θi + αi + ǫi,

where fixed treatment effect θ can vary from user to user but
θ is uncorrelated to the noise ǫ. The average treatment effect
(ATE) is defined as the expectation of θ. The null hypothesis
is that δ := E(θ) = 0 and the alternative is that it is not
0 for a two-sided test. For one-sided test, the alternative
is δ ≤ 0 (looking for positive change) or δ ≥ 0 (looking for
negative change). The t-test is based on the t-statistic:

X
(t)

− X
(c)

√

Var
(

X
(t)

− X
(c)

)

, (2)

where observed difference between treatment and control
∆ = X

(t)
− X

(c)
is an unbiased estimator for the shift of

the mean and the t-statistic is a normalized version of that
estimator. In traditional t-test (Student 1908), one needs

to assume equal variance and normality of X(t) and X(c).
In practice, the equal variance assumption can be relaxed
by using Welch’s t-test (Welch 1947). For online experi-
ments with the sample sizes for both control and treatment
at least in the thousands, even the normality assumption on
X is usually unnecessary. To see that, by central limit the-

orem, X
(t)

and X
(c)

are both asymptotically normal as the
sample size m and n for treatment and control increases. ∆
is therefore approximately normal with variance

Var(∆) = Var
(

X
(t)

− X
(c)

)

= Var
(

X
(t)

)

+ Var
(

X
(c)

)

.

The t-statistics (2) is approximately standard normal so t-
test in large sample case is equivalent to z-test. The central
limit theorem only assumes finite variance which almost al-
ways applies in online experimentation. The speed of con-
vergence to normal can be quantified by using Berry-Essen
theorem (DasGupta 2008). We have verified that most met-
rics we tested in Bing are well approximated by normal dis-
tribution in experiments with thousands of samples.

2.2 Multiple Treatments in A/B Test
When there is only one treatment compared to a cont-

rol, ∆ is both the Maximum likelihood estimator (MLE)
of the treatment effect, and an unbiased estimator. When
there are multiple treatments and we observe ∆(j) for the
jth treatment, it can be shown that max(∆(j)) is MLE of

max(δ(j)), where δ(j) is the true underlying treatment effect

of the jth treatment. However, it is obvious that max(∆(j))
is no longer an unbiased estimator. To see this, assuming
δ(j) = 0 for all j, the distributions of ∆(j)’s are symmet-
ric around mean 0. But the distribution of max(∆(j)) will
certainly be skewed to the positive side and with a positive
mean. Note that max(δ(j)) = 0. max(∆(j)) will have a up-
ward bias. Furthermore, Lemma 4 in Appendix showed that
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if pth treatment is selected (p is random as it is picked as

the best treatment), ∆(p) = max(∆(j)) is not an unbiased

estimator for δ(p).1 Section 4 introduces a novel method
to correct bias so we can achieve a estimator of δ(p) with
smaller mean squared error (MSE).

Besides point estimation, hypothesis testing in experi-
ments with multiple treatments also suffers from an issue
called multiple comparison (Benjamini 2010). Framework of
hypothesis testing only guarantees Type I error (False Pos-
itive Rate) be controlled under the significant size, which
is usually set to 5%, when there is only one test. When
there are multiple comparisons, and if we are looking for
the “best” treatment among all the treatments, our chance
of finding false positive increases. If we have 100 treatments,
all have 0 true treatment effect, we still expect to see on av-
erage 5 out of 100 of them showing a p-value below 0.05 just
by chance. To deal with this, various of p-value adjustment
techniques have been proposed, such as Bonferroni correc-
tion, Holm’s method (Holm 1979) and false discovery rate
based methods suitable for even larger number of simulta-
neous comparisons (Benjamini and Hochberg 1995; Efron
2010). Both Bonferroni and Holm’s method are applicable
to the general case with unknown covariance structure be-
tween test statistics of all comparisons. In the context of
online A/B testing, when we have large samples, we live in
a simpler multivariate normal world. We have full knowl-
edge of the covariance structure of this multivariate normal
distribution and we should be able to exploit it to come
up with a better hypothesis testing procedure. Section 3
contains more details.

2.3 Weak Dependence
When we combine results from two stages to form a more

sensitive test and estimate treatment effect more accurately,
one of the challenges we face is caused by possible depend-
ence of the observed metric values from the two stages. In
theory we may force independence between the two stages
by running them on separate traffic, so the two stages share
no users in in common. This is undesirable in any scaled
A/B testing platform (Kohavi et al. 2013) because

1. It means the total traffic in both stages combined can-
not exceed 100%, and we suffer from decreased statis-
tical power in both stages.

2. It requires additional infrastructure to ensure no over-
lap in traffic between the two stages, which can pose
technical challenges when we run multiple experiments
at the same time.

In this section, we explain why in practice we can safely as-
sume independence between the observed ∆ from two stages,
as long as the randomization procedure used in the two
stages are independent. For online A/B testing, randomiza-
tion is usually achieved via bucket assignment. Each ran-
domization id, e.g. user id, is transformed into a number
between 0 to K − 1 through a hash function and modulo
operation. Independent randomization procedures between
any two experiments can be achieved either by using dif-
ferent hashing functions and re-shuffle all K buckets, or

1There is a sutble difference between the two scenarios. In
the former case we use max(∆(j)) to estimate the best treat-

ment effect max(δ(j)) and in the latter case we only want
to estimate the treatment effect of pth treatment without
worrying about whether it is truly the best treatment effect.

preferably, via localized re-randomization described in Ko-
havi et al. (2012, Section 3.5).

For the same experiment that has been run twice in the
two stages, we model user random effect to be the same for
the same user in both stages, but the random noises are
independent for different stages. In particular, for a pair of
measurement from the same user (Xi, Yi),

Xi = µ(1) + αi + ǫi,

Yi = µ(2) + αi + ζi,

where ǫi and ζi are noise for each run. ǫi and ζi are in-
dependent and all random variables with different index i
are independent. We allow µ(1) to be different from µ(2)

to reflect a change in mean due to some small seasonal ef-
fect. After exposure to a treatment, there is an additional
treatment effect term θi in

Xi = µ(1) + θi + αi + ǫi,

Yi = µ(2) + θi + αi + ζi,

where θ is uncorrelated to both noise ǫ and ζ.
We are now ready for the first result of this paper. Let

N be the total number of users that is available for online
A/B testing. For the screening run, we picked m users as
treatment and n as control. For the second run, we picked
m′ users for treatment and n′ for control. If the random
user picking for the two runs are independent of each other,
let ∆1 and ∆2 be the observed difference between treatment
and control in the two runs, then

Theorem 1 (Almost Uncorrelated Deltas).
Assuming independent treatment assignment, we have

Cov(∆1, ∆2) = Var(θ)/N (3)

Furthermore, if Var(θ) ≤ ρVar(X) and Var(θ) ≤ ρVar(Y ),
then

Corr(∆1, ∆2) ≤ ρ.

This holds whether m, n, m′, n′ are random variables or de-
terministic.

To understand why Theorem 1 holds, remember N is the
total user size available for experimentation, θ is the treat-
ment effect. Also, Var(∆1) = Var(X(t))/m + Var(X(c))/n

and similarly Var(∆2) = Var(Y (t))/m′ + Var(Y (c))/n′. We
are interested in the correlation defined by

Corr(∆1, ∆2) =
Cov(∆1, ∆2)

√

Var(∆1) × Var(∆2)

=
Var(θ)/N

√

Var(∆1) × Var(∆2)
.

If the percentage average treatment effect is d%, then we
argue that Var(θ)/Var(X) is roughly (d%)2. To see this, if
treatment effect is a fixed multiplicative effect, i.e. θ/X =
d%, we have Var(θ) = d%2Var(X). Var(θ)/Var(X) is at the
scale of (d%)2 for any reasonable treatment effect model.
Since N is always larger than m, n, m′, n′, by (3), we know
Corr(∆1, ∆2) ≤ (d%)2.

In practice, most online A/B testing has a treatment ef-
fect less than 10% (In fact a 1% change is quite rare for
many key metrics. If the treatment effect is more than
10%, then by the volume of traffic online experiment can
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cheaply gather, detecting such a large effect is usually easy
and experimenters don’t need to rely on combining results
from multiple stages to increase the power of the test.) This
means Corr(∆1, ∆2) ≤ 0.01 for almost all experiments we
care about in practice, and Corr(∆1, ∆2) ≤ 10−4 among
most of the cases.

What does this result entail? Remember in our large sam-
ple setting, ∆1 and ∆2 are approximately normal. For nor-
mal distribution, no correlation is equivalent to indepen-
dence. The result from the above discussion tells us that in
almost all interesting cases, we can safely treat ∆1 and ∆2

as if they are independent. In two-stage A/B testing with
treatment selection and validation, the screening stage in-
volves multiple treatments. A straightforward extension of
Theorem 1 shows the vector of observed ∆’s ∆1 and ∆2 has
negligible correlation, hence are almost independent. Fur-
thermore, for hypothesis testing purpose (Section 3), un-
der null hypothesis, we assume there is no treatment effect.
Hence we know correlation between ∆ from two stages would
be less than (d%)2, thanks to Theorem 1, which is 0.

We make our final remark to close this section. In the
model we assumed the user effect α and the treatment effect
θ for two runs of the same experiment to be the same for
the same user. This can also be relaxed to allow both user
effect and treatment effect for the same user in two runs
to be a bivariate pair with arbitrary covariance structure.
Theorem 1 still holds if we change Var(θ) in (3) to covariance
of the treatment effect.

3. HYPOTHESIS TESTING
In statistics, combining results from different studies is

the subject of a field called meta-analysis. In this section
we present a method for hypothesis testing utilizing data
from both stages. Using combined data for point estimation
is discussed in Section 4.

3.1 Meta-Analysis: Combine Data from Two
Stages

Suppose we conduct two independent hypothesis tests and
observed two p-values p1 and p2. A straightforward attempt
of combing two “probability of falsely rejecting null hypoth-
esis” would be to multiply the two p-values together, and
claim the product p = p1 × p2 to be the p-value of the com-
bined test. This seemingly sound approach actually pro-
duce p-values smaller than the true Type I error. To see
this, under null hypothesis, p-values p1 and p2 follow the
uniform(0,1) distribution. Type I error of combined test is
P(U1 × U2 ≤ p) where U1 and U2 are two independent uni-
form(0,1) distributed random variables. This probability
can be calculated using a double integral:

∫

xy≤p,0≤x,y≤1

dxdy = p(1 − log p). (4)

Since p < 1, Type I error p(1 − log p) > p. The underesti-
mation of Type I error could be very significant for common
p-values. When p = p1 × p2 = 0.1, the true Type I error if
we reject the null hypothesis would be 3.3×0.1, meaning the
true Type I error is underestimated by more than 3 times if
we simply multiply the two p-values.

Equation (4) provides the correct p-value calculation the-
oretically. To use it in hypothesis testing for usual p-value

cutoff at 0.05, the product p required to make p(1− log p) ≤
0.05 is 0.0087.

The calculation of true Type I error when multiplying
more than 2 p-values quickly becomes cumbersome. Fisher
(Fisher et al. 1970) noticed natural log function transforms
uniform(0,1) distribution into an exponential(1) distribution
and exponential(1) is half of a χ2 with 2 degrees of freedom.
In this connection, the product of k p-values under null hy-
pothesis is sum of independent exponential(1) and

2 log(
∏

pi) =
∑

(2 log(pi)) ∼ χ2
2k.

This result, known as the Fisher’s method, can be used
to combine tests under the assumption of independent p-
values. It is also a model-free method in the sense that it
only utilizes p-value without tapping into the distribution of
test statistics. It is not surprising that in our cases, by using
normality and known covariance structure of our observed
∆’s, we should be able to get a more sensitive test. We leave
this extension in Section 3.2.

However, we still have the multiple comparison issue to
tackle. One standard method is Bonferroni correction. Spe-
cifically,

1. First we determine the p-value from the screening stage
using a Bonferronni correction. If there is K treatment
candidates in the screening run, if p1 the smallest p-
value, we just divide this p-value by K.

2. We use this value plus the p-value for the second stage
and combine using Fisher’s method.

This combined with Fisher’s method provides a valid hy-
pothesis testing for two-stage A/B testing with treatment
selection and validation. We will just call it BF method and
set it as our benchmark.

3.2 Sharp Multiple Comparison Adjustment
In this section we improve BF method in two directions.

We will use a sharper multiple comparison adjustment. We
also exploit known distribution properties to form a test
statistic. We call our method generalized weighed average
method since the test statistic is in a form of weighted av-
erage.

Although Bonferroni correction is the simplest and most
widely used multiple comparison adjustment, it is often too
conservative in online controlled experiments. This is be-
cause by central limit theorem, we can safely assume all
metrics to be approximately normal. More specifically, let
X1, X2, . . . , Xk be the observed metric values (e.g. clicks
per user) for the k treatments and X0 be the value for the
control, we can estimate the variance of each and take these
as known in our model. Moreover, the covariance between
∆i, i = 1, . . . , k can also be estimated. In this scenario
of complete distributional information, we can use a gen-
eralized step-down procedure (Romano 2005, Section 9.1,
p.352).

Generalized step-down procedure

Given observed ∆1, . . . , ∆k, we first test against the null hy-
pothesis that all treatments are no greater than 0. In the
screening stage we assign equal traffic size for all treatments.
We use max(∆i) as the test statistics. ∆1, . . . , ∆k follows
a multivariate normal distribution with known covariance
matrix. We can theoretically compute the distribution of
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max(∆i) under the least favorable null hypothesis, which is
when all treatment effects are 0 (Toothaker 1993, Appendix
3, p.374). In practice, we resort to Monte Carlo simula-
tion. We simulate B i.i.d random samples from multivariate
normal distribution with mean 0 and the estimated covari-
ance matrix. For each trial we record the max(∆i). The
simulated B data points serve as an empirical null distri-
bution of max(∆i). A p-value can then be calculated using
the empirical distribution. The step-down procedure rejects
the null hypothesis for the treatment with the largest ∆.
Then it take the remaining ∆’s and continue the same test
against the null hypothesis for this subset of treatments.
This procedure stops when the test fails to reject the subset
null hypothesis and it accepts them all. It can be proved
that this procedure, like Bonferroni correction, controls the
family-wise false positive rate. But it is strictly less conser-
vative than Bonferroni correction. A two-sided test would
be looking at the extreme value, i.e. max(abs(∆i)) with
otherwise the same procedure.

For our purpose of testing two-stage experiments with
treatment selection and validation, we can stop at the first
step, since we only care about the selected treatment with
the largest ∆ at the screening stage. How do we combine
this with the validation stage ∆? If there are no multiple
treatments at the screening stage, we are just replicating the
same experiment twice. Thanks to Theorem 1, we can treat
the two ∆’s as independent. Then any weighted average of
the two would be an unbiased estimator for the underlying
treatment effect. We define

∆c = w∆(1) + (1 − w)∆(2),

where ∆(1) and ∆(2) stands for the observed ∆ in two stages
respectively. To minimize the variance of this unbiased es-
timator, the optimal weight w would be proportional to
1/Var(∆(s)), s = 1, 2. This combined test statistics is also
normally distributed, and therefore can be standardized into
a Z-score. We call it combined Z-score method.

Generalized weighted average test

To adopt combined Z-score test to support treatment se-
lection in the screening stage, we modify the test statistics
as:

∆c = w max(∆i) + (1 − w)∆∗,

where ∆∗ is the observed ∆ at the validation stage for the
selected treatment form the screening stage. The optimal
weight can also be estimated, by calculating Var(max(∆i))
theoretically or from simulation. We then form empirical
null distribution through simulation with this test statistic,
and calculate p-values. This method is in spirit the same as
the combined Z-score, just with an adjustment to the null
distribution.

This generalized weighted average test is more favorable
comparing to more generic methods such as BF method. It
exploits the know distributional information otherwise ig-
nored. It is sharp in the sense that it would touch the desig-
nated Type I error bound, unlike BF method. The reason is,
it does not rely on loose probability inequalities such as Bon-
ferroni inequality, which was required to control for Type I
error for all forms of tests. Instead it relies on simulation to
get the exact Type I error, no more, no less. The weighted
average method combines the data from two stages nicely
and optimally. We compare generalized weighted average

test to BF method in Section 5.1. The same idea of using
weighted average will also be used in Section 4 for point
estimation of the treatment effect.

4. POINT ESTIMATION
Another task for A/B testing is to provide good estimation

of the true treatment effects, in terms of minimal mean-
squared error (MSE) that achieves a balance between bias
and variance.

In the screening stage of the experiment, suppose we have
k different treatments with metric values X1, . . . , Xk respec-
tively. Thanks to the central limit theorem, we can assume
X = (X1, X2, . . . , Xk)T ∼ N (µ, Σ) where µ = (µ1, . . . , µk)T

and Σ = diag(σ2
1 , . . . , σ2

k)2. Moreover, there is a control
group with the metric value X0 ∼ N (µ0, σ2

0). The esti-
mation of σi is easy to achieve with a large sample and
of no interest in this paper, thus we assume the variances
are known and fixed. Without loss of generality, assume
σ = σ0 = · · · = σk. Then we can use ∆i = Xi − X0 as
the estimation of the effect of the ith treatment. At the
end of the screening stage, we choose the treatment with
the largest ∆ by maxi = argmaxi∆i = argmaxiXi, then
run the second-stage experiment with only the control group
and the maxith treatment.

In the validation stage, X∗
maxi ∼ N (µmaxi, σ′2) for the

selected treatment is obtained, as well as the new obser-
vation for control group X∗

0 ∼ N (µ0, σ′2). Let ∆∗
maxi =

X∗
maxi − X∗

0 . According to Theorem 1, we can ignore the
dependence between the observed ∆’s from the two stages.

To estimate the true treatment effect δ = µmaxi − µ0,
∆∗

maxi is the MLE and also is unbiased thus optimal for the
validation stage. However, according to Lemma 4, ∆maxi

is actually upward biased. Thus a traditional choice for
the point estimation is only by ∆∗

maxi. The MSE for this
estimator is σ2. It is clear that this method is less efficient
as we ignore the useful information from the screening stage.
Denote ∆̃maxi as the estimation in the screening stage. For
weighted average δ̂w = w · δ̂maxi + (1 − w) · ∆∗

maxi:

MSE(δ̂w) = w2MSE(δ̂maxi) + (1 − w)2σ′2. (5)

The best w that minimizes the MSE can be found by solving
w

(1−w)
= σ′2

MSE(∆̃maxi)
. In practice, even by a naive choice

of w = 1/2, we are guaranteed to have a better MSE if

MSE(δ̂maxi) < 3σ2. Thus the task in this section is to find

a good estimator δ̂maxi for the screening stage, or equiva-
lently, a good estimator µ̂maxi for µmaxi, as we can always let
δ̂maxi = µ̂maxi − X0. X0 is independent of Xi, i = 1, . . . , k
and does not suffer from the selection bias, and it is also
optimal for µ0.

Let µ̂maxi,MLE be the estimator for Xmaxi. Define the
bias of MLE as λ(µ) = Eµ(Xmaxi − µmaxi). λ(µ) is positive
as shown in Lemma 4. So we seek a bias correction for λ(µ),
and propose the following estimators:

2Usually the metric X is in a form of average. We use X
here to simplify the notation. Metric can also be a ratio of
averages, such as Clicks Per Query. For this kind of met-
ric, vector of numerator and denominator follows a bivariate
normal distribution under central limit theorem with known
covariance structure. We can then use the delta method to
calculate variance of the metric.
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Naive-correction estimator

Based on the screening stage observation X = x, simulate
B independent yb ∼ N(x, σ2I). Calculate the expected bias
λ from the simulated samples. Then use µ̂maxi,naive =

Xmaxi − λ̂ as the estimator. Note that this is actually a
“plug-in" estimation as λ̂(µ) = λ(x). Denote this estimator
as µ̂maxi,naive.
Compared to µ̂maxi,MLE , the naive-correction has smaller
bias but larger variance.

Var(µ̂maxi,naive)

= Var(µ̂maxi,MLE) + Var(λ(X)) − 2Cov(µ̂maxi,MLE , λ(X))

in which Cov(µ̂maxi,MLE , λ(X)) can be expected to be neg-
ative. This makes µ̂maxi,naive inferior when the true esti-
mation bias of µ̂maxi,MLE is small, as can be seen from sim-
ulation results in Section 5.2. The slight bias in the naive-
correction is immaterial for the performance according to
our evaluation.

Inspired by the drawback of the naive-correction, we seek
some simpler factor that could account for the major factor
but with a smaller variance. Apparently the gap between the
largest µi and the second largest µi can be a major factor
for the bias. However, µ is unknown so an alternative with
similar information is needed. Assume X(1), X(2)...X(k) are
the order statistics. Define the first order gap as H(X) =
X(k)−X(k−1)√

2σ2
, then bias λ(µ) is roughly monotonic with the

average observed H(X). Thus H can be seen as a major
factor for the bias in the sense of expectation. Such rela-
tionship can be observed in Figure 1, which is produced
by 2000 randomly sampled µ’s as described in Section 5.2.
Similarly, one can define higher order gap such as the ith or-

der gap as Hi(X) =
X(k)−X(k−i)√

2σ2
and try to fit λ(µ) beyond

univariate function.

λ(µ) vs. EµH(X)

Eµ(H(X))

λ
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Figure 1: The λ(µ) = Eµ(xmaxi − µmaxi) and Eµ(H(x))
of 2000 randomly sampled µ’s.

Simple linear-correction estimator

Based on observation X = x, simulate B independent yb ∼
N(x, σ2I), b = 1 · · · B. For each yb, denote the gap be-
tween max(yb) and the corresponding x covariate as d(yb) =
max(yb) − xargmax(yb) and H(yb). Model the relation

d(y) ∼ f(H(y)) (6)

by linear models. We recommend using natural cubic splines
(cubic splines with linear constraints outside boundary knots)

for the model. Take the expected bias λ̂ as the model pre-
diction on H(x) and use µ̂maxi = xmaxi − λ̂+ as the esti-
mation. Call this NS estimation. Simulation shows that its
performance is robust against the choice of the exact linear
form. For instance, using cubic polynomial regression would
achieve similar performance according to our evaluation.
The intuition behind the simulation in NS is that suppose we
can can simulate from N (µ, σ2I), then we should be able to
have a very good recovery of λ ∼ f(H(µ)). However since
we don’t know µ, we need a reasonable population is by gen-
erating random samples in a similar way as how we get X.
In NS, we use a “plug-in" population to simulate the data we
need.

Bayesian posterior driven linear-correction esti-

mator

Since the naive correction based on MLE suffers from high
variance, we try Bayesian approach to avoid over-fitting the
data for a low variance estimator. Assume a prior µ ∼
N (0, τ2I)3. Here we take an empirical Bayes approach to
construct the posterior mean and variance as shown in (Efron
and Morris 1973) — the posterior mean turns out to be the
famous James-Stein estimator (Stein 1956; James and Stein
1961). Then the formula becomes

µ|X ∼ N ((1 −
(k − 2)σ2

‖X‖2
2

)X, (1 −
(k − 2)σ2

‖X‖2
2

)σ2I).

When the shrinkage (1 − (k−2)σ2

‖X‖2
2

) ≤ 0, we take it as zero

and it becomes a posterior as P (µ = 0) = 1. We call the
posterior constructed in this way JS posterior. This gives
another estimator: for b = 1, . . . , B, we first sample µb from
the JS posterior, and then sample yb ∼ N (µb, σ2I). All the
remaining modeling steps are the same as NS. We call this
JS-NS estimation. Intuitively, compared to NS, JS-NS uses
hierarchical sampling based on a shrinkage estimation by us-
ing an empirical Bayesian prior which is expected to make
the model fitting more robust, thus giving a lower variance.
Nevertheless, since the posterior shrinks the estimation to-
ward 0, JS-NS estimate the bias well when true treatment
effects are close to 0 but can over-correct the bias when bias
is small. We see JS-NS as a further step beyound NS to lower
variance by allowing for some remaining biases. See Efron
(2011) for another application of Empirical Bayes based se-
lection bias correction.

Beyond simple linear-correction

One can further explore more sophisticated (multivariate
and non-linear) modeling under the logic of linear-correction.
A few examples are included for completeness in Section 5.2.
However, we observe no significant gains.

We can set a large number B of simulation trials to fit
the functional form (6), as the computation is simple and
fast. We observed that beyond B > 10000, more runs no
longer make much difference. For the natural cubic splines,

3It is also possible to assume a general prior mean, which
will shrink the estimation to the mean of X instead. Such
estimation will consume one more degree of freedom and
result in factor k-3 instead of k-2 in shrinkage. However,
in most applications of online experiments, X has limited
dimension thus one might prefer to save that one degree of
freedom.
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one can simply choose the simple version by using 3 knots.
It turns out that the NS estimator with this setting achieved
the best compromise between the bias and variance out of
the candidates, which will be illustrated in more details in
the Section 5.2. In practice, when using weighted average
to combine this estimator with the second validation stage
MLE, we don’t know the MSE of the estimator and therefore
can not get the optimal weight. However, it is reasonable
to use weights inverse proportional to the sample size in
formula (5), i.e. assume MSE of the two estimators in two
stages are the same for the same sample size.

5. EMPIRICAL RESULTS

5.1 Empirical Results for Hypothesis Testing
In this section we use simulation to compare the BF method

to the generalized weighed average method. To simulate the
two-stage controlled experiments with treatment selection
and validation, we assume a pair of measurement from the
same user comes from a bivariate normal distribution with
pairwise correlation coefficient ρ = 0.5 between stages, and
variance 1. The choice of the variance 1 here is irrelevant
because one can always scale a distribution to unit variance.
The correlation coefficient here is also less important. Also
note that the specific distribution of this user level mea-
surement is not very important because of the central limit
theorem. For treatment effect, we set a treatment effect on
each user using a normal distribution N(θ, σ2

θ).
For each run of experiment, we randomly generated N =

1000 pairs of such samples from the bi-variate normal distri-
bution, representing 1000 users entering into the two stages
of the experiment. In each run we randomly assign equal
proportions to be treatments and control respectively. In
the screening stage, there are k = 4 treatment candidates
and we select the best one to run the validation stage. In
the context of Theorem 1, this means m = n = N/5 and
m′ = n′ = N/2. The random sampling for the two runs are
independent.

Type I error under the null hypothesis

We study Type I error achieved by BF method and general-
ized weighted average method under the least favorable null
where all treatment effects are 0. We seek positive treatment
effects as our alternative hypothesis. For two stage exper-
iments, when validation run shows a ∆ that is in different
direction comparing to the screening stage run, it generally
means the findings in the screening stage cannot be repli-
cated and it then make less sense trying to combine the two
runs. Therefore, when either of the two δ̂ were negative, we
set pvalues to 1.

We ran 10, 000 simulation trials to show Type I error un-
der null hypothesis where all treatment effects are 0. It con-
firms our claim that BF method is too conservative, with a
3.2% true Type I error. On the other hand, our generalized
weighted average approach (WAvg), at 5.1% closely touches
the 5% Type I error as promised.

We then assess the impact of the small correlation in The-
orem 1 that was ignored when we performed the test. Al-
though under the least favorable null hypothesis, treatment
effects are all 0 and the correlation is exactly 0, we can
still relax the null hypothesis and add some variance in the
random user treatment effect θ. To do that, we assume
even though E(θ) = 0, but Var(θ) = 0.04. Since we set

the variance of user level measurement to be 1, this setting
means the random treatment effect has a standard deviation
of 20% of that of the user level measurement. As we dis-
cussed, a 10% treatment effect is already already very rare
for online A/B testing, needless to mention 20%. To test the
robustness of the test against the impact of the correlation
between the two stages, we ran another 10, 000 trials when
treatment effect has a 20% standard deviation and observe
the same phenomenon. BF method has a 3.3% true Type I
error while WAvg still achieves 5.0%.We see that both gen-
eralized weighted average and BF method are very robust.
This empirically justifies Theorem 1 that we can safely ig-
nore the small correlation between the two stages. How-
ever, Theorem 1 also shows as the variance of user random
treatment effect Var(θ) gets larger, the correlation could be
significant. As an extreme case, we did the same simulation
for Var(θ) = 1, i.e., treatment random effect has the same
standard deviation as the measurement itself. We found
the Type I error of generalized weighted average method in-
creased to 12.3% while for BF method it stayed at 4.2%.
This suggests BF method might be more robust against the
correlation than generalized weighted average method.

Statistical power under the alternative hypothesis

Next we compare the sensitivity of the two tests under al-
ternative. We increase N to 110, 000 and let the treatment
effect vary from 0 to 0.03 with step size 0.001. We also in-
creased the number of treatments to 10 and set the same
treatment effect on them. Figure 2 shows the power curve
estimated from 10000 simulation runs. We observed that BF
method could be inferior to validation run t-test for small
treatment effects, even though it tried to take advantage
of data from the screening run. By contrast, generalized
weighted average method had higher power than both of
them for the whole range, with a gap of 10% to 15% for the
middle range. When µ = 0.015, power for weighted average
method was 81% and the power for BF and validation run
t-test was only at around 68%. Hence we’ve seen generalized
weighted average method is more sensitive.
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Figure 2: Power curve of generalized weigthed aver-

age method, BF method and validation run t-test.
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To evaluate the proposed estimators of µmaxi, we sim-
ulated 200 experiments with four treatments each, their
means µ from N(η, 4I), where η = (2, 2, 2, 2)T is irrelevant
to the estimation. Without loss of generality, we use σ = 1
in simulation. Then for each experiment, we generated 1500
independent random vectors x with mean µ, and calculated
their MSE Note we can only observe one x in practice. In
all the estimations, the B is chosen to be 10000. The knots
for splines were chosen as the (0.1,0.5, 0.9) quantiles of the
simulated H(yb).

Three additional methods were included for completeness:
the bi-variate natural splines estimation and boosted trees
with two variables for bias correction via H(X) and H2(X).
The bi-variate splines model is an example of including more
predictors: setting the basis functions with 6 degree of free-
dom for both of the two variates without any interaction
term. We label this estimator NS-2 and the corresponding
univariate version as NS-1. The boosted trees can be seen as
an example when one seeks to model the bias exhaustively
by using the two predictors (but still in a regularized way).
In each estimation of equation 6, all base trees were required
to be of depth 3 (so at most 2 orders of interaction will be
considered in each base learner), and 1200 trees were trained
in each estimation, with final prediction model selected ac-
cording to hold-out squared prediction error. We label this
estimator as Boost. The last estimator is a mixture be-
tween MLE and JS-NS according to the rule: if H(X) > 1
take MLE as the estimator and otherwise use JS-NS. The
intuition behind this will be explained in Remark 1. We
label it as MLE-JSNS-Mixture. Many threshold values other
than 1 were evaluated as well but they all suffer from the
same problem which will be discussed later.

In addition to MSE, the bias and variance of each es-
timators were also studied respectively. For the clearness
of illustration, only 16 µ’s are shown in detail below, with
error bars for the MSE and biases estimated by 1500 in-
stantiations. These 16 µ are representative for the general
case according to our observations. The error bars of the
variance are too small to be shown, thus were ignored. The
16 µ’s are ordered according to the first order gap H(µ).
In each figure, they are also split into two groups: the ones
with H(µ) > 1 and those with H(µ) < 1.

Figure 3 shows that MLE has smaller bias and larger vari-
ance when H(µ) is large and vice versa. When the true
bias is small, the naive correction become inferior to MLE
while in other cases, it achieves much smaller MSE. Fig-
ure 4 shows that naive-correction results in minimum bias
on average, but has large variance. Thus it will be outper-
formed by MLE when the gain in bias is small. On the
other hand, NS-1 achieved a good compromise between the
two. It performs nearly as good as naive-correction when
naive-correction works well, while still retains reasonably
good MSE when the naive-correction fails. Neither NS-2

nor Boost seems to improve the performance. Thus using
the univariate linear estimator is the best choice among the
candidates. JS-NS performs significantly better than others
in the case of H(µ) < 1, and closely to NS for moderate
H(µ). Figure 4 reveals the advantage of JS-NS. The vari-
ance of JS-NS is always similar to MLE, much lower than
all other variables. This means using hierarchical sampling
with JS posterior does help to make the estimation stable.
As discussed before, JS tends to over-correct the bias when
H(µ) is large though as shown in the bias plot. In summary,

JS-NS is the best one in most cases while NS is a good choice
if one conservatively prefers a good performance uniformly.

Remark 1. Figure 3 indicates a simple rule of selecting
correction method: if H(µ) is large, use MLE, otherwise use
correction estimation (for instance, JS-NS). Since µ is un-
known in practice, one alternative is to use observed H(X)
instead. This is the intuition for MLE-JSNS-Mixture and
its variants. However, it turns out that these estimators
perform poorly in many cases due to the large variances
as shown in Figure 4, though the biases are small. Using
H(X) > 1 introduces extra variance that degraded perfor-
mance of the estimators.

Remark 2. When H(µ) is large, all candidates except
MLE have higher MSE than σ2. Such extra MSE is the
price we have to pay for not knowing the oracle of whether
we need bias correction beforehand. In the best cases, the
MSE of the final estimation is lower than σ2, even better
than the case of single random variable. This is an effect of
“learning from the experience of others" discussed in Efron
(2010). That is, since µi’s are close in such cases, knowing
all xi’s could help to improve the estimation.

µ ordered by H(µ)
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Figure 3: The estimated MSE for candidate estima-

tors on 16 of the 200 randomly generated µ’s. The

µ’s are ordered according the value H(µ) and are

grouped by H(µ) < 1 and H(µ) > 1.

6. CONCLUSION
When data-driven decision making via online controlled

experiment becomes a culture and the scale of an online
A/B testing platform reaches a point when anyone can and
should run their ideas through A/B testing, it is almost cer-
tain that A/B testing will eventually be employed through
the full cycle of web-facing software developments. This is
already happening now at Microsoft Bing. In this paper,
we took our first steps to build the theoretical foundation
for one of the multi-stage designs that is already a common
practice — two-stage A/B testing with treatment selection
and validation.

The results and methods we laid out in this paper are
more general even though motivated primarily by this spe-
cific design. Using generalized step-down test to adjust for
multiple comparison can be applied to any A/B testing with
relatively few treatments. Bias correction methods are use-
ful when one cares about a point estimate and our empirical

5.2 Empirical Results for Point Estimation
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Figure 4: The estimated biases and variances for

candidate estimators on the 16 µ’s. The µ’s are or-

dered according the value H(µ) and are grouped by

H(µ) < 1 and H(µ) > 1.

results shed lights on how to find further correction methods
with even smaller MSE The theoretical proof of weak corre-
lation between estimators from multiple stages is a general
result that is applicable beyond two stages.

We wish to point out one concern here. In our model we
did not consider any carryover effect. In multi-stage experi-
ments when there is overlap of subjects (traffic) at different
stages, treatment effect from first exposure may linger even
after the treatment is removed. To eliminate carryover ef-
fect, one can use separate traffic for different stages. In
practice, however, we didn’t find evidence of strong carry-
over effect in most of the experiments we run or if any, such
effects usually fade away after a few weeks’ wash-out period.
However, we have observed cases where carryover effect can
linger for weeks or even months, such as examples we shared
in (Kohavi et al. 2012, Section 3.5). One proposed solution
is to segment users in the validation stage by their treatment
assignment in the screening stage. This is equivalent to in-
cluding another categorical predictor in the random effect
model. If there is no statistically significant benefit from
introducing this additional predictor, we assume there is no
carryover effect from Occam’s razor principle.
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APPENDIX

A. DETAILED PROOFS
In this appendix, we give proof of Theorem 1 and a proof

of positive selection bias in Lemma 4.

Proof of Theorem 1. We prove the theorem for the
case when m, n, m′, n′ are deterministic. The proof for ran-
dom case is a simple extension for which we give a similar
proof for Corollary 3.

Let I, J and S, T be the indexes of users picked as treat-
ment and control for the two runs. From now on we use the
shorthand XI to denote the sample average over index set
I.

Cov(∆1, ∆2) =Cov(XI − XJ , Y S − Y T )

=Cov(XI , Y S) + Cov(XJ , Y T ) (7)

−Cov(XI , Y T ) − Cov(XJ , Y S) = Var(θ)/N.

To prove the last equation, we first calculate the first term
in the expansion. I and S are both treatments so we need
to add treatment effect to both.

Cov(XI , Y S) = Cov(

∑

I
(αi + θi + ǫi)

m
,

∑

S
(αs + θs + ζs)

m′ ),

Expand the second term and use the assumptions in the
model, we get

Cov(αI , αS) + Cov(αI , θS) + Cov(θI , αS) + Cov(θI , θS).

By applying Lemma 2 to all 4 terms

Cov(XI , Y S) = Var(α)/N + 2Cov(α, θ)/N + Var(θ)/N.

Similarly, we can show

Cov(XJ , Y T ) = Var(α)/N,

Cov(XI , Y T ) = Cov(XJ , Y S) = Var(α)/N + Cov(α, θ)/N.

Therefore (7) holds because the 4 terms canceled with each
other.

Lemma 2. For a random variable X with known vari-
ance σ2 and let X1, . . . , XN be N i.i.d. copies of X. Let
I = I1, . . . , Im and J = J1, . . . , Jn be the indexes of m and
n random selections out of X1, . . . , XN and denote sample
average by XI and XJ respectively. Then Cov(XI , XJ ) =
σ2/N .

Similarly for a pair of random variables (X, Y) with co-
variance σXY , then Cov(XI , Y J ) = σXY /N .

Proof. WLOG, assume EX = 0. (Otherwise set X =
X − EX.) First,

Cov(XI , XJ ) =
1

m × n

∑

I

∑

J

Cov(Xi, Xj) = Cov(Xi, Xj),

where the last equality holds because Cov(Xi, Xj) are the
same for any i ∈ I and j ∈ J . To calculate Cov(Xi, Xj),
note that P(i = j) = 1/N .

Cov(Xi, Xj) = E[XiXj ] = E[XiXj |i = j]P(i = j)

= Var(X, X)P(i = j) = σ2/N.

Combine the two we’ve proved the Lemma. The proof of
the second part is essentially the same.

Corollary 3. In Lemma 2, the result holds if m and n
are two random numbers.

Proof. When m and n are random, WLOG assuming 0
mean for X, Lemma 2 essentially proved:

Cov(XI , XJ |m, n) = E(XIXJ |m, n) = σ2/N.

Using tower property of conditional expectation,

Cov(XI , XJ ) = E(XIXJ ) = E[E(XIXJ |m, n)] = σ2/N.

The proof for bivariate case is similar.

Lemma 4 (Non-negative Selection Bias). A sequence
of independent random variables X1, X2, . . . , Xp have finite
expectations of θ1, θ2, ...θp respectively. Let X(1), X(2), . . . , X(p)

be the (increasing) order statistics, and denote the corre-
sponding means as θ(1), θ(2), . . . , θ(p) which is one permuta-
tion of the model means. Then the selection bias defined as
µ = E(X(p) − θ(p)) ≥ 0.

Proof. Without loss of generality, assume θ1 ≤ θ2 ≤
· · · ≤ θp. We have

µ =E(X(p) − θ(p))

=

∫

xp=x(p)

(xp − θp)dP (X) +

∫

xp Ó=x(p)

(x(p) − θ(p))dP (X)

=

∫

Rp

(xp − θp)dP (X) −

∫

xp Ó=x(p)

(xp − θp)dP (X)

+

∫

xp Ó=x(p)

(x(p) − θ(p))dP (X)

=

∫

xp Ó=x(p)

(x(p) − xp + θp − θ(p))dP (X).

The conclusion follows by noticing that x(p) − xp ≥ 0 when
xp Ó= x(p) and θp−θ(p) ≥ 0. Note that in the case of Gaussian
variables, it will be strictly positive.
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