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ABSTRACT
With the rapid growth of Web Service in the past decade,
the issue of QoS-aware Web service recommendation is be-
coming more and more critical. Since the Web service QoS
information collection work requires much time and effort,
and is sometimes even impractical, the service QoS value is
usually missing. There are some work to predict the miss-
ing QoS value using traditional collaborative filtering meth-
ods based on user-service static model. However, the QoS
value is highly related to the invocation context (e.g., QoS
value are various at different time). By considering the third
dynamic context information, a Temporal QoS-Aware Web
Service Recommendation Framework is presented to predict
missing QoS value under various temporal context. Further,
we formalize this problem as a generalized tensor factoriza-
tion model and propose a Non-negative Tensor Factorization
(NTF) algorithm which is able to deal with the triadic rela-
tions of user-service-time model. Extensive experiments are
conducted based on our real-world Web service QoS dataset
collected on Planet-Lab, which is comprised of service invo-
cation response-time and throughput value from 343 users
on 5,817 Web services at 32 time periods. The comprehen-
sive experimental analysis shows that our approach achieves
better prediction accuracy than other approaches.

Categories and Subject Descriptors
H.3.5 [On-line Information Services]: Web-based ser-
vices; I.2.6 [Artificial Intelligence]: Parameter Learning

Keywords
Web Service Recommendation, QoS, Collaborative Filter-
ing, Tensor Factorization

1. INTRODUCTION
As the developing of Service-oriented computing (SOC),

Web Service has become the standard technology for shar-
ing data and software, and Web service users can compose
services to accomplish a more complex task. Web services
provide the means for such seamless integration of busi-
ness processes across organizational boundaries [3]. Quality-
of-Service (QoS) encompasses important nonfunctional at-
tributes such as performance metrics (e.g., response time),
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Figure 1: A motivating scenario

security attributes, transactional integrity, reliability, scal-
ability, and availability [18]. Web services environment de-
mands greater availability of applications and introduce com-
plexity of accessing and managing services. In addition, QoS
is widely employed in describing non-functional properties of
Web Services for optimizing the Web service composition.

Since the number of functionally equivalent services of-
fered on the web with different QoS properties is increas-
ing, it is quite important to recommend services consid-
ering their non-functional QoS properties. Although the
Web service providers may declare the QoS properties of
services (e.g., availability, response-time, throughput, etc.),
which are highly related to the Web service invocation con-
text. Web service QoS value observed from the users is usu-
ally quite different from those value declared by the service
providers, due to: (1) Web service performance is related
to invocation time, because the network environment and
service status (e.g., workload, number of clients ,etc.) are
changing over time; (2) the user locations are distributed in
different geographical locations which greatly influence the
user-observed QoS value of Web service. For these reasons,
to carry out a QoS-aware service recommendation system,
predicting missing QoS value of service is often required.
Nowadays there are some Collaborative Filtering (CF) Rec-
ommendation Frameworks to predict the service QoS value.
But one significant limitation of most of the existing CF
methods [24, 31, 30, 17, 6], is that they are static models in
which relations are assumed to be fixed in different temporal
sequence where the Web service QoS properties are varying.

Example. Figure 1 shows a scenario for finding the best
QoS value of a Web service. The service users from differ-
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ent geographical locations submit their requests to the Web
Service Recommender System at various time, specifying
some criteria for service QoS parameters (e.g., responsive-
ness, availability, throughput.). The recommendation sys-
tem then returns a list of Web services with best QoS value
by taking comprehensive account of the users and services
invocation context information. The recommended Web ser-
vices can be exposed to service users as a Web service, API
or widget.

In this scenario, we assume that some service users from
Beijing, London, Los Angeles and New York invoke the Web
service at different time (e.g., 8, 9, 10, 11 o’clock local time),
respectively. Now the recommendation system needs to pre-
dict the Web service QoS value which will be decided by
the time context information of service users. Through the
QoS prediction, the Service-Oriented Architecture system
designer can make more informed decisions on the Web ser-
vice composition. As a result, a Temporal QoS-aware Web
Service Recommendation Framework is presented to pre-
dict missing QoS value at different service invocation time.
Though this example, the user-service intra-relations are of-
ten represented by two-dimensional matrix, which is used
by the previous work [24, 31, 30, 17, 6]. We extend the
two two-dimensional user-service matrix into a more com-
plicated user-service-time triadic relations represented by
three-dimensional tensor, and present a novel tensor factor-
ization (TF) [13] that is based on a generalization of ma-
trix factorization (MF) [15]. The key idea of our temporal
three-dimensional TF approach is to replace the user-service
matrix in MF with the user-service-time interaction rela-
tions by considering the difference of QoS value at difference
time. However, the QoS value is non-negative, the conven-
tional TF method dose not guarantee the result factors for
non-negativity. To deal with the non-negativity issue, Non-
negative Tensor Factorization (NTF), which is decomposed
into a set of factor matrices, is an emerging research topic
in recent years. Some NTF algorithms have been proposed
in literatures [27], and we use multiplicative updating rules
to approximate the QoS value tensor.

Contributions. In this paper, we clarify some intra-
relations specific to personalized Web service QoS property
based on temporal data analysis, and observe that the com-
prehensive knowledge of Web service QoS properties are
difficult to acquire. The QoS information collection work
requires much time and effort, and is sometimes even im-
practical (e.g., service invocations are various by different
users at different time). A new temporal QoS-aware rec-
ommendation approach based on tensor factorization is pro-
posed to address the issue of Web service QoS value pre-
diction with considering Web service invocation time. This
framework collects QoS information from geographically dis-
tributed service users, and filters out qualified value as train-
ing data for predicting missing QoS value. After a period of
collection, a QoS value dataset is produced, which contains
different context information types: user, service and time.
The relations among these objects are complicated. For ex-
ample, users with similar location may get different service
invocation response-times at different invocation time. By
performing analysis on the QoS information data, we pro-
pose a model-based CF method to discover the latent factors
that govern the associations among these multi-type objects.
Compared with prior related works, our main contributions
can be summarized as follows.

1. There exist the complicated relations among user,service
and temporal information in the real-world Web service QoS
properties data. We discover the fact and utilize tensor to
represent the triadic relations.

2. An Non-negative Tensor Factorization (NTF) approach
is proposed to predict the Web service QoS value with con-
sidering service invocation time, and present a Temporal
QoS-Aware Web Service Recommendation Framework.

3. We evaluate our approach experimentally using real-
world Web service dataset, which contains more than 19
millions real-world Web service invocation results from 343
distributed service users on 5,817 real-world Web services
at 32 time periods. Our real-world Web service dataset has
been published online1.

The rest of the paper is organized as follows. Section 2
discusses related work, while Section 3 introduces the tensor
preliminaries and notations. Section 4 presents the problem
statement and our NNCP approach. Section 5 describes our
implementation and experiments. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK
Web Service QoS has been widely discussed for a long

time. Zeng et al. [28] employ a five-dimensional Web Ser-
vice QoS property model (i.e., execution price, execution du-
ration, reputation, availability, and reliability) for dynamic
Web service composition, and then they transfer QoS-aware
service selection into an optimization problem [29]. Alrifai et
al. [2] propose an efficient service composition approach by
considering both generic QoS properties and domain-specific
QoS properties. These previous QoS-aware Web service re-
search usually assume that the Web service QoS information
is already known or can be easily obtained from the service
providers and third-party institution. However, there is so
much missing QoS value to the service users in real-world.
Therefore, dealing with the prediction of missing QoS value
is useful to advance the service composition.

The problem of predicting the missing QoS value of Web
service has received a lot of attention during the last years.
In order to obtain a accurate prediction of missing QoS
value, a practical prediction algorithm is required. Among
the previous algorithms, Collaborative Filtering (CF) is a
family of popular methods, and has been widely used in
commercial recommender [16, 20, 21]. Typical collabora-
tive filtering algorithms can be categorized into two classes:
neighborhood-based methods and model-based methods [15].
Neighborhood-based method computes the similarity between
users or items to make recommendation, which can be di-
vided into two types: user-based nearest neighbor and item-
based nearest neighbor [31]. For example, a group of users
with similar interests, the items selected by one user can be
recommended to others in the group. In [24], the authors
propose a user-based CF algorithm to predict the QoS value
from similar Web service users. Zheng et al. [31] propose a
hybrid method of user-based and item-based CF algorithm
to predict the QoS value on real-world Web services dataset.
They developed an advanced Pearson Correlation Coefficient
(PCC) measurement for user similarity computation, which
addressed the problem that PCC often overestimates simi-
larities of users who are actually not similar but happen to
have similar QoS properties. Chen et al. [6] first discover the

1http://www.service4all.org.cn/servicexchange/
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great influence of user location in Web services QoS predic-
tion and propose a novel region-based hybrid CF algorithm.
They integrate users into a hierarchy of regions according to
both user locations and their QoS value, so that when iden-
tifying similar users for a specific user, the method only finds
the region which the user belongs to. Jiang et al. [9] propose
a personalized hybrid CF method which takes into account
the influence of personalization of Web services when com-
puting degree of similarity between users. It means that the
more popular services should contribute the less degree to
user similarity measurement.

Since neighborhood-based methods are sensitive to sparse
data, the low-rank Matrix Factorization (MF) model [15]
is widely used. MF characterizes both users and services
by vectors of factors in a joint latent factor space of low di-
mension. The philosophy behind the model-based method is
that a QoS value relates not only to how similar Web service
users preferences and services features are, but also to the
relationship between users and services interaction. In the
model-based methods, training data is used to train a pre-
dictor model with fitting the user-service matrix with low-
rank approximations. Although, model-based methods are
considered more effective than those based on neighborhood,
these two classes are often complementary. Recently, some
researchers [14, 17, 30] blend them for obtaining better per-
formance. In [30], a model-based method has been adopted
to predict the Web service QoS value. The authors use the
neighborhood-based method to identify similar users, and
on the basis, MF method is employed to construct a global
model. Lo et al. [17] use the geographical information of
Web services and users to find similar neighbors, and apply
MF method with location-based regularization to improve
prediction accuracy.

The issue of the above concerns is that they deals with
the user-service two-dimensional matrix data, without con-
sidering of the temporal information of Web service invo-
cation. The absence of temporal information in QoS value
prediction leads recommendation to suffering from the static
model issue. We argue that temporal information is an es-
sential element in QoS-aware Web service recommendation,
so the prediction model should consider using the temporal
information to reveal the complex triadic relations of user-
service-time model, rather than the straightforward dyadic
relations of user-service model. To overcome the drawbacks
of CF methods described above and learn the triadic rela-
tions from the QoS value data, a tensor factorization ap-
proach is proposed for Web service QoS value prediction.
We take the advantage of model-based method and extend
it to model temporal three-dimensional data. The CAN-
DECOMP/PARAFAC (CP) model [13] is utilized to rep-
resent the triadic relations among user, service and time.
In this paper, we deal with constructing a temporal three-
dimensional tensor whose element is the QoS value accord-
ing to the triplet 〈user, service, time〉 and proposing a non-
negative CP decomposition method [11, 27] to approximate
this temporal QoS value tensor.

In real-world scenarios, the reason of limited work in the
literature employing CF methods to predict Web service
QoS value is the lack of real-world Web service QoS dataset
for experimental studies. Without the convincing and suf-
ficient real-world Web service QoS property data, the char-
acteristics of Web service QoS value cannot be fully mined
and the experimental results of the proposed prediction al-

Table 1: Notations of Tensor
Notations Descriptions
A,B,X ,YA,B,X ,YA,B,X ,Y tensor(calligraphic letters)

A,B matrix(upper-case letters)
A(n) n-mode matrix of the tensor

A(n) n-subspace matrix of the tensor
a,b vector(bold lower-case letters)
a, b scalar(lower-case letters)
� Khatri-Rao product
⊗ Kronecker product
∗ Hadamard product
◦ outer product
· inner product

gorithms cannot be justified. In [1], a Web service QoS
dataset is released, which is observed by one service user
on 2,507 Web services. In [32], totally 1,974,675 real-world
Web service invocations are executed by 339 service users
on 5,825 real-world Web service. The fact that the QoS
data is static cannot reflect the latent factors that govern
the association relations among user,service and time fac-
tors. In order to explore the influence of dynamic factor,
our released dataset includes more than 19 millions real-
world Web service invocations observed by 343 service users
in heterogenous network environment on 5,817 Web services
during 32 continuous time periods.

3. PRELIMINARIES
A tensor is a higher order generalization of a vector (i.e.,

first order tensor) and a matrix (i.e., second order tensor).
Tensor factorization is an important technique in many ap-
plications, such as data mining, dimensionality reduction,
chemometrics, signal processing, neuroscience, and web anal-
ysis [7, 10, 26, 8]. Before clarifying our model, some basic
notations and operations for CP model are first introduced.
There are mainly two popular kinds of TF approaches: Tucker
decomposition and CP decomposition. In this paper we fo-
cus on CP decomposition model where our model is based.

3.1 Notations and Operations
In this paper, tensors are denoted by bold calligraphic

upper-case letters A,BA,BA,B · · · , matrices by bold upper-case let-
ters A,B · · · , vectors by bold lower-case letters a,b · · · and
scalars by lower-case letters a, b · · · . A tensor is a multi-
dimensional or N-way array. An N-way tensor is denoted
as: AAA ∈ R

I1×I2×···×IN , which has N indices (i1, i2, · · · , iN )
and its elements are denoted by ai1i2···iN . In tensor ter-
minology, the n-mode matricization operation maps a ten-
sor into a matrix. The n-mode matrix of an N-way ten-
sor AAA are the In-dimensional matrix obtained from AAA by
varying the index in and keeping the other indices fixed,
and the elements of AAA is mapped into the unfolding ma-
trix A(n) ∈ R

In×(I1I2···In−1In+1···IN ). For example, A(2)

represents the mapping AAAI×J×K → AAAJ×IK
(2) . The scalar

product of two tensors A,BA,BA,B ∈ R
I1×I2×···×IN is defined as:

〈A,BA,BA,B〉 = ∑
i1,i2··· ,iN ai1i2···iN bi1i2···iN . The n-mode prod-

uct of a tensor AAA by a matrix U ∈ R
Jn×In is an I1 ×

I2 × · · · × In−1 × Jn × In+1 × · · · × IN -tensor given by
(AAA×nU)i1···in−1jnin+1···iN =

∑
in

ai1···iNujnin . The Frobe-

nius norm of a tensor AAA is given by ‖AAA‖ = √〈AAA,AAA〉. More
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Figure 2: CP decomposition of a 3-way tensor into
R components

details on matrix unfolding of tensor can be found in [13, 31].
A brief overview of important tensor notations is presented
in Table 1.

3.2 CP Decomposition
An N-way tensor AAA ∈ R

I1×I2×···×IN is rank-1 if it can be
written as the outer product of N vectors:

AAA = a(1) ◦ a(2) ◦ · · · ◦ a(N), (1)

where a(n) ∈ R
In for n = 1, 2, · · ·N is a vector. This means

that each entry of the tensor can be written as:

AAAi1i2···iN = a
(1)
i1

a
(2)
i2
· · ·a(N)

iN
, (2)

where a
(n)
in

is the inth element of the vector a(n).
The rank of tensor AAA, denoted rank(AAA) = RAAA, is defined

as the smallest number of rank-1 tensors. Then, the tensor
A can be written as:

AAA ≈
RAAA∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (3)

where the vector a
(n)
r ∈ R

In×RAAA for n = 1, 2, · · ·N , and

the set of vectors 〈a(n)
1 ,a

(n)
2 , · · · ,a(n)

r 〉 can be rewritten as

a matrix A(n) ∈ R
In×RA . Such a decomposition is called

CP rank decomposition as illustrated in Figure (2). For in-
stance, given a three-dimensional tensor AAA ∈ R

I×J×K , the
n-mode of AAA can be written as: A(1) ≈ U(T� S)T ,A(2) ≈
S(T�U)T ,A(3) ≈ T(S�U)T , where � denotes the Khatri-
Rao product. Following [12], the CP model can be concisely

expressed as: AAA ≈ [[U,S,T]] =
∑RAAA

r=1 ur ◦ sr ◦ tr. Using
the notations defined above, the CP decomposition problem
can be formulated as alternating least-squares(ALS) opti-
mization problem:

min
U,S,T

1

2
‖AAA− [[U,S,T]]‖2F , (4)

where ‖·‖F is the Frobenius norm.To avoid the issue of model
over-fitting, three regularization terms related to U,S and
T are involved as follow:

min
U,S,T

1

2
‖AAA− [[U,S,T]]‖2 + λ

2
(‖U‖2F + ‖S‖2F + ‖T‖2F ), (5)

where λ are regularization parameters.
The ALS approach fixes U and S to find the best T, then

fixes U and T to find the best S, then fixes S and T to find
the best U, and continues to repeat the entire procedure
until some convergence criterion is satisfied. For example,
given that S and T are fixed, the above optimal problem
can be rewritten as:

min
U

1

2

∥∥∥A(1) − Û(T� S)T
∥∥∥2

F
+

λ

2
I, (6)

where I is the indicator function which is equal to 1 when
user u invokes Web service s at time t and equal to 0 oth-
erwise. The optimal solution of the above problem is given
by:

Û = A(1)(T�S)(TTT ∗ STS + λI)†, (7)

where ∗ denotes the Hadamard product. In the same way,
the optimal solutions of S and T are given by:

Ŝ = A(2)(T�U)(TTT ∗UTU+ λI)†, (8)

T̂ = A(3)(T�S)(STS ∗UTU+ λI)†, (9)

The approximation result of tensor ÂAA can be written as:

ÂAA =
[[
Û, Ŝ, T̂

]]
=

RAAA∑
r=1

ûr ◦ ŝr ◦ t̂r, (10)

Above the derivation corresponding to ALS algorithm for
CP decomposition, the pseudo-code of this algorithm is given
by Algorithm 1. For each iteration, the primary cost of
the computation complexity is Eq.(7 - 10), each of which
is O(IJKRAAA + (2I + J + K)R2

AAA + JKRAAA), and Eq.(10) is
O(IJKRAAA). In typical cases, the term (IJKRAAA) is much
larger than the rest, so the computation complexity can be
considered as O(IJKRAAA) in one iteration.

Algorithm 1 : The ALS algorithm for CP decomposition

Input: the tensor AAA, the rank R of tensor AAA, the regular-
ization parameter λ.

Output: the approximate tensor ÂAA, three factor matrices
Û, Ŝ, T̂.

1: Procedure [ÂAA, Û, Ŝ, T̂] = CP-ALS(AAA, R, λ)
2: Initialize: U ∈ R

I×R,S ∈ R
J×R, and T ∈ R

K×R by
small random value.

3: Repeat
4: Fix S,T. Û← Eq.(7)

5: Fix U,T. Ŝ← Eq.(8)

6: Fix U,S. T̂← Eq.(9)
7: Until convergence or maximum iterations exhausted.

8: ÂAA ← Eq.(10)

9: Return: ÂAA, Û, Ŝ, T̂.
10: EndProcedure

4. PROPOSED MODEL
For Web service users, the service QoS properties are

not as accurate as the service provider declared. To ob-
tain accurate Web service QoS value for every service user,
we employ the Temporal QoS-aware Web Service Recom-
mendation Framework to make prediction of QoS value. As
shown in Figure 3, our QoS prediction framework collects
Web services QoS information from different service users.
A Web service user can obtain the service QoS value predic-
tion through our prediction framework, if the service QoS
information contributions of the user surpass the threshold.
The more service QoS information contributions, the higher
QoS value prediction accuracy can be achieved. After col-
lecting a large number of QoS information, we filter some
inferior QoS information for the training data and employ
the prediction engine to generate the predictor model for
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Figure 3: Temporal QoS-Aware Web Service Rec-
ommendation Framework

predicting the missing QoS value. Due to the space limita-
tion, we mainly introduce the prediction algorithm principle
in this paper.

4.1 Problem Statement
The research problem studied in this paper is stated as

follows: Given a Web service QoS dataset of temporal infor-
mation with user-service interactions, recommend to each
user under a given temporal context an optimal services list.
To illustrate these concepts, the following example is given.

A Toy Example: Consider the instance of recommend-
ing services to users in specific temporal context which is
assigned to service invocation time in this paper. Then the
〈user, service, time〉 triplets have the following attributes:

• User: the set of all service users to whom Web services
are recommended; it is defined as UserID .

• Service: the set of all the Web services that can be
recommended; it is defined as ServiceID .

• Time: the Web service invocation time when the user
invoke the service; it is defined as TimeID .

Then the service QoS value assigned to a service invocation
from a user also depends on where and when the service was
invoked. For instance, a specific service is recommended to
users in different locations, significantly depending on when
they are planning to invoke it.

Each QoS value is described by three dimensionality ac-
cording to userID, serviceID and timeID. Thus the QoS
value is represented as points in the three-dimensional space,
with the coordinates of each point corresponding to the in-
dex of the triplet 〈userID, serviceID, timeID〉. A straight-
forward method to capture the three-dimensional interac-
tions among the triplet 〈user, service, time〉 is to model these
relations as a tensor. The QoS value of Web service invo-
cations from J services by I users at K time intervals are
denoted as a tensor YYY ∈ R

I×J×K , i.e., a three-dimensional
tensor, with I × J ×K entries which are denoted as YYYijk :
(1) YYYijk = Rating indicates the missing QoS value that the
service j has been invoked by user i under the context type
k, and Rating is this service QoS value; (2) YYY ijk = 0 indi-
cates that the service has not been invoked. The real-world
Service QoS value dataset is very sparse, even though the
density of the dataset collected by our system is only 30%.

Figure 4: Slices of time-specific matrices with users
and services are transformed into a temporal tensor

To obtain the missing QoS value in the user-service-time
tensor, the Web service QoS observed by other service users
can be employed for predicting the Web service for the cur-
rent user. Once these initial Web service QoS value is ob-
tained, our recommendation system will try to estimate the
Web service QoS value which has not been obtained for the
〈user, service, time〉 triplets by using the QoS value function
T :

UserID× ServiceID × T imeID→ Rating

where UserID , ServiceID and T imeID are the index of
users, services and time periods, respectively and Rating is
the QoS value corresponding to the three-dimensional index.

As we can see from this example and other cases, an al-
gorithm is needed to estimate the QoS value function T . In
this paper, CP decomposition model is used to reconstruct
the temporal three-dimensional user-service-time tensor. As
mentioned in Section 3, the main idea behind CP decomposi-
tion model is to find a set of low-rank tensors to approximate
the original tensor. Our approach is designed as a two-phase
process. Firstly, the temporal QoS value tensor composed
of the observed QoS value is constructed. Then we propose
a non-negative tensor factorization approach to predict the
missing QoS value in the tensor.

4.2 Construct QoS Value Tensor
When a service user invokes a Web service, the QoS prop-

erties performance will be collected by our recommenda-
tion system. After running a period of time, the recom-
mender accumulates a collection of Web service QoS prop-
erty data, which can be represented by a set of quadruplets
〈UserID, ServicID, T imeID,Rating〉(or 〈u, s, t, r〉 for short).
Using the QoS value data, a temporal three-dimensional
tensor YYY ∈ R

I×J×K can be constructed, where I, J,K are
the number of users, services and time periods, respectively.
Each entry of tensor represents the QoS value of 〈u, s〉 pair
at time period k.

The three-dimensional Temporal Tensor Construct algo-
rithm is given in Algorithm 2: the input is a set of Web
service QoS value, and the output is the constructed tem-
poral tensor YYY ∈ R

I×J×K . Each frontal slice in tensor YYY
corresponds to a 〈u, s〉 pair QoS value matrix for each time
interval.

4.3 Non-negative CP Decomposition
In the real-world, the Web service QoS value is always

non-negative, so the temporal QoS value tensor is presented
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Algorithm 2 :Temporal Tensor Construct

Input: a set of quadruplets 〈u, s, t, r〉 for Web service QoS
value dataset.

Output: a temporal tensor YYY ∈ R
I×J×K .

1: load all quadruplets 〈u, s, t, r〉 of the Web service Qos
value,

2: use the set of 〈u, s, 1, r〉 to construct a p user,service

matrix U(1) that takes all I users as the rows and all J
services as the columns in the time of period 1,

3: the element of the matrix U(1) is the r of the quadruplet
〈u, s, t, r〉 according to the corresponding 〈u, s, 1〉 triplet,

4: construct all the matrices U(1),U(2), · · · ,U(K) for K
time periods,

5: an augmented matrixU can be built by horizontally con-
catenating all matrices as shown in Figure 4 (a) denoted
as Y(1),

6: Construct tensor YYY ∈ R
I×J×K as shown in Figure 4 (b),

each slice of tensor is one matrix of Y(1).

7: Return: YYY ∈ R
I×J×K

as an non-negative three-way tensor YYY ∈ R
I×J×K
+ , and de-

composed components are a set of matrices: U ∈ R
I×RYYY
+ ,S ∈

R
I×RYYY
+ and T ∈ R

I×RYYY
+ , here and elsewhere, R+ denotes

the non-negative orthant with appropriate dimensions. As
presented in the previous section, our goal is to find a set
of factor matrices as the to approximate the tensor, whose
rank is the number of the components. Adding the nonneg-
ativity restriction to the CP decomposition model, we can
get a non-negative CP decomposition model (NNCP). Our
three-dimensional NNCP decomposition model is given by:

YYY =

RYYY∑
r=1

ur ◦ sr ◦ tr + EEE , (11)

where the vectors ur, sr, tr are restricted to have only non-
negative elements and the tensor EEE ∈ R

I×J×K
+ is errors or

noise depended on the application.
The QoS value tensor should be reconstructed for pre-

dicting all missing QoS value but the fitting Algorithm 1
for tensor is not based on the non-negative orthant. A new
fitting algorithm which approximates the tensor with non-
negative value should be designed. Firstly, we define a cost
function to quantify the quality of approximation, which can
be constructed using some measure of distance between two

non-negative tensors YYY and Ŷ̂ŶY . One useful measure is simply

the square of the Euclidean distance between YYY and ŶYY,

‖YYY − ŶYY‖2F =
∑
ijk

(YYYijk − ˆYYY ijk)
2, (12)

where YYY ijk is the Web service QoS value of j-th service

from i-th user at k-time, ˆYYYijk is the approximation value,
the lower bound is zero, and clearly vanishes if and only if

YYY = ŶYY. Then, we consider the formulations of NNCP as a
optimal problem:

min
ur ,sr ,tr

1

2
‖YYY ijk −

RYYY∑
r=1

ur ◦ sr ◦ tr‖2F ,

s.t. ur, sr, tr � 0.

(13)

We use multiplicative updating algorithms [23] for factor
matrices U,S and T to approximate the non-negative ten-
sor. Then we are easy to obtain the partial derivative of the
objective Eq.(13):

∂f

∂u
(i)
l

=

RYYY∑
r=1

u
(i)
l (sr · sl)(tr · tl)−

∑
j,k

YYY ijks
(j)
l t

(k)
l (14)

where u
(i)
l is the l-th column and i-th row element of factor

matrix U, sr is the r-th vector of factor matrix S, l ∈ RYYY ,
· denotes the inner product and for more details see [25].
Then we can obtain the following update rule by using a
multiplicative update rule:

u
(i+1)
l ← u

(i)
l

∑
j,kYYYijks

(j)
l t

(k)
l∑RYYY

r=1 u
(i)
r (sr · sl)(tr · tl)

, (15)

the updating rules for the rest of factor matrices can be

easily derived in the same way, s
(n)
l and t

(n)
l are shown as

follows:

s
(j+1)
l ← s

(j)
l

∑
i,kYYY ijku

(i)
l t

(k)
l∑RYYY

r=1 s
(j)
r (ur · ul)(tr · tl)

; (16)

t
(k+1)
l ← t

(k)
l

∑
i,j YYY iklu

(i)
l s

(j)
l∑RYYY

r=1 t
(k)
r (ur · ul)(sr · sl)

, (17)

where the vectors ur, sr, tr are composed of non-negative
value when they are initialized. So far we have described
the details of NNCP algorithm for predicting the missing
QoS value with non-negative value. In summary, Algorithm
3 gives the whole factorization scheme for NNCP. In each
iteration of our algorithm, the new value of Û, Ŝ, T̂ is calcu-
lated by multiplying the current value by a factor depended
on the quality of the approximation in Eq.(11). The qual-
ity of the approximation improves monotonically with the
application of these multiplicative update rules. The con-
vergence proof of the multiplicative rule was introduced by
Lee and Seung [23].

Given the latent factor matrices Û, Ŝ, T̂, the prediction
QoS value of Web service j from service user i at time k is
given by:

YYYijk ≈
RYYY∑
r=1

u(i)
r s(j)r t(k)r . (18)

Notice that increasing the number RYYY of components al-
lows us to represent more and more factor structures of the
Web service QoS value. However, as the number of com-
ponents increases, we go from under-fitting to over-fitting
these structures, i.e., we face the usual tradeoff between ap-
proximating complex structures and over-fitting them.

5. EXPERIMENTS
In this section, we introduce the experiment dataset, our

evaluation metrics, and the experiment results. We use the
QoS prediction accuracy to measure prediction quality, and
address the following questions: (1) How do the tensor den-
sity and factor matrices dimensionality influence prediction
accuracy? The factor matrices dimensionality determines
how many the latent factors which have direct influence on
prediction accuracy. (2) How does our approach compare
with other CF methods?
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Algorithm 3 : Non-negative CP decomposition algorithm

Input: the tensor YYY ∈ R
I×J×K
+ , the rank R of tensor YYY .

Output: three non-negative factor matrices Û, Ŝ, T̂.

1: Procedure [Û, Ŝ, T̂] = NNCP(YYY, R)
2: Initialize: U ∈ R

I×R
+ ,S ∈ R

J×R
+ , and T ∈ R

K×R
+ by

small non-negative value.
3: Repeat
4: for l = 1, · · · , I do
5: Û← Eq.(15)
6: end for
7: for l = 1, · · · , J do
8: Ŝ← Eq.(16)
9: end for
10: for l = 1, · · · ,K do
11: T̂← Eq.(17)
12: end for
13: Until convergence or maximum iterations exhausted.
14: Return: Û, Ŝ, T̂
15: EndProcedure

We implement the algorithms described in Section 4 with
Matlab. For constructing the temporal QoS value tensor and
solving the non-negative CP decomposition, we use the Mat-
lab Tensor Toolbox [4]. The experiments are conducted on
a Dell PowerEdge T620 machine with 2 Intel Xeon 2.00GHz
processors and 16GB RAM, running Window Server 2008.

5.1 Dataset
To evaluate our proposed QoS prediction method in the

real-world Web service, we implement a ServiceXChange
and a QoSDetecter. The ServiceXChange is a platform,
more than 20,000 openly-accessible Web services obtained
by crawling Web service information from Internet. Re-
cently we have integrated it with our other project Ser-
vice4All 2 platform. We deploy our QoSDetecter on more
than 600 distributed slices of Planet-Lab3, which is a global
research network that supports the development of new net-
work services. We filter out slices which have successfully
invoked at least 50 Web services so that there are enough
observations to be split in various proportions of training
and testing set for our evaluation. Finally, 343 slices were se-
lected as the Web service users, and 5,817 publicly available
real-world Web services are monitored by each slice contin-
uously. The other of the more than 10,000 initially collected
Web services are excluded in this experiment due to: (1) au-
thentication required; (2) refused by the provider (e.g., the
Web service is hosted by a private golf club); (3) permanent
invocation failure (e.g., the Web service is shutdown). In
this experiment, each 343 Planet-Lab slice invokes all the
Web services continuously. This experiment dataset is con-
sist of these Web services QoS performances of 4 days from
July 26 to 29 of 2013 in 32 time intervals lasting for 3 hours.

We collect Web service invocation records from all the
slices, and represent one observation in the dataset as a
quadruplet 〈u, s, t, r〉. The dataset contains more than 19
million quadruplets, 343 users, 5,817 services and 32 time
periods. Finally, we obtain two 343×5817×32 user-service-
time tensors. One tensor contains response time value, and

2http://www.service4all.org.cn/
3http://www.planet-lab.org/
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Figure 5: Web Services QoS Distribution

Table 2: Statistics of Web Service QoS Value
Statistics Response-Time Throughput

Scale 0-200s 0-1000kbps
Mean 0.6840 7.2445

Num. of service users 343 343
Num. of Web services 5817 5817
Num. of Time periods 32 32

the other one contains throughput value. Response time is
defined as the persistent time between a service user sending
a request and receiving the corresponding response, while
throughput is defined as the average rate of successful mes-
sage size per second. The statistics of Web service QoS
performance dataset are summarized in Table 2. The dis-
tributions of response time and throughput are shown in
Figure 5, and the more details of dataset and experiment
result are released online for further research4. In Table 2,
the means of response-time is 0.6840 seconds and through-
put is 7.2445 kbps. In Figure 5 (a) shows that more than
95% of the response time elements are smaller than 1.6 sec-
onds, and Figure 5 (b) shows that more than 99% of the
throughput elements are smaller than 100 kbps. In this pa-
per we only study the response-time and throughput, our
NNCP method can be used to predicting any other QoS
value directly without modifications. The value of the el-
ement in the three-dimensional tensor is the corresponding
QoS value, when predicting value of a certain QoS value(e.g.,
popularity, availability, failure probability, etc.).

5.2 Evaluation Measurements
Given a quadruplet 〈u, s, t, r〉 as T = 〈u, s, t, r〉, we evalu-

ate the prediction quality of our method in comparison with
other collaborative filtering methods using Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) [30].

4http://www.service4all.org.cn/servicexchange/
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Table 3: Web Service QoS Performance Comparison (A Smaller Value Means a Better Performance)
WS QoS
Property

Method
MAE RMSE

5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

UMean 0.8156 0.7247 0.7161 0.6758 0.6361 2.3807 1.9589 1.9937 1.6229 1.4217
IMean 0.5708 0.4919 0.4988 0.4158 0.4083 2.3344 2.0264 2.4146 2.0878 1.7216
IPCC 0.6861 0.7972 0.5146 0.6014 0.4073 3.8511 3.8336 3.3770 2.5129 1.9188

Response time UPCC 0.5965 0.6627 0.6625 0.6014 0.5435 2.3424 1.8843 1.9331 1.5129 1.2671
WSRec 0.5135 0.5252 0.5268 0.3947 0.3717 2.1838 2.0207 2.1533 1.7144 1.2975
RSVD 0.9162 0.8375 0.8168 0.8088 0.7800 6.6970 5.2284 3.8099 4.9581 3.6419
NNCP 0.4838 0.3589 0.3254 0.3178 0.3148 1.1470 1.0685 1.0502 1.0434 1.0399

UMean 8.3696 8.4262 8.0827 7.7713 7.7113 32.7424 35.3732 32.8413 44.4918 40.9749
IMean 6.7947 7.0433 6.4606 5.7356 5.2033 33.5447 34.5250 25.6687 22.7903 19.3721
IPCC 8.2521 8.6508 8.1413 8.8179 8.3416 41.4411 40.9693 37.4096 48.9877 42.6471

Throughput UPCC 8.0533 7.7259 7.1103 7.3437 7.0486 31.8687 32.9089 29.6238 29.2614 25.1004
WSRec 6.3139 6.2608 5.9656 5.9222 4.7879 23.0171 24.6223 22.4384 22.3709 17.9580
RSVD 9.6429 8.9885 7.5998 5.6261 5.1030 23.5928 25.4172 20.3695 19.7478 19.9420
NNCP 6.0007 5.4889 4.9859 4.5001 4.0385 10.8098 10.1738 9.57085 8.98722 8.43047

MAE is defined as:

MAE =
1

|T |
∑
i,j,k

∣∣∣YYYijk − ŶYYijk

∣∣∣ (19)

where YYYijk denotes actual QoS value of Web service j ob-

served by user i at time period k, ŶYYijk represents the pre-
dicted QoS value of service j for user i at time period k, and
|T | is the number of predicted value. The MAE is the av-
erage absolute deviation of predictions to the ground truth
data, and places the equal weight on each individual differ-
ence. RMSE is defined as:

RMSE =

√
1

|T |
∑
i,j,k

(YYYijk − ŶYYijk)
2

(20)

where smaller MAE (or RMSE) indicates better prediction
accuracy. Since the errors are squared before they are aver-
aged, the RMSE gives extra weight to relatively large errors.

5.3 Baseline Algorithms
For comparison purpose, we investigate whether our ap-

proach can be captured by the following 6 baseline algo-
rithms, according to the prediction performance measured
on the dataset. The baselines involved in this comparative
experiment are listed below:

• UMean: This method uses the mean QoS value of all
Web services QoS value from a service user who has
invoked these services to predict the missing QoS value
which this service user has not invoked.

• IMean: This method uses the mean QoS value of each
Web service QoS value from all service users who have
invoked this service to predict the missing QoS value
which other service users have not invoked this service.

• UPCC (User-based collaborative filtering method us-
ing Pearson Correlation Coefficient): This method is
a classical CF algorithm that involves similar user be-
havior to make prediction [24].

• IPCC (Item-based collaborative filtering method us-
ing Pearson Correlation Coefficient): This method is
widely used in e-commerce scenarios [22].

• WSRec: This method is a hybrid collaborative algo-
rithm that combines both UPCC and IPCC approaches,
and employs both the similar users and similar Web
services for the QoS value prediction [31].

• RSVD : SVD (Singular Value Decomposition) is pro-
posed by [5] in Collaborative Filtering area, and used
to exploit the ‘latent structure’ of the original data. In
this paper, we use the regularized SVD method pro-
posed in [19].

In this part, the above six baseline methods are com-
pared with our NNCP approach given the same training and
testing cases. Since the baseline algorithms cannot be di-
rectly applied to context-aware prediction problem, we em-
ploy a special formulation for making the comparison with
our NNCP approach. We consider the three-dimensional
user-service-time tensor as a set of user-service matrix slices
in terms of time interval. Firstly, we compress the tensor
into a user-service matrix. Each element of this matrix is
the average of the specific 〈user, service〉 pair during all the
time intervals. For each slice of the tensor, the baseline al-
gorithms are applied for predicting the missing QoS value.
Secondly, we compute the MAE and RMSE of these base-
lines, and make the comparison with our NNCP method.

In the real-world, the dataset is usually very sparse since
a service user usually only invokes a very small number of
Web services. We randomly remove QoS value to sparse the
dataset, and obtain the sparser dataset with different density
from 5% to 25%, ascending by 5% each time. For example,
dataset density 5% means that we randomly leave 5% of the
dataset for training and the other value becomes testing set.
The parameter settings of our NNCP method is that latent
features dimensionality set as 20. The comparison result of
this experiment are presented in Table 3, and the detailed
investigations of parameter settings will be provided in the
following subsections.

From Table 3, we can observe that our NNCP approach
significantly improves the prediction accuracy, and obtains
smaller MAE and RMSE value consistently for both response-
time and throughput with different matrix densities. The
MAE and RMSE value of throughput are much larger than
those of response-time, because the range of throughput is 0-
1000 kbps, while the range of response-time is only 0-20 sec-
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onds. With the increase of dataset density from 5% to 25%,
the MAE and RMSE value of our NNCP method becomes
smaller, because denser dataset provides more information
for the missing QoS value prediction. Our NNCP method
achieves better performance than the baselines. But some
factors of disharmony in the Table 3 are that the MAE and
RMSE of baselines are not decreasing with the increase of
dataset density in the strict sense. The fluctuation is cause
by that prediction value of the baselines is only in one layer,
and the value of testing set intersperse among 32 layers,
which increase the uncertainty of prediction.

5.4 Impact of Dataset Sparseness
In this section, we investigate the impact of data sparse-

ness on the prediction accuracy as shown in Figure 6. We
vary the density of the training matrix from 5% to 25% with
a step of 5%. Figure 6 (a) and (b) are the MAE and RMSE
results of response-time. Figure 6 (c) and (d) are the MAE
and RMSE results of throughput. Figure 6 shows that: (1)
With the increase of the training density, the performance
of our method enhances indicating that better prediction
is achieved with more QoS data. (2) Our NNCP method
outperforms baselines consistently. The reason of this phe-
nomenon is that baselines only utilize the two-dimensional
static relations of user-service model without considering the
more useful triadic relations of both the user and the ser-
vice with the temporal information in the user-service-time
model.

5.5 Impact of Dimensionality
The parameter dimensionality determines how many la-

tent factors involve to tensor factorization. In this section,
we investigate the impact of the dimensionality. We set the
tensor density as 25%, and vary the value of dimensionality
from 1 to 20 with a step value of one.

Figure 7(a) and (b) show the MAE and RMSE results of
response-time, and Figure 7(c) and (d) show the MAE and
RMSE results of throughput. Figure 7 shows that with the
increase of latent factor number from 1 to 20, the value of
MAE and RMSE keeps a declining trend. These observed
results coincide with the intuition that relative larger num-
ber of latent factor produce smaller error ratio. But, more
factors will require longer computation time and storage
space. Moreover, when the dimensionality exceeds a cer-
tain threshold, it may cause the over-fitting problem, which
will degrade the prediction accuracy.

6. CONCLUSIONS
Matrix Factorization is one of the most popular approaches

to CF but the two-dimension model is not powerful to tackle
the triadic relations of temporal QoS value. We extend the
MF model to three dimensions through the use of tensor and
employ the non-negative tensor factorization approach to
advance the QoS-aware Web service recommendation perfor-
mance in considering of temporal information. A systematic
mechanism for Web service QoS value collection is designed
and real-world experiments are conducted. In the experi-
mental results, a higher accuracy of QoS value prediction is
obtained with using the three-dimensional user-service-time
model , when comparing our method with other standard
CF methods.

In this paper, our recommendation approach only con-
siders and models the relations between QoS value and the

triplet 〈user, service, time〉. But in other cases, service users
in different geographic locations at the same time may ob-
serve different QoS performance of the same Web service.
Besides the temporal contextual information, more contex-
tual information that influences the client-side QoS perfor-
mance (e.g., the workload of the service servers, network
conditions of the users, etc.) should be considered to im-
prove the prediction accuracy.

In our future work, more real-world Web services will be
monitored, and more QoS properties and contextual infor-
mation will be collected. Since there are so many CF meth-
ods, we also consider to explore an ensemble method for
aggregating various CF algorithms to predict missing QoS
value.
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