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ABSTRACT

Although criticized for some of its limitations, modularity
remains a standard measure for analyzing social networks.
Quantifying the statistical surprise in the arrangement of
the edges of the network has led to simple and powerful
algorithms. However, relying solely on the distribution of
edges instead of more complex structures such as paths lim-
its the extent of modularity. Indeed, recent studies have
shown restrictions of optimizing modularity, for instance its
resolution limit. We introduce here a novel, formal and well-
defined modularity measure based on random walks. We
show how this modularity can be computed from paths in-
duced by the graph instead of the traditionally used edges.
We argue that by computing modularity on paths instead
of edges, more informative features can be extracted from
the network. We verify this hypothesis on a semi-supervised
classification procedure of the nodes in the network, where
we show that, under the same settings, the features of the
random walk modularity help to classify better than the
features of the usual modularity. Additionally, the proposed
approach outperforms the classical label propagation proce-
dure on two data sets of labeled social networks.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and networks; G.2.2 [Graph

Theory]: Network problems, Path and circuit problems
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1. INTRODUCTION
In the last decade, the modularity introduced by Newman

and Girvan [25, 24] has been one of the most used measures
for finding community structures in large networks [7]. Its
success relies on multiple factors. First, its scalability; in-
deed, efficient algorithms using modularity, scaling up to
very large graphs (more than millions of nodes), have of-
fered good insights for social network analysis on real-world
data [4, 5]. Second, different greedy algorithms have been
proposed to automatically detect the number of communi-
ties, while various state-of-the-art algorithms still require to
set a priori the unknown number of communities [7]. One
other reason behind the large adoption of modularity is the
common acceptance that by maximizing modularity we can
obtain better community structures [14].

This large success has led a high number of studies to
adopt modularity as a standard measure for community de-
tection in various domains as social science, social media, so-
cial networks and web analysis [17]. Studies on modularity
itself have been mostly concerned with new (greedy) algo-
rithms that are able to maximize modularity scores on larger
and larger networks [24, 4]. However, recent studies have
pointed out the limitations of optimizing modularity, includ-
ing the so-called resolution limit [8]. The multi-resolution
modularity is a first attempt to partly overcome this limita-
tion [29, 14].

In this work, based on the initial idea of modularity of
detecting stochastic surprises in the arrangement of the net-
work, we propose a novel way to extend modularity, as the
number of paths (and not of edges) falling within groups
minus the expected number in an equivalent network with
paths placed at random (a mathematical definition is given
further in Section 4). The main idea is to consider richer net-
work structures, i.e., paths, rather than“simple” edges when
computing modularity. We argue that by using paths one
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can extract more informative community structures than by
using edges.
To achieve this, we review the probabilistic interpretation

of modularity (Section 3) based on a bag-of-edges space.
Then, we introduce how by using random walks theory we
can generalize the probabilistic interpretation of modularity
to a richer Hilbert space: the bag-of-paths. This results in a
novel modularity measure, defined on weighted and directed
graphs, that captures longer dependencies in the network
(Section 4). To validate our argument that, by working in
a bag-of-paths space, we capture richer features on the net-
work, we consider a semi-supervised classification problem
of the nodes in the graph. For this purpose, we derive an
algorithm — scaling on moderately large networks — that
extracts the top k eigenvectors of the novel random walks
based modularity matrix (Section 5). We test the extent
to which these extracted features classify nodes better than
when using the same features extracted from the usual mod-
ularity matrix. This is done on two labeled social networks
publicly available.
The contributions of this work are the following:

• We introduce a novel, formal and well-defined random
walks based modularity (Section 4);

• We present a new algorithm that scales on moderately
large graphs for extracting the dominant eigenvectors
of the introduced modularity matrix (Section 5);

• In a semi-supervised classification procedure of the
nodes in the network, we show that the features of the
random walks based modularity help to classify better
than the features of the usual modularity on labeled
social networks (Section 6).

2. RELATED WORK
These last years, modularity has been one of the most

used measures for detecting communities in networks. Its
success relies on different factors, one being its clear and
simple statistic interpretation, another being the availability
of simple greedy algorithms scaling up to really large graphs
[4, 5]. Therefore, this measure has been the centerpiece of
many recent studies in social media and network analysis
[17].
The majority of papers on modularity itself have been

concerned with new greedy algorithms working faster and
providing a higher modularity [7]. This is mainly due to the
accepted paradigm that a higher modularity means a bet-
ter community structure. However, this last claim has been
recently criticized in [8], where the authors pointed out the
modularity resolution limit: modularity fails in identifying
modules smaller than a certain scale. In the same direction,
another comparative study has shown that modularity fails
to identify clusters on benchmark graphs in comparison with
other more effective methods [15]. To overcome the resolu-
tion limit, some authors adopted multi-resolution versions
of modularity giving the possibility to tune arbitrarily the
size of clusters from very large to very small [29, 2]. This
approach has been more recently criticized in [14], where
the authors underline the fact that real world networks are
characterized by clusters of different granularity distributed
according to a power law. The authors showed that multi-
resolution modularity suffers from this coexistence of small
and large clusters depending on the resolution setting.

In this work, we present a novel extension of modular-
ity taking into account larger structures in the graph by
relying on paths instead of edges. By doing so, we formu-
late a novel random walks based modularity that takes into
account longer dependencies. The idea of extending modu-
larity by using random walks theory has been first expressed
in [1] where the authors presented different possible exten-
sions of modularity based on various motifs (e.g. triangles or
paths) instead of edges. However, no mathematical formula-
tion modeling the problem is presented and the experiments
consist of a simple analysis of results obtained on small undi-
rected graphs (e.g. the Zachary’s Karate Club, the Southern
Women Event Participation network). More recently, an-
other workshop paper [11] has been studying the extension
of modularity to paths instead of edges. The authors showed
on small undirected graphs (e.g. the Zachary’s Karate Club,
the College Football and Political Book network) that they
can identify better ground-truth communities.

The modularity matrix offers also a way to project the
observed graph in a feature space. Newman showed that
the solution to the fuzzy clustering problem that maximizes
modularity for k clusters is given by the k first eigenvec-
tors of the modularity matrix [23]. Therefore, many works
summarize the graph in terms of latent social dimension us-
ing the k fuzzy clusters that maximizes modularity. Tang
et al. [32, 34] proposed to solve a semi-supervised classifi-
cation problem by extracting the k first eigenvectors of the
modularity matrix and use them as features describing the
nodes of the graph. While competitive, the results are not
necessarily better than label propagation methods (see the
experimental section). In this work, we show that by relying
on features based on the random walk modularity, instead of
features based on the standard, edge based modularity, we
largely outperform state-of-the-art approaches on two large
scale publicly available data sets.

3. PROBABILISTIC INTERPRETATION OF

MODULARITY
In this section, we review the probabilistic interpretation

of modularity. Originally, the modularity was built to mea-
sure the correlation between the membership of nodes and
the links between the nodes. In order to do so, modular-
ity compares the structure of the observed graph with the
structure that we would expect if the graph was built inde-
pendently from the membership of its nodes. Suppose our
network contains n nodes partitioned into m categories or
groups, C1, . . . , Cm. Let us consider the probability that both
the starting node and the ending node of a randomly picked
edge are in the category Ck, in other words the probability
that an edge is inside that category. If the nodes of the graph
were rewired randomly, but conserving the connectivity of
each node, the probability that an edge would fall in this
category Ck is simply: P(s ∈ Ck)P(e ∈ Ck), i.e. the prob-
ability that a randomly picked edge starts in category Ck
multiplied by the probability that an edge ends in category
Ck. If the edges of a graph are such that P(s ∈ Ck, e ∈ Ck) >
P(s ∈ Ck)P(e ∈ Ck) it means that there are more edges in-
side the categories than we would expect by chance, or in
other words that there is a correlation between the structure
of the network and the membership of its nodes.

In this bag-of-edges space, modularity of the partition
{C1, . . . , Cm} can be defined as:
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Q =
m
∑

k=1

[P(s ∈ Ck, e ∈ Ck)− P(s ∈ Ck)P(e ∈ Ck)] (1)

=

m
∑

k=1

∑

i,j∈Ck

[P(s = i, e = j)− P(s = i)P(e = j)] (2)

Those probabilities are usually estimated through frequency
computation, which allows to express the modularity in a
matrix form, using the adjacency matrix A. We define for
each category a membership column-vector uk with [uk]j =
1 if the node j belongs to the category Ck and 0 else. We
also define e as a column vector of length n, where n is the
number of nodes, whose elements are all one. It is easy to
see that:

• uT
kAuk is the number of edges that start and end in

the category Ck,

• uT
kAe =

∑n

k′=1 u
T
kAuk′ is the number of edges that

start in Ck,

• eTAuk is the number of edges that end in Ck,

• eTAe is the total number of edges in the graph.

We can then express modularity as follows (see [22] for a
detailed explanation):

Q =
1

eTAe

m
∑

k=1

u
T
kQuk (3)

Where the modularity matrix Q is defined as follows:

Q = A−
(Ae)

(

eTA
)

eTAe
(4)

In the remainder, we introduce an extension of the modu-
larity based on random walks. The idea of the random walks
based modularity (RWM) is to consider the probability that
a path starts and ends in a category Ck, rather than edges.
To compute this probability, we consider a generalization of
the random walk with restart [37] by using the bag-of-paths
framework [21].

4. RANDOM WALKS BASED MODULAR-

ITY
As presented in Equation (1), modularity relies on com-

puting two quantities: The joint probability of starting and
ending in a node of the same category: P(s ∈ k, e ∈ Ck),
and its computation assuming independence of the events
of starting from a node and ending in a node of the same
category: P(s ∈ Ck)P(e ∈ Ck). As shown in Equation (2),
these probabilities require to compute the joint probability
of starting in node i and ending in node j: P(s = i, e = j)
and its independent counterpart: P(s = i)P(e = j). In the
remainder, we refer to these two quantities as our values of
interest.
The usual modularity model estimates these probabili-

ties from edges. In other words, it assumes having a pool
(or bag) of edges from which it samples with replacement.
Then, a simple frequency computation is used to estimate
the quantities of interest. In the remainder, we propose

to sample from an infinite countable bag-of-paths with re-
placement. In such a space, we can estimate both quantities
of interests: the joint probability of starting and ending in
a node of the same category, and its independent counter-
part. The assumption is that by relying on paths instead of
edges one can capture longer dependencies and henceforth
extract “richer” structures in the network (see the experi-
mental section for the validation on semi-supervised learn-
ing experiments). In the remainder, we introduce a random
walk model called the bag-of-paths framework that is used
to compute path probabilities (for a thorough introduction
to the bag-of-paths framework, see [10]). Notice that other
random walk models could have been used such as the ran-
dom walk with restart, the exponential diffusion kernel or
the regularized laplacian [9]. We decide to rely on the bag-
of-paths framework since, as we will see, it generalizes the
random walk with restart model, and defines a large fam-
ily of random walks controlled by a temperature parameter.
Furthermore, the mathematical foundation of the model al-
lows to derive elegant formulas for computing the values of
interest P(s = i, e = j) and P(s = i)P(e = j).

4.1 Notations
We assume that we are working with a directed graph G.

We denote the set of paths ℘ of length ≤ τ by P, and with
Pij the subset of paths ∈ P that start at i and end in j.
Each path is associated with a total cost c̃(℘). We consider
that the cost of a path is given by the sum of the costs cij of
each edge in the path. The graph G is thus defined by the
cost matrix C. When there is no edge from node i to node
j we consider the cost cij to be infinite. The graph G is
also associated to an adjacency matrix A. The elements aij

of A are usually defined as aij = 1/cij , but can be defined
independently of the cost matrix. Also, we define the prior
probability prefij that a natural random walker takes the out-
going link from i to j as the uniform probability defined on
the set of outgoing links, weighted by the affinity aij (all prefij

define the matrix Pref). Then, we can define the likelihood
of a path π̃ref(℘), i.e. the product of the transition proba-
bilities prefij associated to each edge on the path ℘. After

normalization, we obtain P̃ref(℘) = π̃ref(℘)/
∑

℘′∈P
π̃ref(℘′),

which is the prior distribution defined on the set of paths P
according to the natural random walk.

4.2 Probability distribution on paths
In this section, we introduce the mathematical framework

we use to estimate the values of interests P(s = i, e = j)
and P(s = i)P(e = j). The bag-of-paths framework defines
a random walker whose moving strategy consists of minimiz-
ing the expected cost of the paths he is taking (i.e. favoring
shortest paths or exploitation) while in the meantime trying
to explore as much as possible the graph. This exploration–
exploitation tradeoff may be formalized in the following way:

P(℘)
minimize

∑

℘∈P

P(℘)c̃(℘)

subject to
∑

℘∈P
P(℘) log(P(℘)/P̃ref(℘)) = J0

∑

℘∈P
P(℘) = 1

(5)

The first Equation expresses the exploitation strategy min-
imizing the expected cost (or in other words favoring short-
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est paths). The second ensures exploration of the graph by
constraining the divergence (J0) from the prior distribution
Pref, which defines a pure exploration strategy of a random
walker who always chooses its next possible step with a uni-
form probability over the outgoing links.
This exploration-exploitation tradeoff problem is typical

of statistical physics [12] and has a closed form solution
which is a Boltzmann probability distribution:

P(℘) =
π̃ref(℘) exp [−θc̃(℘)]

∑

℘′∈P

π̃ref(℘′) exp [−θc̃(℘′)]
(6)

with θ controlling the exploration–exploitation tradeoff. It
is easier to express the solution in terms of θ than of J0.
As a parallel with statistical physics, the denominator is

called the partition function:

Z =
∑

℘∈P

π̃ref(℘) exp [−θc̃(℘)] (7)

We immediately see that θ = 0 implies P(℘) = P̃ref(℘), and
when θ → ∞ the probability distribution is concentrated
on the path(s) with the lowest cost. In other words, as θ
increases, the relative entropy decreases and the probability
distribution ranges from a random walk model to a shortest
path model.

4.3 Computing the probability of a path
Using the bag-of-paths framework, let us see how to com-

pute our two values of interests: P(s = i, e = j) and P(s =
i)P(e = j).
First, we define the matrix W:

W = P
ref ◦ exp [−θC] = exp

[

−θC+ logPref
]

, (8)

where ◦ is the elementwise (Hadamard) matrix product, and
the exponential and logarithm are taken elementwise.
We can easily see that Z can be computed from the matrix

W in the following way:

Z =
∑

℘∈P

π̃ref(℘) exp [−θc̃(℘)] =
n
∑

i,j=1

[

τ
∑

t=0

W
t

]

ij

(9)

Moreover, P(s = i, e = j), the probability of picking a
path of length up to τ starting in i and ending in j, can be
computed from W:

P(s = i, e = j) =

∑

℘∈Pij

π̃ref(℘) exp [−θc̃(℘)]

Z

=

[
∑τ

t=0 W
t
]

ij
∑n

i,j=1

[
∑τ

t=0 W
t
]

ij

(10)

We can now extend the measure to all possible path lengths
by considering the limit of

∑τ

t=0 W
t for τ → ∞. This se-

ries converges since the spectral radius of W is less than
1. Indeed, since θ > 0 and cij > 0, the matrix W is sub-
stochastic (the sum of each row is less than 1), which implies
that ρ(W) < 1. Therefore, we have:

Z =

∞
∑

t=0

W
t = (I−W)−1 (11)

We call Z = (I −W)−1 the fundamental matrix, and zij
the element (i, j) of Z, where

zij =
∑

℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] (12)

This allows to compute Z in the following way

Z =
n
∑

i,j=1

zij = e
T
Ze (13)

We can now compute our two values of interest crucial
for revisiting modularity in terms of random walks. First,
the joint probability of picking a path starting in node i and
ending in node j.

P(s = i, e = j) =

∑

℘∈Pij

π̃ref(℘) exp [−θc̃(℘)]

Z
=

zij
eTZe

(14)

And the estimated probability assuming independence:

P(s = i)P(e = j) =
(eT

i Ze)(e
TZej)

(eTZe)2
(15)

with ei being the n × 1 column vector whose elements are
all set to 0 except for ith entry set to 1.

4.4 Random Walks based Modularity Com-
putation

Based on the fundamental matrix Z (Equation (11)), us-
ing Equation (1) and (2), we can define the random walk
modularity matrix:

QRW = Z−
(Ze)

(

eTZ
)

eTZe
(16)

And the random walk modularity QRW:

QRW =
1

eTZe

m
∑

k=1

u
T
kQRWuk (17)

In other words, simply by replacing the adjacency matrix
in Equations (3) and (4) by the fundamental matrix Z of the
bag-of-paths framework we extend the classical modularity
to a well-defined random walk modularity comparing the
probability of finding a path (instead of an edge) between
two nodes of a cluster against the prior probability of that
event.

4.5 Relation to other random walk methods
The bag-of-paths model offers a powerful and elegant way

to exploit the notion of random walks on graphs. Moreover,
it provides a new theoretical background to the famous ran-
dom walk with restart model [28, 35], which was inspired by
the PageRank [27]. Indeed, the random walk with restart
kernel is a particular case of the fundamental matrix (Z) of
the bag-of-paths model. The cost cij associated with the
edge (i, j) in the bag-of-paths model is usually defined as
cij = 1/aij , with aij being an element of the adjacency ma-
trix of the graphs. However, this cost can be defined at will,
and a sensible definition is to use a uniform cost (cij = 1
for all edges) – which is anyhow the case in many real-world
graphs. Assuming a uniform cost, we have:
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W = e−θ
P

ref (18)

If we define α = e−θ, Equation (11) becomes:

Z = (I− αPref)−1, (19)

which is indeed the definition of the random walk with
restart kernel with a restart probability of (1 − α) [28, 9].
Moreover, Equation (19) is also equivalent to the definition
of some diffusion kernels [37, 13]. Therefore, the presented
modularity framework encompasses a large family of random
walks.

5. APPLICATION TO SEMI-SUPERVISED

LEARNING
In order to illustrate the benefit of computing the modu-

larity on paths instead of links, we propose to measure the
extent to which features extracted using random walks based
modularity can help in semi-supervised learning problems.
In this specific setting, we suppose to have a network at our
disposal, as well as labels on some of the nodes, and the goal
is to predict the labels on the remaining nodes. The prob-
lem is semi-supervised because at training time the learning
algorithms exploits not only the labels of the training data
points, but also the whole structure of the network, includ-
ing the connections of the test data points.
One of the state-of-the-art algorithms for dealing with

graph-based semi-supervised problems consists in extracting
in an unsupervised way the modularity features (i.e. the top
k eigenvectors of the modularity matrix) from the complete
network, and training a classifier on the extracted features
to learn how to discriminate between the classes [32, 33].
Computing the k first eigenvectors means that we consider
a feature space of k dimensions where the ith element of the
jth eigenvector is the jth coordinate of the ith node of the
network. The justification of the use of the top eigenvec-
tors as a feature space comes from [23] that showed that
the solution of the fuzzy clustering problem that maximizes
modularity for k clusters is given by the k first eigenvectors
of the modularity matrix. Therefore, those eigenvectors re-
veal latent social dimensions that can be used as features for
a classifier.
In the remainder, we use exactly the same approach, how-

ever, this time extracting features from the random walk
modularity matrix. By doing so, we outperform significantly
the approach relying on traditional modularity features. In
this way, we show that random walks based modularity ex-
tracts richer features on the tested networks.

5.1 Derived Algorithm
To address the semi-supervised classification problem, we

derive a new algorithm, RW ModMax (or Random Walk

Modularity Maximization) using the dominant spectral com-
ponents of the random walks based modularity matrix in-
stead of the standard one. The modularity matrix Q can
simply be replaced by the random walks based modularity
matrix QRW (see Equation (17)), where the top eigenvectors
of QRW are the features to extract. However, remember that
the computation of QRW itself relies on the computation of
the fundamental matrix Z obtained after a matrix inver-
sion (Equations (11) and (16)). In case of large networks,

this computation is not feasible and therefore computing the
dominant eigenvector of QRW is not trivial.

Fortunately, there exist well established algorithms (such
as the power method or the more advanced Lanczos method
[30]) that can be used to compute the dominant eigenvectors
of a matrix without requiring it as input. Instead, these
algorithms require as input a fast procedure to compute the
product of the matrix with any column vector. In other
words, if such a procedure can be designed we can extract
the top eigenvectors of QRW without having to compute and
store it explicitly.

The product of QRW and any vector x can be rewritten
as:

QRWx = Zx−
(Ze)

(

eTZx
)

eTZe
(20)

Thus, if we can compute y = Zx for any x (including e),
we can compute QRWx. Using the definition of Z we derive:

y = Zx

⇒ (I−W)y = x

⇒ y = Wy + x (21)

Equation (21) offers an iterative method to compute y =
Zx. The iterations converge because the spectral radius of
W is less than one (as explained in Section 4). Algorithm
1 summarizes how the product QRWx can be computed it-
eratively. Notice that steps 3 and 4 of Algorithm 1 are in-
dependent of x so they can be done only once for a given
graph.

In summary, the dominant eigenvectors of QRW can be
extracted using an iterative algorithm (for instance, in our
implementation we used the state-of-the-art ARPACK li-
brary [16], which is based on the Lanczos method); each
step of this algorithm requires the computation of the prod-
uct QRWx, which in turn implies the computation of the
product Zx (Equation (20)). This last product is computed
iteratively using Equation (21) that only requires the sparse
matrix W. This shows that we can compute the top eigen-
vectors of QRW without having to compute explicitly Z, al-
lowing us to scale up to large networks.

The RW ModMax uses the top eigenvectors of the ran-
dom walk modularity matrix as features for a classifier (for
example a SVM). The complete algorithm is summarized in
Algorithm 2.

6. EXPERIMENTS
In this section, we evaluate the performance of RW Mod-

Max on a graph-based semi-supervised classification task
with multiple labels. We first describe the three baselines
and the two social network data sets used in the experi-
ments. Then, we compare the performances of the baselines
with RW ModMax. We analyze the parameter settings and
the running time of the proposed model. Finally, the results
are analyzed and discussed.

6.1 Baselines for Comparison
We compare the RW ModMax method introduced in Sec-

tion 5.1 with three state-of-the-art algorithms for graph-
based semi-supervised classification.
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Algorithm 1 Iterative computation of QRWx

Input:

– The n× n matrix W.
– The column vector x of n elements.

1: Initialize y(0), a column vector of n elements. For ex-
ample y(0) = x.

2: Iterate y(t) = Wy(t−1) + x until convergence. y(∞) ≈
Zx (Equation (21)).

3: Initialize y
(0)
e = e, where e is a column vector of n ele-

ments.
4: Iterate y

(t)
e = Wy

(t−1)
e + e until convergence. y

(∞)
e ≈

Ze.
5: Compute QRWx using Equation (20), with the approx-

imations of Zx and Ze computed at steps 2 and 4.
6: return QRWx

Algorithm 2 RW ModMax

Input:

– A graph G containing n nodes.
– The n × n adjacency matrix A associated to G, con-
taining affinities.
– The n×n cost matrix C associated to G (usually, the
costs are the inverse of the affinities, but other choices
are possible).
– The parameter θ > 0.
– The number of eigenvectors k.
– The known labels Y, a n ×m matrix whose element
(i, j) is equal to 1 if i is known to have the label lj , and
0 else.

Output:

– A prediction score for each label with regard to each
unlabeled node.

1: D← Diag(Ae) {the row-normalization matrix}
2: Pref ← D−1A {the reference transition probabilities

matrix}
3: W ← Pref ◦ exp [−θC] {elementwise exponential and

multiplication}
4: Extract the k dominant eigenvectors of the random

walks based modularity matrix using a method that
only requires to compute the product of QRW (Equa-
tion (17)) and a column vector (done by Algorithm 1),
e.g. ARPACK library.

5: Train a classifier (e.g. an SVM) with the known labels
Y using the eigenvectors as features of the nodes.

6: Compute scores of each label for unlabeled nodes using
the trained classifier.

• ModMax uses the k dominant eigenvectors of the
standard, edge based, modularity matrix of the graph
as features for a subsequent supervised classification
[32]. The classification procedure consists in training
a linear SVM in a one-versus-the-rest strategy. It dif-
fers from our introduced algorithm RW ModMax only
in the fact that we use the k dominant eigenvectors
of the random walks based modularity matrix instead
of the usual modularity matrix. ModMax depends on
two parameters, the number of features (k) and the
SVM hardness (C).

• Label diffusion is based on the idea of propagating
the labels throughout the dataset, starting from la-
beled data and jumping from neighbor to neighbor.
The methods based on the principle of diffusion range
among of the most widely used methods of semi-supervised
classification, probably because they achieve impres-
sive performances with regards to their simplicity of
implementation [13, 9, 37, 38]. Our implementation is
based on [37], which uses a symmetric normalization
of the adjacency matrix. The label diffusion method
has one parameter, α ∈]0, 1[, that determines the rate
at which the information vanishes in the diffusion pro-
cess. For small values of α, the labeled nodes only
influence close neighbors, and their zone of influence
increases as α tends to 1.

• EdgeCluster is based on the idea of extracting fea-
tures using a fuzzy clustering method, and uses those
features for classification with a linear SVM [32]. EdgeClus-
ter adopts an edge-centric view (i.e. the nodes are the
features of the edges that link them) and performs a
k-means clustering on the edges. The clusters of the
edges linked to one node constitute then the features
of the said node. As ModMax, EdgeCluster depends
on two parameters, the number of clusters (k) and the
SVM hardness (C).

6.2 Datasets Description

• BlogCatalog is extracted from the website
www.blogcatalog.com. The website allows blog writ-
ers to list their blog under one or more categories, and
to specify their friends’ blogs, making it a labeled net-
work of blogs. The Blog catalog is a subset of this
network containing about 10,000 nodes classified in 39
different categories [32].

• Flickr is extracted from the popular photo-sharing
website www.flickr.com. The users of Flickr can sub-
scribe to interest groups and add other users as friends.
The Flickr dataset is a subset of the friends’ network
of Flickr, and the interest groups are used as label for
the user [32].

Both datasets present the scale-free structure often ob-
served in social networks, and their characteristics are listed
in Table 1.

6.3 Evaluation Metrics
Each element of the BlogCatalog and Flickr datasets can

have multiple labels, and the presented algorithms produce
for each element a ranking of the most probable labels. This
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Data Set BlogCatalog Flickr
Categories 39 195
Nodes 10,312 80,513
Edges 333,983 5,899,882
Maximum Degree 3,992 5,706
Average Degree 65 146

Table 1: Characteristics of the datasets.

ranking is compared to the ground-truth using the micro-
and macro-average of the F-measure, respectively noted mi-
croF1 an macroF1 [20, 26], a pair of metrics well-known in
information retrieval. The F-measure is the harmonic mean
of precision and recall. The micro- and macro-average are
two ways of computing the F-measure when dealing with
multiple labels. The microF1 is defined using directly the
global recall (ρ) and precision (π) of the results (as in [32,
33, 34], ρ and π are computed on the ranking truncated to
the true number of labels):

microF1 =
2πρ

π + ρ
(22)

However, if the distribution of label sizes is highly skewed,
the microF1 will be mainly influenced by the performances
of the method on the most populated labels. The macroF1,
on the other hand, gives the same weight to each label:

macroF1 =
1

m

m
∑

i=1

2πiρi
πi + ρi

(23)

With ρi the recall for label i, πi the precision for label i,
and m the number of labels.
We use a third measure, the accuracy (acc), defined as

the percentage of elements for which the algorithm correctly
predicted the whole set of true labels.

6.4 Settings
The four tested algorithms have one or more parameters

whose optimal value depends on the current dataset. In
the following experiments, the value of the parameters were
chosen automatically at each run among a set of reason-
able values using an internal cross-validation method. The
cross-validation selected the values yielding the best average
microF1. Table 2 shows the set of values tested during the
automatic tuning. For the methods with two parameters to
tune, every pair of values was tested and the cross-validation
selected the pair with the best average score. The value of
θ in the RW ModMax method has a negligible influence on
the performance (see Section 6.6), hence it was set to an
arbitrary value of 5 during the learning process.

6.5 Results

BlogCatalog.
We focus our experiments on classification with small train-

ing ratio. Indeed, as it often becomes more and more difficult
to gather true labels in real world problems when the size
of the dataset increases, it is essential for semi-supervised
classification methods designed for large-scale problems to
be able to deal with small training ratios. Figure 1 compares
the performances of each method on the BlogCatalog dataset
for training ratios of 1%, 5% and 10%. The RW ModMax

Method Parameter Tested values

RW ModMax
θ (inverse temperature) 5
k (number of features) 100, 200, 500, 800, 1000
C (SVM hardness) 10, 20, 50, 100, 200, 500

ModMax
k (number of features) 100, 200, 500, 800, 1000
C (SVM hardness) 10, 20, 50, 100, 200, 500

EdgeCuster
k (number of features) (0.2, 0.5, 1, 2, 5, 10) ×103

C (SVM hardness) 10, 20, 50, 100, 200, 500
Label diffusion α (diffusion factor) 0.1, 0.2, 0.3, . . . , 0.9

Table 2: List of the parameters of each method, and set of
values tested during the automatic parameters tuning. NB.
: on the Flickr dataset C was only chosen among two values,
20 and 500.

algorithm outperforms the other methods, as confirmed by a
Mann-Withney U test with a 1% significance level [19]. The
same experiment was made on training ratios of 3%, 7%,
30%, 50%, 70% and 90%, with a systematic dominance of
the RWModMax algorithm. In particular, the RWModMax
method outperforms the original ModMax, demonstrating
the benefits of introducing random walks based modularity.

Flickr.
Figure 2 shows the performances of the four methods for

training ratios of 1%, 5% and 10% ; similar results are ob-
served for training ratios of 3%, 7% and 9%. As for the
BlogCatalog dataset, the RW ModMax dominates its com-
petitors. The statistical significance of those results is con-
firmed by a Mann-Withney U test with a confidence level of
1%.

6.6 Parameter Analysis
Figure 3 shows the influence of θ and k on the perfor-

mances of RW ModMax (on BlogCatalog and Flickr). We
do not observe any significant influence of θ in the range
[0.1, 5], as confirmed by Mann-Withney U tests.

Table 3 shows the influence of θ on a wider range of values.
When θ → 0, the spectral radius of W tends to 1, increas-
ing dramatically the convergence time of Algorithm 1. The
performance achieved for θ between 0.05 and 10 are similar.
A closer look at Figure 3 seems to indicate better results
for smaller values of θ, but the difference is of the order of
the standard deviation of those results, and is dwarfed by
the influence of k on the results. For θ = 50 and higher the
quality of the results drops significantly. Indeed, as θ →∞,
Z → I, which in practice is reached around θ = 50 due to
numerical precision. At that point, the random walks based
modularity matrix becomes independent of the graph itself
and the resulting classification is not better than random
guessing.

The good stability of the RW ModMax performances with
regards to θ — as reported in Figure 3 — allows to easily
choose a value of θ (for instance θ = 5) without having to
rely on automatic parameter tuning. Therefore, although
RW ModMax has one more parameter than ModMax, it
does not lead to a harder tuning of the parameters.

The choice of k corresponds to the classical over-fitting/under-
fitting trade-off and its value has an important influence on
the performance. As one could expect, for an identical train-
ing ratio, the Flickr dataset requires more features than the
BlogCatalog dataset in order to handle the larger number
of nodes and labels. The training ratio also has a strong
influence on the optimal value of k. As an example, the
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Figure 1: Comparison of the methods on the BlogCatalog dataset for 1%, 5% and 10% training ratios. Results are averaged
over 20 runs.
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Figure 2: Comparison of the methods on the Flickr dataset for 1%, 5% and 10% training ratios. Results are averaged over 10
runs.

θ 0.05 0.1 1 10 50 100
microF1 (%) 40.9 40.9 40.6 40.2 14.0 14.0
macroF1 (%) 26.1 25.9 25.9 25.5 3.7 3.9
Accuracy (%) 33.5 33.7 33.3 32.9 8.1 7.9

Table 3: Influence of θ on the performances of RW ModMax.
Dataset: BlogCatalog; training ratio: 50%; k = 200; C =
20. Results are averaged over 20 runs.

number of features maximising the macroF1 on the Blog-
Catalog dataset is about 200 for a 5% training ratio, and
about 500 for a 50% training ratio. Unsurprisingly, a larger
training set is less prone to over-fitting and can benefit from
more features.
Figure 4 shows the influence of C on the microF1 and

macroF1 of RW ModMax for two training ratios on Blog-
Catalog and Flickr, respectively. C has a significant influ-
ence on the performance, as confirmed by Mann-Withney U
test. We observe that the optimal value of C is dependent
on the dataset, with BlogCatalog needing a softer SVM than
Flickr.
In conclusion, the fine tuning of the number of features (k)

is essential for the performance of RW ModMax. A tuning
of the SVM hardness (C) can yield further improvement,
while the influence of θ is insignificant as long as θ ∈ [0.1, 5].

6.7 Running Time Analysis
The RW ModMax algorithm consists of two main phases:

(1) the extraction of the top eigenvectors from the random
walk modularity matrix and (2) the classification via a linear
SVM. We observe experimentally that the running time of
the complete algorithm is in O(k). C only influences the sec-

with online
parameters tuning

without online
parameters tuning

Label Diffusion ± 15s < 1s
EdgeCluster ± 15min ± 2min30
RW ModMax ± 20min ± 5min

ModMax ± 20min ± 5min

Table 4: Running time on the BlogCatalog dataset with a
50% training ratio. Results obtained on a personal computer
(Intel Core i5-2500K 3.3GHz CPU, 16Go RAM). The meth-
ods are implemented and run with Matlab R2011b 64-bit.

ond phase of the algorithm for which we observe an increase
of the running time as C increases.

On large graphs with small training ratio the dominant
phase (with regards to the running time) is the extraction
of eigenvectors, making k the parameter with the biggest
influence on the total running time. In this case, the num-
ber of features that can be extracted is dictated by time
constraints.

Tables 4 and 5 indicate the running time of the four meth-
ods on the BlogCatalog and Flickr dataset, respectively.
The label diffusion method, although dominated by the RW
ModMax, is two orders of magnitude faster than the other
methods. The quality of the results offered by RW Mod-
Max comes at the cost of a higher running time. On the
other hand, the substitution of traditional modularity by
random walks based modularity in the ModMax algorithm
causes only a moderate overhead on the Flickr dataset, and
is negligible on the smaller BlogCatalog graph.
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Figure 3: Influence of θ and k on the microF1 and macroF1 on the BlogCatalog and Flickr datasets for RW ModMax. The
training ratio is 5%. The SVM hardness C = 20. The results are averaged over 50 runs for BlogCatalog, and over 10 runs for
Flickr.
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Figure 4: Influence of C on the microF1 and macroF1 on the BlogCatalog and Flickr datasets for RW ModMax. θ = 5 and
k = 500. The results are averaged over 50 runs for BlogCatalog, and over 10 runs for Flickr. Training ratios of 1%, 5% and
10%

with online
parameters tuning

without online
parameters tuning

Label Diffusion ± 20min ± 50s
EdgeCluster ± 15h ± 2h30
RW ModMax ± 1h45 ± 1h30

ModMax ± 1h ± 45min

Table 5: Running time on the Flickr dataset with a 5% train-
ing ratio. Results obtained on a personal computer (Intel
Core i5-2500K 3.3GHz CPU, 16Go RAM). The methods are
implemented and run with Matlab R2011b 64-bit.

6.8 Discussions

Advantages.
Our proposed algorithm is able to deal with graphs of

the order of 100 000 nodes on a personal computer. More-
over, it outperforms the tested semi-supervised classifica-
tion methods, including the well-known label propagation
method [37]. In particular, RW ModMax significantly im-
proves the labeling performances of the original ModMax
algorithm, with similar running time and tuning complex-
ity.

Scaling to Big Data.
The RW ModMax method does need substantial resources

when dealing with very large graphs. Indeed, RW ModMax
relies on the extraction of a large number of features, and
storing 1000 features (in double precision) for a graph of
ten millions nodes would require about 70Gb, making it im-
practical for running on a personal computer. However, the
algorithm can be efficiently adapted on distributed systems

in order to scale up to big data. Indeed, many solutions have
already been proposed for extracting the dominant eigenvec-
tors of very large sparse matrices on grid infrastructures [6,
18] and for using linear classifiers on big data problems [3].

Towards more complex Structures.
We have seen that modularity can benefit from being com-

puted from paths instead of edges. Recent work dealing with
kernel methods on graphs revealed new possibilities to em-
bed graphs in richer structural Hilbert spaces, as the bag-of-
trees or the bag-of-forests [31]. By working on such spaces,
we can derive other modularities exploiting the statistical
arrangement of trees or forests in the network. In this case,
by substituting the matrix Z in Equation (16) by the corre-
sponding kernel we obtain the desired modularity. However,
to be able to apply Algorithm 1, depending on the embed-
ding space, one will have to derive a “kernel trick”procedure
to avoid storing and computing explicitly the kernel matrix.

Application to community detection.
The experiments revealed on two data sets that the fea-

tures of the random walks based modularity help to classify
better than the features of the usual modularity. This sug-
gests that random walks based modularity is more informa-
tive. Therefore, a natural application for it is the problem
of community detection. For this purpose, one option is to
derive a ∆QRW function and to apply it in a greedy algo-
rithm as done in [4]. However, in the context of community
detection, assessing to which extent a clustering is better
remains a difficult question [36].
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6.9 Reproducibility of the Experiments
The Matlab implementation of the RW ModMAX is made

publicly available at: github.com/rdevooght/RWModMax. A
Matlab implementation of the label diffusion of Zhou et. al

[37] is available at: github.com/rdevooght/Label-diffusion.
The Matlab implementations of ModMax and EdgeCluster
are publicly available at: leitang.net/code/social-dimension/.
Finally, the two datasets benchmarked in this paper, Blog-
Catalog and Flickr, can be downloaded from:
leitang.net/code/social-dimension/.

7. CONCLUSIONS
In this work, we introduced a novel, formal and well-

defined, random walks based modularity as the number of
paths observed within a group minus the probability that a
path falls in this group by random. On a semi-supervised
classification procedure of the nodes in the network using
two social networks, we validated that the features of the
random walks based modularity help to classify better than
the features of the usual modularity. In this way, by comput-
ing modularity from paths instead of edges, we showed that
more informative features can be extracted from the net-
work. In order to scale the method to work with large data,
we derived an algorithm that avoids computing and storing
explicitly the fundamental matrix associated to the under-
lying markov chain. Moreover, on both tested data sets we
outperformed the label propagation strategy, a state-of-the-
art algorithm for graph-based semi-supervised learning.

Future work.
In this study, we restricted our investigation to one spe-

cific structure: the paths of the network. To push the study
further, we would like to extend modularity to richer struc-
tures as trees and forests. Another challenge, lies in the pos-
sibility to scale up to very large graphs. Therefore, at the
moment, we are investigating different strategies to make
our approach benefit of grid infrastructures [6, 18, 3]. Fi-
nally, following [36], we plan to test the extent to which our
approach succeeds in identifying ground-truth communities.
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