
Population Dynamics in Open Source Communities: An
Ecological Approach Applied to Github

Pablo Loyola
Industrial Engineering Department

University of Chile
Santiago, Chile

ployola@ing.uchile.cl

In-Young Ko
Deparment of Computer Science

Korea Advanced Institute of Science and
Technology

Daejeon, South Korea
iko@kaist.ac.kr

ABSTRACT

Open Source Software (OSS) has gained high amount of pop-
ularity during the last few years. It is becoming used by
public and private institutions, even companies release por-
tions of their code to obtain feedback from the community
of voluntary developers. As OSS is based on the voluntary
contributions of developers, the number of participants rep-
resents one of the key elements that impact the quality of
the software. In order to understand how the the population
of contributors evolve over time, we propose a methodology
that adapts Lotka-Volterra-based biological models used for
describing host-parasite interactions. Experiments based on
data from the Github collaborative platform showed that
the proposed approach performs effectively in terms of pro-
viding an estimation of the population of developers for each
project over time.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics; D.2.9
[Software Engineering]: Management—Programming teams

Keywords

Biological Mutualism; Ecological Models; Open Source Soft-
ware Development

1. INTRODUCTION
The way in which software is developed has been changed

considerably during the last decades. Firstly, passing from
an individualistic and isolated programming paradigm to a
social-based task solving procedures [2].

Secondly, as development tasks became more dynamic,
allowing a more heterogeneous group of developers to take
part into the programming issues, distributed collaborative
systems, such as Git and Mercurial, began to gain popular-
ity among several projects, many of them from the Open

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2578843.

Source environment. This new change allowed the contri-
bution from many non-core members to the projects, which
produced more diversity and triggered innovation [20, 5].

The last observable change has come from the use of the
Web as an interface for collaborative work in conjunction
with the distributed subversion systems. This has generated
a transformation that has contributed to understand soft-
ware development as a social activity, generating ecosystems
in which several stakeholders conform communities around
software repositories[22].

Open Source Software (OSS) has embraced this paradigm
shift, incorporating tools that boosts both transparency and
visibility, elements that impact directly on the quality of the
software developed [8]. One of the resulting artifacts of this
change is Github, which is a Web-based hosting platform
that provides the Git revision control system along with a
solid social layer, which allows common functionalities such
as following, subscribing for updates and direct messaging
[10].

In OSS projects, one of the key elements related to the
quality of the product is the group of contributors. Firstly,
the number of people involved is relevant, because it pro-
vides a critical mass of contributors which will take care of
bug fixing process and also the addition of new features.
Additionally, a considerable amount of people working on
the project could be useful to detect faults, following the
assumption of the Linus’s law [18].

Therefore, without people to contribute, the project dies
as it remains inactive and it is not attractive for use. In that
sense, having the possibility to get a notion of the evolution
of the contributors could be useful to estimate the health of
a project, in relation to the the probability that the project
remain active for a certain period of time. This is relevant
due to the increasing importance of OSS in both public and
private sectors and thus it could be useful to provide a mea-
sure of the expected quality based on human factors rather
than code metrics.

The new context of full access that the new social pro-
gramming paradigm provides, generates more complexity
and uncertainty to the dynamics of the projects, making
more difficult to estimate the population of developers. Cer-
tain economic approaches based on the identification of in-
centives had focused on understanding the causes for the
spontaneous collaborative communities [14]. Similarly, survey-
based approaches, which have been useful for extracting best
practices on the development process, only provides quali-
tative results.

993



In this work we provide a model to understand the popula-
tion of contributors over time in OSS projects. Our approach
is based on the use of biological mutualistic models in order
to model the dynamics between contributors and reposito-
ries in an OSS ecosystem. The key element is the adapta-
tion of the modified version of the Lotka-Volterra equations
which are commonly used for the simulation of parasite-host
interactions in biological fields. In this case, we propose an
analogy based on the consideration of contributors as para-
sites and and repositories as hosts, both interacting under a
mutualistic settings.

Our model not only considers the intrinsic grow rates of
each actor, but also the inter-relationship between the par-
ticipants and the effect of one on another. Previously, we
explored the existence of a steady state in the dynamics of
population in communities [16]. This work is a continua-
tion which main goal is to understand the evolution of the
population over time. The results showed that for a set of
samples extracted from the Github platform, the overall dy-
namics of the population of contributors obtained from the
mutualistic model fits in a reasonable way with the observed
data.

It is important to note that the proposed approach is not
intended to be used as a prediction tool. The main goal
is to provide an initial way of understanding the popula-
tion dynamics over time by means of a reduced number of
parameters.

2. BACKGROUND
Our approach is based on the adaptation of a Biological

Mutualistic model to study the evolution of the population
of contributors in Open Source projects.

Biological Mutualism is commonly defined as the relation-
ship between species that results into reciprocal benefits. As
stated by Ollerton [19], these benefits include trophic gain,
physical protection and dispersal of gametes. These can be
categorized as resource benefits, which are related to nutri-
tional gain between species, or service benefits, which are
related to transport and dispersal.

2.1 Lotka-Volterra equations for mutualism
Most approaches to model Biological Mutualism are based

on the modification of the Lotka-Volterra system of differ-
ential equations [17]. Lotka-Volterra equations were not de-
veloped initially to model mutualistic interactions, but to
model competition between biological species [1], as predator-
prey dynamics. These equations describe how the birth rate
of a species depends on each other over time.

The modified version of the Lokta-Volterra equations takes
into account two main elements: the intraspecific competi-
tion and the per-capita effect between species. Following the
approach by Bascompte et al. [1], they can be represented
as follows, assuming a scenario where a set of n plants andm

animal species interact mutualistically under a host-parasite
relationship:

dPi

dt
= riPi − SiP

2

i +
m
∑

j=1

αijPiAj (1)

dAj

dt
= qjAj − TjA

2

j +
n
∑

i=1

βjiPiAj (2)

where Pi represents the population of the plant i and Aj

represents the population of animal j. The remaining pa-
rameters are presented in Table 1.

Table 1: Lokta-Volterra parameters
Parameter Meaning
ri Growth rate of plant i

Si Intraspecific competition of plant i

qj Growth rate of animal j
Tj Intraspecific competition of animal j
αij Per-capita effect of animal j on plant i

βji Per-capita effect of plant i on animal j

3. OVERVIEW OF THE APPROACH
In this section, we describe the main components of our

approach. As it is based on the adaptation of the Lotka-
Volterra equations, we first state the main characteristics of
a biological mutualistic configuration present in nature and
then compare them with the standard behavior observed
in Open Source environments. In that sense, we provide
literature-based evidence related to the similarities between
the two fields. Subsequently, we show how each parameter
of the original model for biological mutualism in nature can
be interpreted under a Open Source environment.

3.1 Similarities between biological and Open
Source environments

The key analogy used in this work is based on the idea that
OSS developers behave as parasites and the reposito-

ries play the role of the hosts, based on a mutualistic

configuration .
In that sense, the developers contribute to the project

repository, improving the code and generating a better qual-
ity software. In turn, the repository benefits the developers
as they can access the code to their own purposes. Addition-
ally, the repository serves as a place for interaction where
developers can gain reputation and knowledge. The follow-
ing list details the main characteristics of a host-parasite
mutualistic configuration and links them with the observed
behavior in OSS development:

Mutual benefit between species: Following the sem-
inal work by von Hippel and von Krogh, to understand the
behavior and incentives in an Open Source environment, it is
necessary to combine both private and collective innovation
models. In that sense, the developers are willing to spend
their own time and resources contributing to a common
project, hoping to receive benefits in terms of knowledge and
expertise that they can use for their private work [12]. Given
that, and using the analogy from the host-parasite mutual-
ism, we state that the repository (host) benefits based on
the flow of contributions from the set of developers (par-
asites) that improves the host along time. On the other
hand, developers (parasites) benefit themselves by means of
the knowledge obtained from the community and also due
to they can reuse of the developed software for private pur-
poses.

High degree of specialization: In host-parasite inter-
actions, the parasite species is forced to develop sophisti-
cated functionalities in order to adapt to the host [19]. Sim-
ilarly, in an Open Source development environment contrib-
utors arrive with a heterogeneous level of expertise [24]. Ini-
tially, this leads to the generation of a higher number of bugs,

994



produced by the low understanding of the code and the lack
of synchronization between the developers. Thus, develop-
ers need to learn from the code, sometimes concentrating on
a small number of modules, where it has been shown that
ownership plays an important role in the reduction of errors
[3, 4].

Co-evolution between species: Following the work by
Thompson [23], mutualism allows the process of co-evolution
between species, due to the symbiotic relationship that boosts
their behavior.

In the context of software development, we assume that
the initial status of both the repository and the set of con-
tributors changes according to the overall activity. Devel-
opers begin to contribute and interact, which leads to two
kinds of evolution: 1) each contributor improves his knowl-
edge, based on continuous feedback on his commits and 2)
the structure of the development network takes form, al-
lowing the generation of roles and spontaneous hierarchies.
On the other hand, the repository receives the contributions
which change its structure and behavior. The performance
of the resulting software is tested by the community, which
represents the main source of feedback for the group, gener-
ating a symbiotic cycle.

Constant interaction leads to stable relationship:

In [19], Ollerton showed that as the mutualistic relation-
ship increases its level of biological intimacy, the number
of participants is reduced, reaching a stable point. Empir-
ical studies show that at early stages, several Open Source
projects perform in an erratic way and the heterogeneity of
the changes is also considerable, specially when the project
lacks a road map [9]. As time passes, some initial collab-
orators abandon the project, leaving it converging to a or-
ganizational equilibrium. This leads to a smaller but more
cohesive team which has a more comprehensive knowledge
about the program [6].

A parasite may evolve to become less harmful to

its host: The analogy in this case comes directly from the
learning process in which developers involve when contribut-
ing to a project. The rich interaction with a diversity of con-
tributors and the specialization in determined parts of the
code, lead a developer to gain adaptiveness which eventually
will reduce the number of bugs [11]. Thus, the probability
to harm the repository could decrease.

Transference of genetic material between species:

Social development platforms like Github allow a developer
to contribute to several projects simultaneously. This rep-
resents a rich source of knowledge from which best practices
can be extracted. Once the developer learns and internal-
izes an optimal way to generate a module or functionality,
this expertise can be reused in several other projects that
share the same requirements [13]. Thus, we use the concept
of transference of genetic material to make an analogy with
the transference and reuse of innovation and best practices
between software projects.

3.2 Adaptation of the mutualism model to an
Open Source environment

Given the model based on the modification of the Lotka-
Volterra equations showed in Subsection 2.1, we present the
way in which we relate it to an Open Source environment,
adapting each parameter described in Table 1:

Growth rate: Under biological settings, the growth rate
is related to the reproductive capabilities of the species in-

volved. For the Open Source development environment, we
assume that the growth rates of the developers and project
repositories can be extracted simply by using past data and
calculating the number of given elements per time unit.

Intraspecific competition: The concept of intraspecific
competition deals with the inherent mechanism that rules
the distribution of the resources within a given species. From
an Open Source development perspective, we identify the
two competitions as follows:

(a) Developer intraspecific competition: Although the con-
cept of competition inside an Open Source project does not
sound logical, we can get an estimation using a reputation-
based metric. In that sense, we assume that although de-
velopers behave in a cooperative way, they search for the
recognition of their peers. Given that, the number of fol-
lowers that each developer has can give us a quantitative
value of the reputation. Thus, we state that the degree of
competition is high if the number of followers per developer
is homogeneous. Otherwise, we assume the degree of com-
petition is low (i.e., dominant configuration).

(b) Repository intraspecific competition: Project reposito-
ries need developers to survive. In that sense, we model this
intraspecific interaction as a struggle to catch developers.
Thus, we assume that there is a high degree of competition
when the number of contributors per project repository is
more homogeneous. On the other hand, the competition
coefficient will be lower if the number of contributors per
project repository is more heterogeneous (i.e., following a
Power law distribution).

Per-capita effect: The per-capita effect refers to the
unitarian contribution of one species to the behavior of the
other. In an Open Source environment, we identify and
define this kind of effects as follows:

(a) Developer to repository : It is calculated as the num-
ber of contributions (as commits) produced by a developer.
We assume that adding or changing the code is the way in
which the developer can influence the repository (although
in reality there are other ways such as bug reporting and
community management).

(a) Repository to developer : As we cannot easily get data
about the private use of the knowledge and resources ob-
tained by participating in the project, we focus on the social
dimension of benefit. In that sense, we quantify the number
of followers that a given developer obtained by contribut-
ing a determined project. We assume that the number of
followers is directly related with the reputation that each
developer has.

4. EVALUATION
In this section we provide a detailed overview of the evalu-

ation strategy for the proposed approach. In general terms,
it is based on the comparison of distribution of the popula-
tion of developers and repositories over time obtained from
the model, against the data observed empirically.

4.1 Test Environments
Given the nature of the proposed model, we cannot con-

strain the data to individual projects or developers and treat
them as isolated artifacts. Our approach required as input
environments, which means several repositories and devel-
opers interacting in a networked way.

Github by itself is an OSS environment, but the amount
of data generated everyday makes it difficult to perform a

995



complete analysis. As a way to simplify the process, we
decided to extract samples of the Github environment and
test our approach on them. We called these samples as sub-
environments and the way of extracting them considers the
identification of a seed repository and the extraction of its
contributors, then, a recursive method extracts all the other
repositories in which the identified contributors are working
on. The details are summarized in the following steps:

Seed repository extraction: We chose an initial set
of repositories based on well known popularity and forking
activity. This ensures a good starting point with a consid-
erable level of heterogeneity.

Involved contributors extraction: For each seed repos-
itory extracted, the second step is to collect all its contrib-
utors. A contributor is defined as a developer that has had
at least one commit on a given time period.

Second layer repository extraction: For each contrib-
utor identified in the previous step, all the other repositories
in which he/she has been working on have to be retrieved.

Second layer contributors extraction: For all the
repositories identified in the previous step, all of their con-
tributors have to be collected.

At the end of the sampling extraction process, a set of
sub-environments is obtained, each of them with a subset of
contributors.

4.2 Experiment Design Overview

4.2.1 Data extraction

Having obtained the set of sub-environments from the pre-
vious step, we need to use each of these as sources of empir-
ical data for validating the current approach.

As this experiment is inherently a time-dependent vali-
dation, the elements that conform each sample may vary
over time. The only fixed item is the seed repository, from
which the sample is generated. Thus, for each time instance
selected (i.e. days) all the data has to be collected.

The first step is to extract the data from the Github plat-
form. To do that, a set of scripts that use the API the
Github provides, were written.

The time period for the extraction of the data was set
up from January to June 2013, comprising six months of
activity. The extracted data consists on two main elements:
commit activity (from which rates of contributors can be
extracted) and social activity (from which inter-developer
interaction can be extracted).

All the data grouping was set on a daily basis. That means
that all the parameters shown in Subsection 3.2 were calcu-
lated filtering by day. The number of selected seed repos-
itories was 26, based on the most forked projects on the
platform.

4.2.2 Population calculation

After collecting all the data for each sub-environment and
for each day during the time interval of study, the process
of population obtaining has to be performed. This process
is done in two independent ways:

(a) Based on the Lotka-Volterra mutualistic model: Given
all the parameters calculated for each sub-environment, they
are passed to the model. The analytical solution of the of

ID Seed Repository ID Seed Repository

1 bootstrap 14 CodeIgniter
2 homebrew 15 linux
3 rails 16 phonegap-plugins
4 html5-boilerplate 17 Diaspora
5 hw3rottenpotatos 18 three.js
6 oh-my-zh 19 zf2
7 node 20 jquery-mobile
8 jquery 21 django
9 phonegap-start 22 jekyll
10 impress.js 23 less.js
11 backbone 24 devise
12 d3 25 textmate
13 jquery-ui 26 redis

Table 2: Sub-environments with seed repository

the system of equations showed in 2.1 provides a quantitative
value for the population of contributors for each day.

(b) Direct calculation: This process is based on directly
calculating the frequency of emergence of contributors, based
on the identification of accepted commits.

4.2.3 Statistical Comparison

Having both ways of calculating the population of contrib-
utors over time, the next step is to perform a comparison
between them. An common way to provide a statistical com-
parison that serves as a way to validate the quality of an esti-
mator is to use the Root Mean Squared Error (RMSE) [25],

which is defined as RMSE =
√

1

n

∑n

i=1
(Ŷi − Yi)2, where Ŷ

represents the the vector of n estimated values, and Y is
the vector of the observed values. In order to visualize in a
better way the results, we will use the normalized version of
RMSE, NRMSE = RMSE

∆Y
, where ∆Y represents the range

of observed values of the variable under study.
With the results of this comparison it is possible to decide

if the population for a given sub-environment behaves under
a mutualistic configuration, based on how low the NRMSE
value is.

4.3 Threats to Validity
External Validity: Our study is limited to a sample of

existing repositories on the Github collaborative platform.
There are other platforms in which Open Source artifacts
are currently stored, such as SourceForge or GoogleCode.
Nevertheless, we believe the this platform is representative
of the current status of Open Source [8].

Internal Validity: Our main concern is related to the
data extraction tools developed for conducting the experi-
ments. Although Github provides a rich API, the time limi-
tation on the requests forced us to make some modifications,
such as restarting the extraction process several times.

Construct Validity: In Subsection 3.2 we defined the
way in which the parameters of the standard biological model
should be adapted to a Open Source environment. It is pos-
sible that this adaptation can be achieved in a different way,
obtaining different results. However, adding a social com-
ponent to the metrics, in terms of relating it with the repu-
tation, represent an intuitive attempt, considering that this
is an initial study.

996



For each sub-environment, we solve the differential equa-
tions system using the Scipy1 mathematical library . The
respective value of the parameters were calculated a-priori
for each instance.

Figure 1 summarizes the results showing the values of the
NRMSE for each sub-environment based on the the selected
set of seed repositories. As it can be seen, the majority
of the sub-environments present a low NRMSE value , as
almost 90% of them present a value under or equal to 0.2.
On the other hand, few sub-environments present very high
values, which means that the mutualistic behavior cannot
be inferred.

In that sense, it could be said that, on average, the mutu-
alistic behavior is present on the overall subset of the Github
sub-environment, which means that the level of fitness be-
tween the computed population value and the observed is
considerable.

If we take a look at the set of low NRMSE sub-environments,
a common characteristic between them is that the seed repos-
itory from which the sub-environment was generated, is one
of the commonly called successful OSS projects, such as
Rails and Bootstrap. On the other side, high values of
NRMSE are associated with less known projects, such as
Diaspora. This is an interesting fact that can be related to
the rate of new contributions that the studied environments
have: as a project is important within the community, peo-
ple could tend to focus on trying to become a contributor
to that project, in the sense that 1) she can find a broad
number of problems to work on or 2) a big and successful
project represents a better showcase for showing herself to
the community (reputation-based decision).

Figure 1: NRMSE values for each sub-environment

6. DISCUSSION

6.1 Impact of the programming language un-
der use

We performed a variation in which the sub-environments
are generated by selecting a seed repository that represents
a specific programming language. From it, contributors and
other repositories were extracted, under the condition that
they share the same programming language.

Given the above, five languages were chosen, which led
to five new sub-environments where the approach was con-
ducted. Table 3 summarizes the results for this variation.
1http://www.scipy.org

ID Seed Language No of Projects NRMSE
1 Javascript 67 0.11
2 PHP 51 0.31
3 Python 56 0.179
4 Ruby 33 0.101
5 Shell scripting 11 0.521

Table 3: Normalized Root Mean squared error for

each language-based sub-environment

Interestingly, the condition for mutualism, a low value of
NRMSE, is more accentuated. We theorize that this is be-
cause sharing the same programming language generates a
higher fitness between the contributors and the repositories,
which boots the level of specialization and subsequently re-
duces the number of failed contributions (bugs), producing
a better result in terms of quality. Additionally, the fitness
between developers should be stronger under this configura-
tion, which eventually increases the value of the parameters
related to the intraspecific competition (reputation).

In terms of the values obtained, Ruby presents the lowest
one, closely followed by Javascript, which means the popu-
lation values obtained from the model are closer to the real
observed ones. On the other hand, the value for the Shell
scripting sample shows a value in which it is difficult to state
if the mutualistic behavior is present or not. We relate this
result to the fact the both Ruby and Javascript are languages
widely used and on the Github environment, on the contrary,
Shell scripting is not popular. In that sense, the initial num-
ber of projects that share the same programming language
could impact the performance of the proposed model, in the
sense that having a critical mass with a considerable amount
of heterogeneity improves the coexistence under mutualistic
settings.

One interesting extension for this analysis could be the
study other similarities between the repositories, in order to
get an estimation on how the preferences of the developers
impact the growth of the projects. Besides a language sim-
ilarity, it could be relevant to inspect the domains in which
the software has been used. Additionally, the geographical
location of the contributors could represent another criteria,
as it has been noted in other works [10].

7. RELATED WORK
From the economic perspective, several attempts had been

proposed to understand the nature of the incentives and
the reasons that drive people to contribute in Open Source
projects. Lerner and Tirole noticed the relevance of the
problem, stating that for the traditional economic theory,
the behavior of Open Source contributors was initially startling
[15]. They explored the phenomena from the point of view
of labor economics, trying to identify the main motivations
behind it, using a qualitative approach. In [14], the same
authors deepen by providing more evidence and a hypothe-
sis, specifically focused on trying to understand why private
companies released the code from their commercial prod-
ucts.

Another relevant approach was introduced by von Hippel
and von Krogh [12], where they proposed a combination be-
tween the private investment model of innovation and the
collective action model of innovation to understand the un-
derlying rationality of the phenomena. Similar approaches

5. RESULTS AND ANALYSIS

997



focus on the discovery of the motivations of the developers
[7, 21], using mainly survey-based analysis.

Regarding a more quantitative analysis, the majority of
the research is focused on using Open Source development
platforms to study the reliability of the software. In that
sense, several approaches have been proposed focusing on
the prediction of bug generation and its relation with the
social structure of the community [26, 6] and also the level
of communication [3].

8. CONCLUSIONS AND FUTURE WORK
The proposed approach brings the benefits of explicitly

providing a notion of how the community behaves over time
using a flexible approach based on biological mutualism. To
the best of our knowledge, this is one of the first attempts
to provide a quantitative notion of how the population of
developers evolves over time. This represents a contribution
to the general understanding of the dynamics of collabora-
tive work on OSS projects. It is necessary to improve the
data extraction processes to be able to perform additional
analysis that provides more statistical confidence.

Regarding future work, we propose to improve the the
approach to generate a prediction model from which relia-
bility metrics for Open Source projects could be extracted.
Additionally, it is necessary to perform more analysis on
the interaction dynamics, such the per-capita effect and the
competition between contributors.

9. ACKNOWLEDGMENTS
This work was partially supported by Defense Acquisition

Program Administration and Agency for Defense Develop-
ment under the contract (UD060048AD).

10. REFERENCES
[1] J. Bascompte, P. Jordano, and J. M. Olesen. Asymmetric

Coevolutionary Networks Facilitate Biodiversity
Maintenance. Science, 312(5772):431–433, Apr. 2006.

[2] A. Begel, J. D. Herbsleb, and M.-A. Storey. The future of
collaborative software development. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative
Work Companion, CSCW ’12, pages 17–18, New York, NY,
USA, 2012. ACM.

[3] M. Bernardi, G. Canfora, G. Di Lucca, M. Di Penta, and
D. Distante. Do developers introduce bugs when they do
not communicate? the case of eclipse and mozilla. In
Software Maintenance and Reengineering (CSMR), 2012
16th European Conference on, pages 139 –148, march 2012.

[4] C. Bird. Sociotechnical coordination and collaboration in
open source software. In Software Maintenance (ICSM),
2011 27th IEEE International Conference on, pages 568
–573, sept. 2011.

[5] C. Bird and N. Nagappan. Who? where? what? examining
distributed development in two large open source projects.
In Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pages 237 –246, june 2012.

[6] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and
P. Devanbu. Latent Social Structure in Open Source
Projects. In SIGSOFT ’08/FSE-16: Proceedings of the
16th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 24–35. ACM, 2008.

[7] J. Bitzer, W. Schrettl, and P. J. SchrÃűder. Intrinsic
motivation in open source software development. Journal of
Comparative Economics, 35(1):160 – 169, 2007.

[8] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in github: transparency and collaboration in an
open software repository. In Proceedings of the ACM 2012

conference on Computer Supported Cooperative Work,
CSCW ’12, pages 1277–1286, New York, NY, USA, 2012.
ACM.

[9] P. A. David and J. S. Shapiro. Community-based
production of open-source software: What do we know
about the developers who participate? Information
Economics and Policy, 20(4):364 – 398, 2008.

[10] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer.
Visualizing collaboration and influence in the open-source
software community. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11,
pages 223–226, New York, NY, USA, 2011. ACM.

[11] A. Hemetsberger and C. Reinhardt. Learning and
knowledge-building in open-source communities.
Management Learning, 37(2):187–214, 2006.

[12] E. v. Hippel and G. v. Krogh. Open source software and
the ”private-collective” innovation model: Issues for
organization science. Organization Science, 14(2):209–223,
Mar. 2003.

[13] B. Kogut and A. Metiu. Open source software development
and distributed innovation. Oxford Review of Economic
Policy, 17(2):248–264, 2001.

[14] J. Lerner and J. Tirole. The economics of technology
sharing: Open source and beyond. Working Paper 10956,
National Bureau of Economic Research, December 2004.

[15] J. Lerner and J. Triole. The simple economics of open
source. Working Paper 7600, National Bureau of Economic
Research, March 2000.

[16] P. Loyola and I.-Y. Ko. Biological mutualistic models
applied to study open source software development. In Web
Intelligence and Intelligent Agent Technology (WI-IAT),
2012 IEEE/WIC/ACM International Conference on, 2012.

[17] R. M. May. Mutualistic interactions among species. Nature,
296(5860):803–804, 1982.

[18] A. Meneely and L. Williams. Secure open source
collaboration: an empirical study of linus’ law. In
Proceedings of the 16th ACM conference on Computer and
communications security, CCS ’09, pages 453–462, New
York, NY, USA, 2009. ACM.

[19] J. Ollerton. Biological Barter: patterns of specialization
compared across different mutualisms., pages 411–435.
University of Chicago Press, 2006.

[20] C. Rodriguez-Bustos and J. Aponte. How distributed
version control systems impact open source software
projects. In Mining Software Repositories (MSR), 2012 9th
IEEE Working Conference on, pages 36 –39, june 2012.

[21] S. K. Shah. Motivation, governance, and the viability of
hybrid forms in open source software development.
Management Science, 52(7):pp. 1000–1014, 2006.

[22] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng.
The impact of social media on software engineering
practices and tools. In Proceedings of the FSE/SDP
workshop on Future of software engineering research,
FoSER ’10, pages 359–364, New York, NY, USA, 2010.
ACM.

[23] J. N. Thompson. The geographic mosaic of coevolution.
University Of Chicago Press, 1 edition, June 2005.

[24] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software
innovation: a case study. Research Policy, 32(7):1217 –
1241, 2003.

[25] W. W.-S. Wei. Time series analysis. Addison-Wesley
Redwood City, California, 1994.

[26] T. Zimmermann and C. Bird. Collaborative Software
Development in Ten Years: Diversity, Tools, and Remix
Culture. In Proceedings of the Workshop on The Future of
Collaborative Software Development, 2012.

998




