The COMPOSE API for the Internet of Things

Juan Luis Pérez, Alvaro Villalba and
David Carrera
Barcelona Supercomputing Center (BSC)
Universitat Politecnica de Catalunya -
BarcelonaTech (UPC)
{juan.perez,alvaro.villalba,david.carrera}@bsc.es

ABSTRACT

The COMPOSE project aims to provide an open Marketplace for
the Internet of Things as well as the necessary platform to support
it. A necessary component of COMPOSE is an API that allows
things, COMPOSE users and the platform to communicate. The
COMPOSE API allows for things to push data to the platform,
the platform to initiate asynchronous actions on the things, and
COMPOSE users to retrieve and process data from the things. In this
paper we present the design and implementation of the COMPOSE
API, as well as a detailed description of the main key requirements
that the API must satisfy. The API documentation and the source
code for the platform are available at [9].

1. INTRODUCTION

The Internet of Things (IoT) is composed of objects, either con-
nected to the Internet or not. The COMPOSE project aims to provide
a technological platform for easily creating services based on the
Internet of Things (IoT), thus unleashing the full potential of an
Internet of Services (I0S) based on the IoT. As a consequence the
simplification of the ingestion (get data produced by a sensor stored
and processed on real time), advertisement (allow for discovery
of objects), location (transparently reaching devices) and compo-
sition (aggregate data of multiple devices) of Internet-connected
objects lies in the forefront of the COMPOSE requirements. The
COMPOSE project brings a number of components, such as a GUI,
a semantic registry, a cloud runtime, and some communication li-
braries among others. In this paper we focus on the COMPOSE
data plane [9]], which is responsible for managing data storage and
processing.

The main focus of the COMPOSE data plane is to provide a rich
set of features to store and process data through a simple REST API,
allowing objects, services and humans to access the information
produced by the devices connected to COMPOSE. The platform
described on this paper allows for a real time processing of device-
generated data, and enables for simple creation of data transforma-
tion pipelines using user generated logic. Unlike traditional service
composition approaches, usually focused on addressing the prob-
lems of functional composition of existing services, one of the goals
of the COMPOSE data plane is to focus on data processing scal-
ability. Other components within the COMPOSE project provide
added capabilities to automatically create compositions of high-level
services using existing tools [[18].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW’14 Companion, April 7-11, 2014, Seoul, Korea.

ACM 978-1-4503-2745-9/14/04. http://dx.doi.org/10.1145/2567948.2579226.

971

Iker Larizgoitia and Vlad Trifa
Evrythng
{iker,vlad}@evrythng.com

The approach to the IoT taken in COMPOSE is the one known as
the Web of Things (WoT), where objects are able not only to com-
municate among themselves, but also they do so utilizing standard
web-enabled protocols. Therefore, to communicate with the COM-
POSE platform, objects need to be web-enabled (either directly
or by using a proxy), and they have to implement the COMPOSE
specific protocol to be integrated in the platform.

The Web of Things is a viable solution to build more scalable,
open, and flexible IoT applications for various reasons: First, native
integration of devices (as opposed to only integrate their data or
using a Web page to control them) allows treating devices and their
services just like any other Web resource; Second, native integration
diminishes the costs to network heterogeneous devices as the Web
infrastructure is already in place: HTTP is a highly versatile and
omnipresent protocol thanks to its simplicity, powerful and scalable
Web servers are freely available as open-source projects, HTTP
clients and libraries exist for virtually any programming language
and platform; And finally, Web applications are often simpler and
faster to develop than classic desktop software applications. Current
software for real-world integration and business applications are
tailored for specific use cases, thus are often too rigid and closed to
be customized by end-users easily.

Any Object which is web-enabled and implements the COM-
POSE communication protocol is known as a Web Object (WO).
All WOs will hold a virtual identity in COMPOSE, named a Service
Objects (SO). SOs are standard internal COMPOSE representations
of physical objects. COMPOSE specifies a SO API to communi-
cate with WOs through the platform. The SO API is also exposed
internally towards the rest of the components within the COMPOSE
platform.

Service Objects can be used as mere data endpoints for WOs,
but at the same time they can be used to aggregate and combine
data coming from different SOs, creating dataflows that are exposed
to the users. For instance, a Service Object could be created and
deployed to represent aggregated operations across other existing
SOs (e.g. calculating the maximum temperature across a large
number of existing sensors registered in the platform).

Figure [I] provides a visual description of the different entities
involved in the COMPOSE platform, where Things, end users and
developers create an IoT ecosystem based on the Internet of Services.
In this paper we will focus on the Service Objects abstraction, de-
scribing the API that gives access to them as well as the design and
implementation of the back-end that sits behind the API front-end.

The API documentation and the source code for the platform are
available at [9].

The rest of the paper is structured as follows: Section[2]describes
de core virtual identity in COMPOSE, which are the Service Objects;
Section |3 elaborates on the design of the COMPOSE platform;

Open Marketplace

Objects

— pofe - -
Users o
po e —
GenIeE”

8 e
Business :39{ -
X L)
! L @ ID. o
7 y p d 'D

Developers

Figure 1: COMPOSE platform

Section [introduces the Service Objects API; Section[3]describes
the processing pipeline that resides at the core of Service Objects;
Section[f]discusses the implementation of the APT operations; and
finally Section[7]provides a brief discussion on existing related work,
and Section 8] provides some conclusions on the presented work.

2. SERVICE OBJECTS

COMPOSE assumes that each physical object (e.g. a smartphone)
has different sensors (temperature, GPS, accelerometer...), and each
sensor produces data that has one to several dimensions (e.g. wind
speed has two dimensions: direction and strenght). Service Objects
are the virtual representation of a physical object, and they exist
in the COMPOSE platform. Every time one of the sensors of the
physical object produces a new reading, it results in a sensor update
(SU) being sent to the COMPOSE platform, and it is digested and
processed by the Service Object associated to the physical object.
In this virtual representation, each sensor is mapped to a sensor
stream, and each sensor update contains a set of dimensions, known
as channels in COMPOSE. So a Service Object can be seen as a
virtual entity which has different streams (as many as sensors) and
each stream produces updates composed of a tuple of channels.

Each SO deployed in the COMPOSE platform is internally stored
and described as a JSON document which contains all the necessary
information to provide the data processing logic encapsulated in the
SO. The processing logic is expressed using basic logical, string and
arithmetic operators. The sources of data for the data processing
logic can be Sensor Updates generated by a WO or SO, as well as
the result of queries for data stored in the back-end. The commu-
nication between the different SOs in the data pipeline is driven by
events, and the connections between them to create data paths is
built through the use of subscriptions. SOs are deployed into the
COMPOSE platform and later on accessed using a RESTful APL

Figure [2] illustrates an example in which one Web Object con-
nected to the COMPOSE platform pushes data to be stored and
processed. The WO is a SmartPhone with GeoLocation capabilities
(e.g. GPS enabled). The WO sends a Sensor Update (SU) to the
platform everytime that wants to get its position reported. The SU is
received in the platform through its virutal counter-part: the Service
Object (SO). The COMPOSE web-based protocol is used through
the SO API to push the SU into the platform. At that point, the plat-
form determines that there is another SO which is subscribed to the
data produced by the SmartPhone. As such, it is subscribed to the
data ingested by the first SO. The platform takes care of forwarding
the SU to the second SO in the pipeline. The functionality of the
second SO is to provide GeoFencing (e.g. determining whether a de-
vice is inside of a virtual fence defined by four different geographic

972

SU: True

Logic: Is inside
GeoFence?
Location e

SU: False
Figure 2: Service Objects example

coordinates). When the second SO gets the SU forwarded, it runs
the SU information through its processing logic pipeline and emits
another SU, this time containing a boolean value that takes value
true when the SmartPhone position is located within the GeoFence.
Note that this second SO provides data processing logic within the
COMPOSE data plane, and that any external users, services or en-
tities can decide to subscribe the second SO to obtain GeoFencing
information about the SmartPhone.

The description of the SO includes a processing pipeline com-
posed of different stages that need completed everytime that a Sensor
Update is received by the SO. They include input and output data
filtering, queries to the back-end and data transformation among
others. The COMPOSE platform is responsible to parse the SO
description and turn it into a computing entity within the data inges-
tion pipeline. Internally, the SO logic can access the data contained
in the SUs through JSONPath [13]] expressions.

When a new SO is deployed it will is connected to the other SOs
to which it is subscribed to build new data paths, and depending
on its definition, a background process will be initiated to compute
the expected SO outputs for any historical data that is available in
the platform for the SOs to which it is connected. This background
process will generate the data following a lazy approach and always
according to the data processing modifiers found in the SO descrip-
tion. Such modifiers can be leveraged by the COMPOSE platform
administrators according to their business models, as well as by
privacy observers to regulate and enforce data storage policies.

3. DESIGN PRINCIPLES

Service Objects can subscribe to data streams from other SOs and
perform some computation on them, following the data processing
logic provided by COMPOSE developers. Their output is also a
set of data streams that can be accessed by other Service Objects
as well. The streams generated from a SO can be seen as a set
of variables whose values are calculated in function of other SO
streams. If a SO stream is a source of data for another SO stream,
whenever the source stream emits a new Sensor Update (SU) hich
actually is a JSON document according to the Web Streams Protocol
defined hen the SO streams will update their value and potentially
emit a new SU. Internally in the COMPOSE platform a SO is a
description document (JSON) that defines the behaviour of the
SO as a response to new inputs. The SU produced by a SO is
derived from its inputs by using algebraic, boolean, array and string
operations. The COMPOSE GUI and SDK will provide means to
create SO description documents within the COMPOSE platform
using visual tools. The composition of different data sources will
take place through the GUI and will directly translate into the SO
elements that will be later on parsed and processed in real-time by
the platform.

The design of the SO is intended to be extremely scalable. As
such, it follows three key design principles: it is event-driven, lock-
free and stream-oriented. To design a system that is event-driven
and stream-oriented, each SO is responsible to produce one output
(a SU) every time that one input (another SU) is received.

\Subsnplion

- - —_—

Queries
b4
4

Figure 3: SO data flow design model

From the point of view of the COMPOSE platform, the SUs
that any SO generate are spontaneous, as they are triggered by
events generated from outside the platform by WOs that are not
under control by COMPOSE. This fact poses a design challenge, as
multiple SUs (inputs) are required by one SO to produce another
SU (output), while not all inputs will reach the SO synchronously
because the WOs are not synced in any way. Even more, the SOs
that will trigger the execution of multiple SOs may not even know
the existence of other SOs needed by the SOs found deeper in the
pipeline. See for instance the case presented in Figure[3] in which
one SO produces outputs that are based on the information generated
by three different SOs. The SO is subscribed to the three SOs, so
whenever one of the three SOs produces a new SU (as a result of
a WO sending data to the platform), the SU will be forwarded to
the SO that in turn will have to produce another SU, generated as a
result of the customized data processing logic embedded in the SO.
Any of the SOs can be triggering the action (SO1, SO2 or SO3), but
data from all of them will be needed to produce the output. As it is
desired to keep the system lock-free, the data flow model proposed
in this document assumes that the SO will have two different sources
of data: SUs originated somewhere within the COMPOSE platform
and forwarded to the SO, and data being requested by the SO to
other components of the COMPOSE platform. The former means
that one SO is subscribed to other SOs, which in turn generate SUs
that are forwarded to the subscribed SO. The latter means that the
SO can pull data stored for other COMPOSE SOs that will be used
to produce the output. Both models are needed to produce an output.
As an example, Figure 5 illustrates the case of a SO that needs
to access data from three different SOs to produce an output. In
particular, in the case that a SU from SO2 is received, the SO will
query data associated to SO1 and SO3 to produce a new SU.

Each SO deployed in the COMPOSE platform is internally stored
and described as a JSON document which contains all the necessary
information to provide the data processing logic encapsulated in the
SO. The processing logic is expressed using basic logical, string and
arithmetic operators. The sources of data for the data processing
logic, as it was discussed before, can be Sensor Updates generated
by a different SO, as well as the result of queries for data stored in
the back-end. The communication between the different SOs in the
data pipeline is driven by events, and the connections between them
to create data paths is built through the use of subscriptions.

The description of the SO includes a processing pipeline com-
posed of different stages that need completed everytime that a Sensor
Update is received by the SO. They include input and output data
filtering, queries to the back-end and data transformation among
others that will be described in more detail later in this document.
The COMPOSE platform is responsible to parse the SO description
and turn it into a computing entity within the data ingestion pipeline.
Internally, the SO logic can access the data contained in the SUs
through JSONPath [13]] expressions.

When a new SO is deployed it will be connected to the SOs to
which it is subscribed to build new data paths, and depending on
its definition, a background process will be initiated to compute the

973

operatioh Target URI Role
Create a new SO posting a
Create POST// JSON document.
. Retrieve the list of all the
Retrieve | GET/ SOs created.
. Retrieve attributes from the
< > . .
Retrieve | GET|/<soId <S0_Id> Service Object.
Update | PUT//<soId> Modify the <50_Id> Ser-
viceObject.
Delete DEL /<sold> Del.ete the <S0O_Id> Service
Object.
. GET /<soId> | Retrieve the list of all the SO
Retrieve
/streams streams.
POST /<so01d> | Subscribe the Service Ob-
Create /streams/ ject <soId> to a service
<streamId> posting a subscription JSON
/subscriptions document.
PUT /<sold>
/streams/ Store <soId> data puting a
Update <streamId> JSON document.
/store.data
GET /<so0Id> | Retrieve the list of all the
Retrieve | /streams/ data of <soId> Service Ob-
<streamId> ject.

Table 1: API operations

expected SO outputs for any historical data that is available in the
platform for the SOs to which it is connected. This background
process will generate the data following a lazy approach and always
according to the data processing modifiers found in the SO descrip-
tion. Such modifiers can be leveraged by the COMPOSE platform
administrators according to their business models, as well as by
privacy observers to regulate and enforce data storage policies.

In the process of data transformation, the COMPOSE platform
will track the data manipulation actions that take place and will
enrich the data being ingested with provenance information that will
later be leveraged to enforce security and privacy rules.

4. API

Service Objects are exposed through a RESTful API that uses
HTTP as a transport and that acts as the SO front-end. This basically
implies that SOs can be identified unambiguously using uniques
URIs. The API provides resource actuations through the four main
HTTP operations: GET (retrieve), POST (create), PUT (update) and
DELETE. Table [T] summarizes the COMPOSE Service Objects API.
In the table, sold represents the unique ID associated to each Service
Object registered in the platform.

SOs are created by POSTing a JSON document to the |/ resource.
The document is a basic description of the main properties of the
Service Object about to be created. The following example illus-
trates the case of a SmartPhone object enabled with three different
sensors (GPS location, Microphone and Temperature Sensor), each
one becoming a stream of data in the SO abstraction. The device is
also presenting the capability to be activated through the platform:
when the vibrate action is invoked on it, the device will vibrate to
notify something to the user carrying it. Note that some other fields
exist in the complete version of the Service Object description, but
it have been shortened in this example for the sake of clarity.

POST /
Accept: application/json
Content-type: application/json

/
/
/<soId>
/<soId>
/<soId>
/<soId>/streams
/<soId>/streams
/<soId>/streams/<streamId>/subscriptions
/<soId>/streams/<streamId>/subscriptions
/<soId>/streams/<streamId>/subscriptions
/<soId>/streams/<streamId>/subscriptions
/<soId>/streams/<streamId>/store.data
/<soId>/streams/<streamId>/store.data
/<soId>/streams/<streamId>/store.data
/<soId>/streams/<streamId>/store.data
/<soId>/streams/<streamId>
/<soId>/streams/<streamId>
/<soId>/streams/<streamId>
/

{ "name":"user21",
"description":"Smartphone of user2l in deployment",
"streams": [
{ "name":"location",

"channels": [{"name":"lat"}, {"name":"lon"}],
"description":"Outdoor location of the smartphone"
1,
{ "name":"microphone",
"channels": [{"name":"noise"}],
"description":"Quantity of noise"
},

{ "name":"temperature",
"channels": [{"name":"temp"}],
"description":"Phone temperature"
}
1,
"actions": ["vibrate"]

}

The corresponding response message contains the field "id" that
is the unique identifier of the SO within the COMPOSE platform
(the <soId> specified in Table[T). The response also contains the
list of the <streamsId> in the field "streams".

{ "id": "13740600949717e0426e5fdf34e69982aa00b865"
"name": "user21",

"createdAt": 1379402251644,

"updatedAt": 1379402251644,

"description": "Smartphone of user2l in deployment",
"streams": ["location", "microphone", "temperature"],
"actions": ["vibrate"]

Requesting the list of all the <soId> streams would result in the
following JSON document as a response for the particular example
of the SmartPhone.

{ "streams": [

{ "name": "location",
"channels": ["lat", "lon"],
"description": "The location of the samartphone."
})
{ "name": "microphone",
"channels": ["noise"],
"description": "Quantity of noise"
1,
{ "name": "temperature",
"channels": ["temp"],
"description": "Phone temperature",
1

As discussed in Section2]a SO update is actually a JSON doc-
ument containing, among other information, a tuple of values that
correspond to the channels of a device sensor, what is represented
as a stream in the SO representation.

An example of pushing data from the SmartPhone to its corre-
sponding SO counter-part is achieved by submitting the follow-
ing JSON data in the body request for the |/<soId>/streams/
<streamId>/store.datalurl. The <soId> would be obtained
from the previous creation of the SO. streamId should be picked
from the list of streams existing in the SO description. In this ex-
ample, temperature data is being pushed to the platform. As it can
be observed in the following JSON document, the information for
the temp channel, which is associated to the temperature stream,
includes the actual temperature value as well as other information
such as units, update time and a series of custom fields that the WO
can decide to add when generating the SU for future reference.

974

{ "channels": [

{ |Ina].ne|l . "temp" s
"current-value": 22.58,
"type": "numeric",
"'Llnit" . ||m/52||

} I,

"name": "temperature",

"lastUpdate": 194896800,

"customFields": {
"covered-period": "24h",
"averageLastHour": 32,
llrisk" B lllowll ,
"averageLastDay": 42

To retrieve and delete a SO, the corresponding operation can be
invoked for each <soId> URL. For the former a response JSON
document describing the success of the operation is generated, as
well as a 200 HTTP status code. For the latter, a new SO description
must be associated to the PUT HTTP operation on the <soId>
URL, resulting in the SO description being updated and a response
generated analogously to the SO creation case described above.

Finally, retrieving data associated to a SO stream results in a
JSON document containing an array of all the tuples stored for this
stream.

The creation of subscriptions is at the core of the COMPOSE
platform and allows for the definition of data processing paths that
are followed by SUs being generated by external WOs and after-
wards ingested by the platform. Subscriptions can be internal (when
one SO wants to get SUs generated by other SOs to be forwarded
to it), or external, when entities outside of the COMPOSE plat-
form wants to be notified about any SUs produced by one particular
SO. The following example illustrates the case of an external URL
(http://external.eu/process) that wants to be used to forward
SUs generated by the SO with ID <sold>. Note how the subscription
document includes the URL and the HTTP method to be used to
forward the data to the external entity.

POST /<sold>/streams/<streamId>/subscriptions HTTP/1.0
Accept: application/json
Content-type: application/json

{

"type":"http.callback",
"callbackUrl":"http://external.eu/process"
"method" : "POST"

}

5. PROCESSING PIPELINE

One of the features the SO is the capability to transform (aggre-
gate, merge, filter, join among other possibilities) SUs generated
by one or several sources, and generate new ones as a result of the
transformation. For that purpose, the declaration of the SO transfor-
mation logic is similar to the structure of a SU. It contains streams
with channels, and each channel contains a so-called current-value
field that represents the output value that the SO will emit after
ingesting a new SU, assuming that the output is not filtered. In a
SO document, the content of the current-value field is a JavaScript
variable assignment using any mix of basic operator and functions
from the Math object, String object, Array object, as well as short-
hand conditional expressions (a =b ? true : false). The result of the
assignment to current-value will always be numeric, a Boolean, a
string or an array of the previous types.

Once a SU reaches a SO, it goes through a number of stages in
order to transform it into a new output SU. This process of ingesting

/<soId>/streams/<streamId>/store.data
/<soId>/streams/<streamId>/store.data
http://external.eu/process

Figure 4: Service Object Processing Pipeline

a SU and processing it until a new SU is produced is the processing
pipeline of the SO, which is illustrated in FigureEl

First of all, when the SO receives a SU from a source to which it
is subscribed, it may need access to the data stored for other data
sources involved in the data transformation, such as other SOs. This
is the querying stage, in which the SO queries its sources and makes
data available for the rest of the stages, altogether with the original
SU. While this stage is the first one, it may happen that queries are
implicitly present in any of the other stages, as the SO may need to
access data from other COMPOSE components at any stage.

The following stage is the compilation of all JSONPath expres-
sions used in the SO description and will replace the JSONPath
expressions in the SO definition with the actual data that they are
pointing to in the SUs.

Next stage is the aliases replacement. Now that all the JSONPaths
in the aliases values are processed, the aliases appearing in the SO
definition are replaced by their values.

The definition of the SO, which depends on the incoming data, is
now completed. The following stages are related only to the trans-
formation of the incoming data to create new one. For that purpose
the SO enters the pre-filtering stage, in which the SUs are discarded
if the pre-filter assertion is false, and no further stages would follow.
The goal of this filter is to avoid any further transformation in case
that the input data is invalid.

Once the SUs have been validated then the SO can start with the
data transformation process. Data transformation is performed by
taking all the SUs extracted from all the SO sources, and operating
on their associated data using JavaScript algebraic operations and
its Math object functions, String object operations, Array object
operations, and boolean operations, to finally obtain a single value
for the new SU.

After transformation, another filtering step follows, the post-
filtering stage. The SU resulting from the transformation is eval-
vated, and in case the SU does not pass the assertions the whole
process halts, the data is discarded and there no more processing
follows.

Finally, the generated SU gets stored and emitted to the SO sub-
scribers. Additionally, in this final stage, actions to be sent back to
SOs are triggered. Such actions will end up being sensor actuations
that will be driven through the WOs that embed the actual physical
objects. A comprehensive log of SO invocations will be maintained
at all times.

In COMPOSE, basic physical object actuation is driven through
SOs. When a SO gets an action invoked through the SO actions
API, the action is initiated to on the corresponding WO, that will
act as a proxy for the physical actuator. If a user needs to be able
to manually request the execution of a composite action (involving
multiple SOs), it is necessary to create a SO that includes the desired
action and references to the individual SOs representing each of the
physical objects to be actuated, so that the composite action can be
properly triggered.

975

‘Subscription
Dispatcher

Store
(pubiic)

AP (public/private)

CouhBase
(Object Registry and
Repository)

Store
(private)

Figure 5: API implementation diagram

The following section of a SO descriptor illustrates the case of
a SO that takes as inputs SU that are temperature reads in Fahren-
heit degrees and produces outputs that are temperatures in Celsius
degrees if and only if the temperature is below 0°C. Note how the
current-value of the stream is calculated first by transforming the °F
into °C, and afterwards a post-filter is used to discard any outputs
that would correspond to positive temperatures.

"streams":{
"frozencelsius": {
"channels": {
"temp": {
"current-value": "($.current-value - 32) / 1.8",
"post-filter": " ({$.current-value} < 0)"
}
}
}
¥

6. IMPLEMENTATION

The COMPOSE platform will leverage different components to
implement data paths between SOs. In particular it will consist
of a web Front-End (RESTful API) and a data Back-End (Couch-
Base [3]]) in which both the SO data and metadata will be stored,
being the former the SO data repository and the latter the SO reg-
istry. As the system will be oriented to IoT stream processing, the
central data ingestion component will be a scalable stream ingestion
topology (STORM [10]) that will process incoming SUs in real
time while dispatching subscriptions and queries. For advanced
text-based search, the data back-end will be connected with a search
engine platform (ElasticSearch [4]). The subscription components
in COMPOSE are planned to be replaced by robust solutions al-
ready existing such as message dispatching engines such as Apache
ActiveMQ [1]] for multi-protocol support (e.g. WebSockets [12]] or
MQTT [5]]) or pubsubhubbub [[7] for HTTP callbacks. Additionally,
there is a planned future integration with the semantic registry [[18]]
using Atom [/14] feeds.

This section provides details about the implementation of the
APL Figure[J]illustrates the different building blocks that are part
of the COMPOSE SO API implementation as well as the data flow
across them. The remainder of the section provides a step by step
description of the data flow followed by SUs reaching the system.

In a first step, a SU is sent to the API by an external entity through
the update call of a stream. This call will contain headers to be able
to validate the provenance of the SU by the security module.

Once validated, in the second step, the API component will put
a tuple in a distributed queue system with the SU, its destination
information and an generated unique operation id . Then the data is
stored in CouchBase and the operation id is also stored. After that,

the API can return a 200 code to the client. The order of the four
stages of the second step is relevant, because the computation of the
SU in the next step of the Service Dispatcher will only begin when
the operation id received can be read from CouchBase. This way
we guarantee that the data is stored when the 200 is sent, and at the
same time minimize the cases in which the store is performed and
the data is not processed if there is a failure in between.

The Service Dispatcher (running in Storm) is constantly polling
tuples from the distributed queue system (Kestrel). As mentioned
before, the first thing done after receiving the tuple is checking the
operation id in the database. If the operation id is not there yet, then
the tuple is returned to the queue and will be retrieved again latter.
This whole process has a timeout assigned to each tuple. Assuming
that the retrieved tuple has its operation id written in the database,
the Service Dispatcher requests the subscriptions to the SU in the
tuple, parse them and dispatches the SU to the subscribers. The
subscribers can be external entities like HTTP servers, or the SO
runtime, as it can be seen in step 3.

The SO runtime follows the pipeline exposed in Section [6] by
requesting the destination SO document and the needed other last
SUs to the API. For each SU generated in the pipeline, a new tuple
with an operation id will be sent to the Service Dispatcher queue
system. Following the same order as in the step two, step four stores
the SU and the operation id to the database through a private call to
the APL.

7. RELATED WORK

In the domain of real-time stream processing, two popular alter-
natives exist. One of them is the Storm Project [10], a distributed,
reliable, and fault-tolerant stream processing system, which was
open sourced by Twitter after acquiring BackType. Distributed
by the Apache Software Foundation, Apache S4 [2] is the data
streaming alternative, supported mainly by Yahoo.

Sentilo [8] is platform developed for similar purposes to the
COMPOSE data plane. Although its goals are similar, it is more
biased towards the storage of data than on the data processing itself,
providing a simple set of interfaces to the creation of data processing
agents. Composition of user deployed agents is not clear.

In the scope of service composition, several efforts can be found
in the literature [[15]],[[16]],[17]]. Most of them target the creation of
functional workflows by reusing existing services, but usually they
don’t put the focus on scalability of data flows. The COMPOSE
platform targets the creation of an execution environment for user-
deployed code that allows composition but that is completely driven
by the scalability and efficiency requirements of an Internet-scale
service for the [0T. It possibly has more in common with the Twitter
architecture, as tweets and sensor updates don’t differ by that much,
than to the traditional approach used by the service composition
community.

The data plane in COMPOSE is not intended to exist in isola-
tion, but it is expected to be complemented by other components
that mainly fall in two major categories: those that allow for a
graphical creation of processing graphs and those created to allow
the connection with a large number of low-level specific protocols
used by devices. The most prominent example for the former cat-
egorie is Node RED [6], which allows for the visual creation of
data processing pipelines: the COMPOSE platform can act as the
high-performance execution platform for data flows created in Node
RED. A representative example of the latter category is thethingsys-
tem [/11]], which allows for a simple connection to many well known
devices, and provides an architecture that allows for a direct connec-
tion to the COMPOSE platform once the corresponding plug-in will
be developed.

976

8. CONCLUSIONS

In this paper we have introduced the COMPOSE API for Ser-
vice Objects, from the specification of the existing methods and
operations to the details of the actual implementation using stream
processing technologies. The Service Objects abstraction represent
the virtual counter-parts of any existing physical device. Service
Objects API provides the interfaces to store, retrieve and process
data associated to one physical device. They are also used to dynam-
ically construct the COMPOSE data plane that can ingest, transform
and output sensor updates as they arrive into the platform. Although
we do not include performance numbers about the current imple-
mentations, this space is currently under evaluation, both in terms
of latency and scalabiliy of the systems.

Acknowledgments

This work is partially supported by the Ministry of Science and
Technology of Spain under contract TIN2012-34557, by the BSC-
CNS Severo Ochoa program (SEV-2011-00067), and by the by the
European Commission IST activity of the 7th Framework Program
under contract number 317862 (COMPOSE).

9. REFERENCES
[1] Apache activeMQ, http://activemq.apache.org
[2] Apache S4, http://incubator.apache.org/s4
[3] CouchBase, http://couchbase.com
[4] ElasticSearch, http://elasticsearch.org
[5] MQTT, http://mqtt.org
[6] Node RED, http://nodered.org/
[7] PubSubHubBub,

https://code.google.com/p/pubsubhubbub/

[8] Sentilo, http://sentilo.io
[9] servIoTicy, http://www.servioticy.com

[10] Storm, http://storm-project.net

[11] the thing system, http://thethingsystem.com

[12] The webSocket API,
http://dev.w3.org/html5/websockets

[13] Goessner, S.: JSONPath (2007),
http://goessner.net/articles/JsonPath

Gregorio, J., de hOra, B.: The Atom Publishing Protocol.
RFC 5023 (Proposed Standard) (2007),
http://wuw.ietf.org/rfc/rfc5023.txt

Pautasso, C.: Composing restful services with jopera. In:
Bergel, A., Fabry, J. (eds.) Software Composition, Lecture
Notes in Computer Science, vol. 5634, pp. 142-159. Springer
Berlin Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02655-3_11
Pautasso, C.: RESTful web service composition with BPEL
for REST. Data Knowledge Engineering 68(9), 851 — 866
(2009), http://www.sciencedirect.com/science/
article/pii/S0169023X09000366, sixth International
Conference on Business Process Management (BPM 2008)
Pautasso, C., Wilde, E.: Push-enabling restful business
processes. In: Proceedings of the 9th International Conference
on Service-Oriented Computing. pp. 32-46. ICSOC’11,
Springer-Verlag, Berlin, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-25535-9_3
Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky,
J., Domingue, J.: iserve: a linked services publishing platform.
In: The 7th Extended Semantic Web Ontology Repositories
and Editors for the Semantic Web Workshop. vol. 596 (June
2010), http://oro.open.ac.uk/23093/

[14]

[15]

[16]

(17]

(18]

http://activemq.apache.org
http://incubator.apache.org/s4
http://couchbase.com
http://elasticsearch.org
http://mqtt.org
http://nodered.org/
https://code.google.com/p/pubsubhubbub/
http://sentilo.io
http://www.servioticy.com
http://storm-project.net
http://thethingsystem.com
http://dev.w3.org/html5/websockets
http://goessner.net/articles/JsonPath
http://www.ietf.org/rfc/rfc5023.txt
http://dx.doi.org/10.1007/978-3-642-02655-3_11
http://www.sciencedirect.com/science/article/pii/S0169023X09000366
http://www.sciencedirect.com/science/article/pii/S0169023X09000366
http://dx.doi.org/10.1007/978-3-642-25535-9_3
http://oro.open.ac.uk/23093/

	Introduction
	Service Objects
	Design Principles
	API
	Processing Pipeline
	Implementation
	Related Work
	Conclusions
	References

