
The W3C Web Cryptography API: Motivation and Overview

Harry Halpin
World Wide Web Consortium

Massachusetts Institute of Technology
Cambridge, MA, USA

hhalpin@w3.org

ABSTRACT

The W3C Web Cryptography API is the standard API for access-

ing cryptographic primitives in Javascript-based environments. We

describe the motivations behind the creation of the W3C Web Cryp-

tography API and give a high-level overview with motivating use-

cases while addressing objections.

Categories and Subject Descriptors

C.v2.0 [Computer-Communication Networks]: General

Keywords

Web, cryptography, W3C, API, Javascript, standards

1. INTRODUCTION
The World Wide Web Consortium (W3C) has commenced work

on the Web Cryptography API [5], which defines cryptographic

primitives to be deployed across browsers and native JavaScript en-

vironments. This API is being driven by all major browsers with a

process being open to the wider community. The API has made a

number of well-motivated design choices about how to best expose

cryptographic functionality to Web application developers. In Sec-

tion 1 we will discuss the motivation of the API and describe how

it fits into the (still evolving) Web security model. Next in Section

2, we review the use-cases that motivate the work. Then in Section

3, we will overview the API itself, followed by details in Section

4. Finally, in Section 5 we will outline future research issues. This

paper is unusual insofar as its final product, the Web Cryptography

API, is still open for comment. Yet it is precisely for these reasons

that the W3C would like to ensure wider input from the developer

as well as security community at this stage. We do not expect the

core design of the API to change, although it will continue to evolve

as the Web itself evolves.

2. MOTIVATION AND OBJECTIONS
There has been recently a rebirth of interest in cryptography in

the browser environment. As an increasing number of applications

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579224 .

transition to the Web, the need of ordinary users to have more se-

cure Web applications has increased and Web developers are at-

tempting to match those expectations. Positively, new kinds of se-

cure Web applications that could handle high-value data present

tremendous opportunities; yet simultaneously Snowden’s revela-

tions around the pervasive surveillance by the NSA have highlighted

the lack of confidentiality of the current Web. A new kind of Web

based on secure communication is desperately needed.

However, without the proper cryptographic primitives working

cross-browser realizing such a Web is impossible. For example, the

‘Cryptocat’ encrypted chat application initially not only recreated

their own cryptographic routines in JavaScript but also deployed

these JavaScript libraries insecurely.1 After a public workshop in

2012,2 the W3C decided to charter the creation of a unified Web

Cryptography API. The W3C Web Cryptography API has as its

mission to give Web application developers the ability to write Web

applications that use cryptography by exposing the cryptographic

primitives already implemented in the browser to the Javascript run-

time environment.

Is JavaScript cryptography doomed on the Web? Objections

to cryptography in JavaScript within web browsers has been dis-

cussed in a number of blog-posts such as “JavaScript Cryptography

Considered Harmful.”3 These objections can generally be phrased

as objections to implementing any cryptosystem securely within

JavaScript, the general security of the Web itself, or the ‘host-based

security’ of the Web security model. Each objection will dealt with

in turn.

2.1 JavaScript Cryptography
There is no a priori reason why cryptographic primitives can

not be programmed in JavaScript, as exemplified by the Stanford

JavaScript Crypto Library [6].4. Due to TLS,5 every major web

browser and operating system already contains well-verified and

reviewed cryptographic algorithms. In the case of Mozilla and in

some versions of Chrome, this exists in NSS.6 Other browsers, such

as Safari and Microsoft Internet Explorer, calls from the browser

to cryptographic routines are passed to the underlying operating

system. Thus, the Web Cryptography API simply exposes already

existing and often heavily verified cryptographic functionality to

Web application developers through a standardized interface. Due

1https://crypto.cat/ has since fixed the problem.
2The workshop was called ‘Identity in the Browser,’ archived at
http://www.w3.org/2011/identity-ws/
3At http://www.matasano.com/articles/javascript-cryptography/.
4See https://crypto.stanford.edu/sjcl/
5Transport Layer Security, formerly called HTTPS. See
http://tools.ietf.org/html/rfc5246 for more information
6See https://en.wikipedia.org/wiki/Network_Security_Services.

959



to this constraint, the API itself is somewhat constrained practically

by what features already exist cross-browser. Thus, exposing arbi-

trary elliptic curves is possible but they may not be implemented,

even if there are well-motivated use-cases. The Working Group

will keep track of supported and requested algorithms backed by

use-cases in order to evolve the available functions over time.

Likewise, major changes to JavaScript itself are currently out-of-

scope as we assume an off-the-shelf JavaScript environment. The

mathematical functions needed to ‘roll your own’ cryptographic

primitives such as modular arithmetic and native ‘BigNum’ integer

support in JavaScript is not feasible at this point, as these changes

would impact the entire the entire JavaScript environment and thus

are more properly standardized as part of JavaScript itself in ECMA

TC 39.7 However, we provide a simple BigNum type definition in

the Web Cryptography API, although we do not provide the under-

lying operations as native code. Furthermore, we do not deal with

secure delete from memory, although most browsers can be run in

a FIPs-compliant mode that allows them to have secure memory

operations with considerable cost to performance. We purposefully

also do not address is the malleability of the JavaScript run-time,

where one function can be overridden by another function given

the same name in a particular runtime (a technique called ‘poly-

fill’). In the hands of responsible and trusted developers operating

within the same origin, polyfilling functions is useful as it allows

new experimental functions to be used in Web applications with-

out touching the underlying code. While it is tempting to believe

that the Web Cryptography API should restrict polyfilling over it-

self, this would hinder developers that need polyfills and fracture

the JavaScript environment from the Web environment. While we

can’t fix all of JavaScript, we can fix the bare minimum needed to

get JavaScript cryptography off the ground.

Lastly, we are producing the Web Cryptography API as a na-

tive cross-browser cryptographic library rather than encouraging

the use of cryptographic browser plug-ins. While browser code and

underlying cryptographic code has been heavily invested in and in

the case of open-source code subject to wide review, browser plug-

ins are generally not: There have been a large number of 0-day

attacks on browser-plug ins, and thus while they may be resistant

to cross-site scripting and other common attacks, they often expose

new threats to the browser environment. So for the sake of security,

most browser vendors encourage developers to write Web applica-

tions directly in JavaScript and will phase out plug-ins in the future.

Equally objectionable is that the use of plug-ins to provide cryp-

tographic materials binds the application to a single browser envi-

ronment. For example, the use of a government-mandated ActiveX

plug-in binds users to Internet Explorer for e-commerce in Korea,

an issue that so irritated users that it has become an election issue.

Ironically, this plug-in was later revealed to store its key material

insecurely.

2.2 The Web Security Model
The Web Cryptography API does not change the fundamental

Web Security model, wherein the same-origin policy is the funda-

mental security boundary. In other words, key material generated

by http://example.org is restricted to usage to JavaScript originating

from the example.org domain. Those who wish to go beyond this

should use standardized methods such as Cross-Origin Resource

Sharing8 in conjunction with the use of postMessage calls. How-

ever, given that a web-browser is often running JavaScript code

from multiple domains that is then invoking client-side routines

7http://www.ecma-international.org/memento/TC39.htm.
8http://www.w3.org/TR/cors/

such as the W3C Web Cryptography API, how can one trust that

the code is actually are running from the correct domain?

This is a problem even within a single domain due to the fact

that the network level must be trusted for the Web application to

be trusted. Even with excellent implementations of cryptographic

primitives such as the Stanford JavaScript Crypto Library, browsers

still have to download via channels that be attacked. This process of

downloading code could be hi-jacked by man-in-the-middle attacks

while trying to create a trusted TLS connection, which has even

been demonstrated by open source software such as sslstrip.9 All

is not lost: the larger Web Security model’s various access-control

mechanisms including HSTS10 and Content Security Policy 11 al-

low websites to automatically switch to TLS connections without

the ability of facing a man-in-the-middle attack. The work of the

IETF on key-pinning12 and Certificate Transparency 13 should al-

lay many of the concerns over the CA system itself being compro-

mised when using TLS. In final analysis, the Web Cryptography

API provides cryptographic primitives, but the API itself does not

provide the security to protect those primitives from known attacks

on browsers. To mitigate against those attacks, a developer needs

to use other specifications and mitigations. Even then, standards

would not prevent many attacks, such as lack of proper sanitiza-

tion in HTML forms leading to SQL injection attacks. However, in

principle any programming environment is susceptible to poorly de-

signed code. While the Web is exceptionally dangerous insofar as it

is a shared and distributed space of code, nonetheless we will posit

that it is possible to write JavaScript code that can be secure in all

other regards except for dependencies on cryptographic primitives.

This assumption is often made in other programming language en-

vironments.

2.3 Host-based security
The Web Cryptography API also rely on the client-server archi-

tecture of the Web that some in the security community find objec-

tionable, where “your security depends entirely the security of the

host. This means that in practice, CryptoCat is no more secure than

Yahoo chat, and Hushmail is no more secure than Gmail. More gen-

erally, your security in a host-based encryption system is no better

than having no crypto at all.”14 The Web Cryptography API is, like

other Web APIs, built around a host-based model. Even in perfectly

designed Web App, the behavior as regards the DOM (Document

Object Model) is completely controlled by the host.15

We would argue that host-based security can be a feature, not

a bug. Simply put, client security can easily be weaker than host-

based security. Average users do not in general have any motiva-

tion to update their systems more often or with better safeguards

than the security professionals that provide Web application host-

ing. The question is whether or not one should trust the updating

mechanism of any software. One could argue that at least the user

is in control of the updates on the client, while on the server-side

the host can invisibly update the software. Again, the assumption is

9See details of Moxie Marlinspike’s well-known attack at
http://www.thoughtcrime.org/software/sslstrip/.

10https://tools.ietf.org/html/rfc6797
11http://www.w3.org/TR/CSP/
12https://tools.ietf.org/html/draft-perrin-tls-tack-02
13See https://tools.ietf.org/html/draft-laurie-pki-sunlight-12 for de-
tails.

14https://www.schneier.com/blog/archives/2012/08/cryptocat.html
15The DOM is the primary abstract syntax tree of HTML that is ma-
nipulated for presentation and interaction within the browser. See
the HTML5 specification http://www.w3.org/TR/html5/ for more
information.

960



that the host may be compromised and invisibly update malicious

software or break its assurances. However, this can be done easily

on clients as well (for example, via a rootkit), so we should assume

at least a parity in security between host and clients. There may

even be reasons to believe that applications on a remote host are

superior: most 0-day attacks can be performed before proper up-

dates to client devices can correct the attack. Host-based security

may scale better: It is simply easier and more secure to have hosts

quickly update JavaScript once rather than deal with the inevitable

lags of client-based updates (take browser plug-ins for example).

Lastly, implicit in this argument is that client devices such as the

FreedomBox16 are more secure than storing data on a server. Yet

client-device seizures are likely at least as common if not moreso

than server seizures and even easier in some jurisdictions than the

legal compunction to release data. Mistaking proximity for secu-

rity is a simple conceptual error. However, this does not necessar-

ily mean that the host should have control over private key mate-

rial. The key management and store of the Web Cryptography API

should be implemented in such a way that it should be possible for

secret key material to be stored in such a way that the server does

not, if the application is built correctly, control the keys of the user.

Ideally, this would allow encrypted data to be stored in the host that

the host cannot decrypt.

In conclusion, much of the critique of JavaScript cryptography

boils down to a critique of the security model of the Web itself,

and the Web security model can evolve in principle to let one write

secure JavaScript code. However, the key insight of the Web Cryp-

tography is that the Web Cryptography API is actually not part of

the security model of the Web. Instead, it provides new standard-

ized cryptographic functionality to existing Web application devel-

opment environments that can for particular use-cases improve se-

curity. Is releasing this cryptography in JavaScript to developers re-

sponsible? The potential benefits of enabling richer web-apps that

can use cryptography outweighs some of the controversial points

that have been raised about the availability of cryptographic APIs

in the browser. Given the current dangerously insecure state of

JavaScript cryptography and the fact that developers are already re-

implementing cryptographic functions in JavaScript insecurely, we

will have to trust the Web developer community to get better at

building more secure Web applications.

3. OVERVIEW OF WEB CRYPTOGRAPHY

API
The W3C Web Cryptography Working Group has prepared a

group of specifications rather around the core Web Cryptography

API: one use-case document [4], one normative specification that

can fulfill the use-cases [5], as well as one (currently) non-normative

document about key discovery [7]. We will go over the use-cases

before exploring in detail the Web Cryptography API itself.17

3.1 Use-cases and Scope
The amount of possible cryptographic functionality that Web ap-

plication developers could need is huge, ranging from simple primi-

tives to advanced certificate functionality. Worse, a number of sim-

ple tasks are now impossible to do in a secure manner for Web

16https://www.freedomboxfoundation.org/
17This work presents the work of the larger W3C Web Cryptography
Working Group, not just individual author who is Team Contact for
the Working Group. For example, many of the key design decisions
have been taken by the editor of documents. Ryan Sleevi has been
the primary designer and editor of the API, with help from Mark
Watson.

developers, ranging from random number generation to the signing

of client-generated documents. A core number of primitives were

deemed to be necessary for any application, and these were termed

primary features. Primary features are: key generation, encryp-

tion, decryption, deletion, digital signature generation and verifica-

tion, hash/message authentication codes, key transport/agreement,

cryptographically strong (pseudo)random number generation, key

derivation functions, and key storage and control beyond the life-

time of a single session. Encryption and decryption includes both

symmetric and asymmetric cryptography. The API must prevent

or control access to secret key material and other sensitive crypto-

graphic values and settings, a difficult task in the current browser

environment.

A number of features were demanded by the community and

would be up for inclusion if suitable use-cases could be found that

could not be covered by primary use-cases. These include: control

of TLS session login/logout, derivation of keys from TLS sessions,

a simplified data protection function, multiple key containers, key

import/export, a common method for accessing and defining prop-

erties of keys, and the lifecycle control of credentials such enroll-

ment, selection, and revocation of credentials with a focus enabling

the selection of certificates for signing and encryption. A number of

features are explicitly out of scope, in particular those dealing with

device-specific features and larger trust models, such as special han-

dling directly for non-opaque key identification schemes, access-

control mechanisms beyond the enforcement of the same-origin

policy, and functions in the API that require smartcards. However,

these may be revisited in future work if the Working Group gets

consensus on a new charter. For more detail, please see the W3C

Web Cryptography Working Group Charter.18

The use-cases the group has currently accepted are, as given by

the use-case document [4]:

Multi-factor Authentication: A web application may wish to ex-

tend or replace existing username/password based authentication

schemes with authentication methods based on proving that the

user has access to some secret keying material.

Protected Document Exchange: When exchanging documents

that may contain sensitive or personal information, a web applica-

tion may wish to ensure that only certain users can view the doc-

uments, even after they have been securely received, such as over

TLS. One way that a web application can do so is by encrypting the

documents with a secret key, and then wrapping that key with the

public keys associated with authorized users.

Cloud Storage: When storing data with remote service providers,

users may wish to protect the confidentiality of their documents and

data prior to uploading them.

Document Signing: A web application may wish to accept elec-

tronic signatures on documents. The web application must be able

to locate any appropriate keys for signatures, then direct the user

to perform a signing operation over some data, as proof that they

accept the document. The European eID legislation and work from

ABC4Trust 19 provides a number of implementation possibilities.

Data Integrity Protection: When caching data locally, an appli-

cation may wish to ensure that this data cannot be modified in an

offline attack. In such a case, the server may sign the data that it in-

tends the client to cache, with a private key held by the server. The

web application that subsequently uses this cached data may con-

tain a public key that enables it to validate that the cache contents

have not been modified by anyone else.

18http://www.w3.org/2011/11/webcryptography-charter.html
19See https://abc4trust.eu/

961



Secure Messaging: While TLS/DTLS may be used to protect

messages to web applications, users may wish to directly secure

messages using schemes such as off-the-record (OTR) messaging.

The Web Cryptography API enables OTR by allowing key agree-

ment to be performed so that the two parties can negotiate shared

encryption keys and message authentication code (MAC) keys, to

allow encryption and decryption of messages, and to prevent tam-

pering of messages through the MACs.

In general, Web applications are developing towards multi-channel

communication across multiple origins where data and even entity

authentication of the client is required. This loosely-coupled design

architecture should allow both data integrity and even entity authen-

tication across networks of communicating web applications by the

use of the Web Cryptography API combined with CSP and CORS.

For example, digital signatures are very useful for authentication

across multiple hosts, as in the case when one wishes to involve the

client in signing OAuth access and refresh tokens. Not only does

this defeat an attack vector of cookie-snatching attacks, it allows

possibilities of possibly powerful technologies such as federated

identity without HTTP-redirection (and so phishing attacks on the

redirect).

3.2 W3C Web Cryptography Specifications
The use-case document has already been described and will be a

non-normative deliverable [4]. The main normative deliverable is

the Web Cryptography API itself [5] although there is also a non-

normative document to describe key discovery [7].

Web Cryptography Use-Cases and Requirements: For each sug-

gested new feature for the Web Cryptography API outside of the

primary API features given in the scope (including currently listed

secondary API features), a concrete use-case must be described and

produce clearly defined requirements that are agreed upon by the

Working Group. These are kept track of in a use-case document

with sample code for each use-case [4].

Web Cryptography API: Commonly-used cryptographic primi-

tives made available to Web application developers via a standard-

ized API to facilitate their operation. This API is a set of bindings

that can be thought of as equivalent in spirit to OpenSSL bindings,

and provided natively as constant time functions while relying on

platform-specific key storage functionality via a suitable abstrac-

tion layer. The API is described in more detail than provided here

in the API document itself [5].

Web Cryptography Key Discovery: This specification describes

an API for discovering named, origin-specific pre-provisioned cryp-

tographic keys for use with the Web Cryptography API. Pre-provisioned

keys are keys which have been made available to the user agent

(browser) by means other than the generation, derivation, and im-

portation functions of the Web Cryptography API. These keys are

currently limited to origin-specific keys. The issue of using keys

as ’super-cookies’ caused the separation of Web Cryptography Key

Discovery from the Web Cryptography API and so may lead it to

be non-normative. [7].

It is well understood that developers may have difficulty in using

the core Web Cryptography API, as the API forces a developer to

explicitly provide all the default values that they wish to use. While

helper functions can be provided for initialization vectors, it was

felt that using defaults in the API might lead to possibly very dan-

gerous default usage of operations as the cryptographic landscape

changes over time. The Web Cryptography API assumes the user

is implementing a cryptosystem where many of the defaults have

already been specified in the specification of said system. However,

simpler jQuery-like libraries will likely be evolved by the market to

address the needs of most Web developers who wish to do simple

tasks on a per-application basis with the correct default values, for

whom the Web Cryptography API is too hard to use. For example,

in the high-level API reasonable defaults for key lengths are chosen

and encryption always features signing. A sample “high-level” API

is further detailed in its own document and so will not be explored

further here [2].

Note that the details of any user experience (such as prompts) are

not be normatively specified, although they may be informatively

specified for certain function calls such as exporting or access to

private key material. In general, we imagine there will be cases

in which the user is fine with the host controlling even the private

key material, but we can imagine many more cases where the pri-

vate key material must be truly secret from the host. Unfortunately,

while this may be desirable for operations involving key import,

export, and private material key material access, browser vendors

have historically been unable to standardize elements of the graph-

ical user interface, including the infamous ‘TLS’ icon case.20 A

thorough formal analysis of the security properties and threat mod-

els of the Web Cryptography API is necessary for future work be-

fore standardization is complete.21

Historically, each Javascript execution environment is synchronous,

which presents a huge problem for computationally expensive op-

erations such as key generation. After all, one does not want the en-

tire operations of every Web application halted by the generation of

a key. Unlike in other libraries [6], asynchronicity of operations has

been tackled by API by “@@Promises/Futures”-style API design

which involves including the usage of the API with DOM Events.

4. DETAILS OF THE WEB CRYPTOGRA-

PHY API
The Web Cryptography API is a low-level API that exposes cryp-

tographic functionality via a number of components specified as a

WebIDL. A WebIDL is a way of specifying Javascript functions, al-

though it may also in principle be bound to programming languages

outside Javascript.22 The component Javascript features of the We-

bCryptography API are as follows, with much more detail given in

the specification itself [5]:

1. RandomSource: Pseudorandom number generation.

2. Key: JSON object for key material, with attendant KeyOper-

ation.

3. CryptoOperation: Finite state may machine that describes

how cryptographic operations work, along with error codes.

4.1 RandomSource
The getRandomValues method generates cryptographically strong

pseudo-random values. The RandomSource interface represents

an interface to a cryptographically strong pseudo-random number

generator (PRNG). Implementations should generate cryptograph-

ically random values using well-established cryptographic pseudo-

random number generators seeded with high-quality entropy, such

as from an operating-system entropy source (e.g., /dev/urandom).

Currently it provides no lower-bound on the information theoretic

20See the W3C Web Security Context: User Interface Guidelines
http://www.w3.org/TR/wsc-ui/.

21Currently, the W3C is working with INRIA on such an analysis of
key storage and threat models, and would appreciate more review
from the wider community.

22The WebIDL specification is available here
http://www.w3.org/TR/WebIDL/.

962



entropy present in cryptographically random values, but implemen-

tations should make a best effort to provide as much entropy as prac-

ticable and may provide platform or application specific entropy-

related error messages. This should unify the current situation

where generating random numbers from a PRNG is not distinguished

from numbers that are not cryptographically strong.

4.2 Key
The Key object represents an opaque reference to keying mate-

rial that is managed by the user agent. There are three types of

keys: secret keys (opaque keying material, such as that used for

symmetric encryption), public keys, and private keys (the latter two

types used in asymmetric operations). Most importantly, the API

does not expose key material itself, but instead only pass handlers

to the key material itself in Javascript. The only exception is when a

key is explicitly exported (even then, it would have the same-origin

and structured clone properties). Key material that is marked non-

extractable should have some kind of user interaction authorization

when importing/exporting (within the same-origin), and access to

secret key material should be forbidden. However, keys that are

not marked explicitly as private, secret, or as non-extractable will

be accessible to the server with same-origin policy if key export is

done.

In the Web Cryptography API, we use the structured clone al-

gorithm to store keys.23 This algorithm is an abstraction on top

of existing Web storage mechanisms such as IndexedDB24 that has

the same lifetime guarantees as the rest of Web storage. This would

allow a user to clear their key material at the same time they ‘wipe’

cookies from their browser storage. Also, whatever security param-

eters around same-origin would thus apply not only to cookies and

other local data given by HTML5, but to key material. For secu-

rity reasons keys should in many cases not be stored in IndexedDB,

but instead in a key store (such as provided by NSS) that has the

same security properties as guaranteed by the implementation of

key storage in well-known protocols such as TLS. When perform-

ing the structured clone algorithm for a Key object, it is important

that the underlying cryptographic key material not be exposed to

a Javascript implementation. Such a situation may arise if an im-

plementation fails to implement the structured clone algorithm cor-

rectly, such as by allowing a Key object to be serialized as part

of a structured clone implementation, but then deserializing it as a

DOMString, rather than as a Key object.

4.3 CryptoOperation
The CryptoOperation is the heart of every cryptographic primi-

tive. Given a algorithm and a set of parameters (usually including

a handler to a key), the CryptoOperation will attempt to commit

some operation. Every CryptoOperation can be thought of as a

named finite state machine with an internal state, an associated al-

gorithm, an internal count of available bytes, and a list of pending

data. Every member of the list of pending data represents data that

should undergo the associated cryptographic transformation if the

operation as a whole is successful. The order of items when added

to the list is preserved in processing, so that the first data that is

added being the data processed. If the cryptographic operation fails

(such as when the key type is wrong or when the algorithm is not

supported), the CryptoOperation then terminates and produces an

error code.

23For an explanation of this design pattern in
Web standards, see https://developer.mozilla.org/en-
US/docs/DOM/The_structured_clone_algorithm.

24See http://www.w3.org/TR/IndexedDB/

4.4 Supported Algorithms
As the API is meant to be extensible in order to keep up with

future developments within cryptography and to provide flexibil-

ity, there are no strictly required algorithms. However, in order to

promote interoperability for developers, there are a number of (cur-

rently) recommended algorithms: RSASSA-PKCS1-v1_5, RSA-

PSS, RSA-OAEP, ECDSA, AES-CTR, AES-CMAC, AES-CFB,

AES-KW, AES-CBC, HMAC, PKCS-v3 Diffie-Hellman (DH), the

SHA family, CONCAT, HKDF-CTR, and PBKDF2. These should

be tested in the test-suite of the Web Cryptography API so devel-

opers will be able to easily ascertain with certainty if they can use

these operations across browsers. Also, the current Web Cryptogra-

phy API exposes legacy cryptographic algorithms that can be used

and implemented insecurely. Many consider this objectionable. Yet

these are still needed in order to allow Web application developers

to create applications with interoperability with widely used appli-

cations such as GPG, SSH, and the like. Lastly, as we expect the

Web Cryptography Working Group to be maintained over the long-

term by the W3C, any requests for new algorithms can be sent to

the Working Group for consideration and discussion with imple-

menters.

4.5 Examples
A number of examples may clarify the usage of the API. The

first is to generate a signing key pair and sign some data is given in

Figure 1. More examples, including that of symmetric key encryp-

tion, are given in the specification [5] and the use-case document

[4].

5. CONCLUSIONS AND NEXT STEPS
In conclusion, the value of the Web Cryptography API is to en-

able Web applications that require features such as cryptographi-

cally strong random number generation, constant-time cryptographic

primitives, and and to the best extent possible, a secure keystore.

No one doubts that without these functions, JavaScript web cryp-

tography would be doomed. By exposing the primitives already in

the browser to JavaScript and providing a suitable abstraction of a

key-store, the API can address the current factors that make cryp-

tography in JavaScript impossible.

The creation of the Web Cryptography API has been heavily in-

fluenced by prior academic work such as the Stanford JavaScript

Library, but also presented a number of hard practical questions

where empirical research is needed [6]. In particular, we need to

better ascertain the ability of developers to use cryptography APIs

in general. For example, while it seems that users will generally

use the highest-level of abstraction available to them, it is still an

open empirical debate if one should present a ‘dangerous’ lower-

level API or restrict ordinary developers to a ‘higher-level’ API.

On the other hand, one could present a single API with ‘appropri-

ate’ defaults. In particular, the Working Group has decided that

logically it makes more sense to release a ‘lower-level’ API first,

and given that the field could be in flux, to not in general provide

any defaults in the standard. Instead, it is imagined that a ‘high-

level’ API with appropriate defaults would be created that would

build from the primitives in the Web Cryptography API. This de-

sign could be validated if there was a large-scale study of the usage

of the Web Cryptography API amongst web developers attempting

to solve common tasks with the API, with an eye towards common

errors and mistakes with defaults. In addition, larger and more thor-

ough studies need to be done both of deployed Web application

code [6] and with developer interviews.

On the other hand, more formal research is needed on the larger

framework of the Web Cryptography API and the Web security

963



var algorithmKeyGen = { name: "RSASSA-PKCS1-v1_5", modulusLength: 2048,
publicExponent: new Uint8Array([0x01, 0x00, 0x01])};

var algorithmSign = {
name: "RSASSA-PKCS1-v1_5",
hash: {name: "SHA-256",} };

var keyGen = window.crypto.subtle.generateKey(algorithmKeyGen, false,["sign"]);

keyGen.oncomplete = function(event) {
var signer = window.crypt.sign(algorithmSign, event.target.result.privateKey);
signer.oncomplete = function(event) {
console.log("The signature is: " + event.target.result);

}
signer.onerror = function(event) {
console.error("Unable to sign");}

var dataPart1 = convertPlainTextToArrayBufferView("hello,");
var dataPart2 = convertPlainTextToArrayBufferView(" world!");

signer.process(dataPart1);
signer.process(dataPart2);
signer.finish();

};

keyGen.onerror = function(event) {
console.error("Unable to generate a key.");

};

Figure 1: Public Key Signature Example

model, and recent academic work in formal analysis of APIs such

as PKCS#11 may be very useful [3]. The Web security model (as

based on standards from the W3C and IETF) is woefully under-

analyzed, despite its rising popularity as the preferred method of

delivering even high-value applications with security implications.

For example, even very basic theoretical divisions such as distin-

guishing between a Web Attacker with control of the JavaScript run-

time environment in a browser and a Network Attacker with control

over the HTTP upgrade to a TLS session have only recently been

made and formally studied [1]. Currently, there is a larger problem:

that the entire Web Security Model needs to be formalized and mod-

eled, and it only makes sense formalizing the security analysis of

the Web Cryptography as part of this larger analysis. Although one

imagines that the API, like any API, can never guarantee absolute

security, it would make sense to engage in a thorough study to be

able to determine important security properties such as safe key

storage in both the specification and implementations thereof.

The core design of the W3C Web Cryptography API has been

finalized and satisfies all primary features [5]. However, the API

will continue to change in response to open commentary and the

inevitable process of discovering ambiguity that results from estab-

lishing a uniform test-suite in order to determine compliance. Thus,

we would appreciate further review of the specification itself, fur-

ther implementation, and concrete proposals for improving the API

or future versions with a more expansive scope that may include

hardware tokens and certificates. Although no API as a magic bul-

let, this API should allow developers to do what they could not do

before: use cryptography in Web applications! The exact applica-

tions that will drive the further evolution of the Web Cryptography

API are left as exercises to the wider community of Web developers

and users.

6. REFERENCES
[1] Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and Song, D.

Towards a formal foundation of web security. In Proceedings

of the 2010 23rd IEEE Computer Security Foundations

Symposium, CSF ’10, IEEE Computer Society (Washington,

DC, USA, 2010), 290–304.

[2] Dahl, D. High-level Web cryptography API. Working draft,

W3C, 2013. https://dvcs.w3.org/hg/webcrypto-highlevel/raw-

file/tip/Overview.html.

[3] Delaune, S., Kremer, S., and Steel, G. Formal security

analysis of PKCS#11 and proprietary extensions. J. Comput.

Secur. 18, 6 (Sept. 2010), 1211–1245.

[4] Rangathan, A. Web Cryptography Use-cases. Working draft,

W3C, 2013. http://dvcs.w3.org/hg/webcrypto-usecases/raw-

file/tip/Overview.html.

[5] Sleevi, R. Web Cryptography API. Working draft, W3C, 2013.

http://www.w3.org/TR/WebCryptoAPI/.

[6] Stark, E., Hamburg, M., and Boneh, D. Symmetric

cryptography in Javascript. In Proceedings of the 2009 Annual

Computer Security Applications Conference, ACSAC ’09,

IEEE Computer Society (Washington, DC, USA, 2009),

373–381.

[7] Watson, M. Web Cryptography Key Discovery. Working draft,

W3C, 2013. https://dvcs.w3.org/hg/webcrypto-

keydiscovery/raw-file/tip/Overview.html.

964


	Introduction
	Motivation and Objections
	JavaScript Cryptography
	The Web Security Model
	Host-based security

	Overview of Web Cryptography API
	Use-cases and Scope
	W3C Web Cryptography Specifications

	Details of the Web Cryptography API
	RandomSource
	Key
	CryptoOperation
	Supported Algorithms
	Examples

	Conclusions and Next Steps
	References



