
Publish Data as Time consistent Web API with Provenance

Miel Vander Sande
miel.vandersande@ugent.be

Pieter Colpaert
pieter.colpaert@ugent.be

Tom De Nies
tom.denies@ugent.be

Erik Mannens
erik.mannens@ugent.be

Rik Van de Walle
rik.vandewalle@ugent.be

Ghent University - iMinds
Department of Electronics and Information Systems, Multimedia Lab

Gaston Crommenlaan 8 bus 201
B-9050 Ledeberg-Ghent, Belgium

ABSTRACT
Many organisations publish their data through a Web API. This
stimulates use by Web applications, enabling reuse and enrichments.
Recently, resource-oriented APIs are increasing in popularity be-
cause of their scalability. However, for organisations subject to data
archiving, creating such an API raises certain issues. Often, datasets
are stored in different files and different formats. Therefore, tracking
revisions is a challenging task and the API has to be custom built.
Moreover, standard APIs only provide access to the current state of
a resource. This creates time-based inconsistencies when they are
combined. In this paper, we introduce an end-to-end solution for
publishing a dataset as a time-based versioned REST API, with mini-
mal input of the publisher. Furthermore, it publishes the provenance
of each created resource. We propose a technology stack composed
of prior work, which versions datasets, generates provenance, cre-
ates an API and adds Memento Datetime negotiation.

1. INTRODUCTION
Publishing data on the Web is considered a fruitful activity in

many domains, driven several motivations. On the one hand, they
publish data because they are obliged to, as acknowledgement to
their public funding. On the other hand, the dissimination of their
data enables them to extract knowledge from reuse by third-parties.
For instance, the cultural heritage community has been sharing meta-
data over the Web for years as they maintain long term archives.
Furthermore, the governments, pushed by the growing Open Gov-
ernment Data initiative, make their data publicly available, too.

In order to achieve this, the use of Web applications is required,
which, in their turn, require machine consumable data access. There-
fore, installing a Web API is usually considered best practice and
trivial task. Furthermore, these characteristics affect the API imple-
mentation as well. In principle, a Web API can be built according
to different architectural styles (e.g., RPC or REST). However, in
the past years, REST APIs have increased in popularity in spite of
others [6]. The main basis is scalability and interoperability between
systems. Its resource-oriented architecture is helpful in mashups
(e.g., Yahoo Pipes), where data from different APIs can automati-
cally be composed [12].

Nevertheless, as Web APIs are implemented at the moment, they
expose only the latest version of the available data. In public or-

Copyright is held by the author/owner(s).
WWW’14 Companion,, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579217.

ganisations, it is common to store snapshots of datasets over a long
period of time, together with time-based metadata. Furthermore, in
most cases, the data is usually stored in several files, using different
formats. All these different formats should be equally exposed to
the end users. Moreover, these datasets are curated collaboratively
by different people. Therefore, it is needless to say, that this requires
a good data management solution supporting file-based versioning.
Those versions, present in the data, are not propagated: the API
access is usually limited to the latest version.

When composing services, a static state over resources is desir-
able. As they are implemented now, resources change state con-
stantly and can cause inconsistencies when used out of sync. For
example, if one combines a resource "Unemployment rate in the
US", last updated in 2004, with the resource "Average current in-
come", last updated in 2012, the combined information would be
less reliable than data collected for the same year. Therefore, pub-
lishers and their consumers can also benefit from exposing prior
versions as resources as well. This is mainly because of the charac-
teristics of the underlying data management. Furthermore, because
of the data’s heterogeneity, such an API has to be custom built.

In this paper, we describe an end-to-end solution for creating a
Web API exposing any dataset, while providing versioning in the
time dimension over HTTP. We propose a complete technology
stack composed of previous work, which covers each requirement
mentioned above. We start by using a version control system to
track file changes and generate provenance from its metadata. Then,
we use a data publishing tool to automatically create an API from
the provenance descriptions. Finally, we extend the API with time-
based versioning support for its resources by adding a special proxy
server. It exposes prior states of a resource by using hypermedia,
allowing the client to do Datetime negotiation. As a result, data can
be published in a small amount of time.

This paper is structured as follows. First, we introduce the differ-
ent components in our stack in Section 2 and discuss related work
in Section 5. Next, Section 3 describes how we can set up a time-
based versioned Web API from data files. Then, we demonstrate
our approach with an example in Section 4. We end by discussing
future work in Section 6 and close with conclusions in Section 7.

953

2. TECHNOLOGY STACK
The work described in this paper combines three tools:

Git2PROV [4], The DataTank [16], and Generic Memento [18].
In this section, we introduce each of these tools briefly.

2.1 Git2PROV
Version Control Systems (VCS), such as git1, are used to facilitate

collaboration for several types of content, primarily code and data.
They generally consist of repositories, in which the data and all its
history is stored. Because of this, these VCS repositories contain
an abundance of provenance information. Git2PROV2 is a service
that maps this information inside git repositories to standardized
provenance information, following the standard WC PROV Data
Model [19]. The information mapped by Git2PROV , includes cre-
ation and deletion times, as well as dependencies and derivations of
versioned files.

2.2 The DataTank
The DataTank3 is a project which provides a HTTP API out of

various data sources. It does not store data: each time a resource
is requested, the data is fetched in the memory on the server and
a transformation is done towards an accepted content-type. It can
be used by organizations to publish datasets on The Web which are
stored in, amongst others, excel files, CSV files, triple stores and
shape files. The API of The DataTank allows user agents to add
dataset configurations, to add metadata fields, to export a metadata
feed described in DCAT 4 [9], etc. Furthermore, the source readers
can be extended with custom code to read any kind of source, or
combine different sources into one resource.

2.3 Generic Memento
As mentioned in the introduction, the resulting API relies on the

Memento framework [13] to provide time-based versioning over
HTTP. In this stack, we use our prior work Generic Memento. This
works allows implementing Memento functionality as a generic
proxy server, based on published provenance. In this section, we
describe both frameworks in more detail and clearify the distinction
between the two.

2.3.1 The Memento framework
The Memento framework aims at a tighter integration between

the current and the past Web. It introduces an extra dimension
for content negotiation between client and server: the datetime
dimension. The framework defines a set of resource types, their
characteristics and the relation between them. A resource, of which
prior states are desired, provides the current state and is referred to
as the Original Resource URI-R. For URI-R, prior states at time ti –
if they exist – are encapsulated in distinct resources referred to as
Mementos URI-Mi(i = 1..n). This distinction allows URI-R to keep
a stable URI, since only old versions get a new one. To allow caching
URI-R, it is disconnected from URI-Mi. Therefore, URI-R cannot
be datetime negotiated directly, but is done on a third resource
URI-G, called the TimeGate. All three resources are connected
using hypermedia, as shown in Figure 1, which enables navigating
between them. We demonstrate this with a typical client-server
interaction below.

1http://git-scm.com/
2http://git2prov.org
3http://thedatatank.com
4A vocabulary standardized by the WC to describe data catalogs.

Figure 1: The memento framework consist of three re-
sources: Original Resource URI-R, the TimeGate URI-G and
the Mementos URI-Mi. They are linked using hypermedia.
Source: http://www.mementoweb.org/

1. When a client requests URI-R, the servers response holds
a HTTP Link header of type timegate pointing at URI-G,
which enables its discoverability.

2. The client can use URI-G to do datetime negotiation. The
request is sent holding a Accept-Datetime: tr header, refer-
ring to the desired state valid at that time. Then, the server
decides on the best matching Memento URI-Mx with creation
time tx, with tx = max(∀ ti <= tr). The selected URI-Mx is
returned in the HTTP Location header and with response code
302 Found, which redirects the client.

3. By following the redirect to URI-Mx, the server returns the
prior state of URI-R. The response contains a HTTP Link
header of type original pointing back at URI-R for discov-
erability. Additionally, links to the first-memento,
next-memento and prev-memento relationships can be
added to the headers as well.

A more in-depth description including detailed examples can be
found in the Memento Guide5.

Unfortunately, Memento requires a custom implementation for
each server. APIs are written in different languages, serve different
resources and work on a different storage layer. The next section
describes how this drawback can be avoided in creating a generic
memento proxy server.

2.3.2 A Generic Memento proxy
A Generic Memento proxy server enables Memento functionality

to Linked Data servers, or any other resource-oriented API, that pub-
lishes provenance about their resources. Provenance can formally
describe how one prior state relates to the next one and when the
change occurred. The proxy’s main contribution is creating a loose
coupling between the API and its Memento functionality. Based
on the provenance descriptions, it decides on matching Mementos
and forwards the requests accordingly. This lowers implementation
costs and increases reuse.The decision logic is implemented as a
set of N [2] rules, executed on the provenance by the semantic
reasoner EYE [5].

The general architecture is shown in Figure 2 and consists of two
independent types of services: a Linked Data Service (LDS) and
a Generic Memento Proxy (GMP). The former publishes a Linked
Data resource URI-L and their provenance in PROV URI-P, which
describes the archives URI-Ai. The latter provides all the original
functionality of the Memento framework, including access to the
resources URI-R, URI-Mi and URI-G. We retake the example from
the previous section to demonstrate the functionality and distinction.

5http://www.mementoweb.org/guide/

954

http://git-scm.com/
http://git2prov.org
http://thedatatank.com
http://www.mementoweb.org/
http://www.mementoweb.org/guide/

LDSGMP

URI−L

URI−Ai

URI−P

client URI−R

URI−G

URI−Mi

get

get

get

get

describes

Link:
provenance

Link: timegate

Location

Figure 2: The Generic Memento proxy GMP and the Linked
Data service LDS are loosely coupled, creating a generic archi-
tecture.

THE DATATANK

Ai (a) L

URI-Ai (c) URI-L(d) P*

URI-Mi URI-G URI-R

(b) P

Figure 3: The source file L and its prior versions Ai are accessi-
ble through GitHub, while Git2PROV generates provenance in
PROV from the git metadata. Based P, The DataTank publishes
L and Ai as API, exposes them as resources URI-L and URI-Ai,
and described their relation in P as P∗. Finally, Generic Me-
mento uses P∗ to create the Memento resources URI-R, URI-Mi,
URI-G

1. When a client requests URI-R, the proxy will forward the
request to URI-A. it will add the timegate Link header to the
response and send it back to the client.

2. When the client does datetime negotiation on URI-G, the
proxy will request URI-P. Possible discovery for URI-P
is through a provenance Link header in the response of
URI-L [10]. The reasoning is executed and the matching
resource URI-Ax is retrieved from the provenance chain. Each
resource URI-Ai is encapsulated in a corresponding resource
URI-Mi, so the necessary headers can be added, as mentioned
before. The selected URI-Mx is returned in the HTTP Location
header and with response code 302 Found, which redirects
the client.

3. When the client follows the redirect to URI-Mx, the proxy
forwards the request towards its corresponding URI-Ax. Its
response is extended with the original Link header and op-
tional first-memento, next-memento and prev-memento
relationships.

For more in-depth information about Generic Memento, we refer to
the original paper [18].

3. OPERATIONAL STEPS
In this section, we describe in four steps how the proposed tech-

nology stack (as described in Section 2) can publish data as a Web
API, supporting Datetime negotiation. The layout of the stack and
the interaction between components are shown in Figure 3.

3.1 Versioning Data
Version control systems are extremely helpful in managing, revis-

ing and collaboratively writing files of source code. Amongst such
tools, git has gained a tremendous amount of popularity. Git is a
fast, scalable, distributed revision control system with a rich com-
mand set that provides both high-level operations and full access to
internals [15]. In this approach, we use GitHub6, a publicly hosted
git service with an extra Web API. This creates a dereferencable URI
for each file version in the repository. We will call a file stored in a
git repository L and its versions Ai (Figure 3a).

Although its limitations for big datasets, git, in combination with
GitHub, has already been used as the engine behind a couple of
Open Data Ecosystems [11] . For instance, the city of Montpellier7,
the city of Chicago8 and Open Knowledge Foundation (OKFN) 9

created GitHub accounts to publish data in various formats. The
metadata are stored in README files: who is the owner, when was
it published, category, description, license, and so on. Examples of
publishing the lawbook using git exist in Germany10, The Nether-
lands11 and Flanders12. Publishing Linked Data through git has
been done using serialized RDF. For Instance, Ross Singer published
the description of MARC codes, a US standard for bibliographic cata-
logues, as separate Turtle files13.GitHub stimulates using its service
for datasets by supporting extra features for GeoJSON and CSV14.

3.2 Generating Provenance
The Git2PROV tool takes a git repository URI as input, and out-

puts its metadata as valid PROV, which we refer to as P (Figure 3b).
This provenance describes the relations between L and Ai. A partial
output is shown in Listing 1. Git2PROV expresses provenance in
PROV-DM concepts by identifying three classes in the commit:
Dependency The dependency between two files is modelled as

prov:wasDerivedFrom between two prov:Entity objects.
Activity The commit action is expressed as prov:Activity, con-

necting two prov:Entity objects through the relations
prov:used and prov:wasGeneratedBy relations.

Attribution The author and committer are both a prov:Agent,
linked to the created prov:Entity using prov:AttributedTo
for the former and prov:wasAssociatedWith for the latter.

The next section describes how P is used together with The DataTank
to create the dereferencable URIs URI-L and URI-Ai for L and Ai.

3.3 Creating the API
Once our repository is ready and the provenance is generated, we

create a data API using The DataTank. For L and Ai, it creates the
corresponding resources URI-L and URI-Ai, as shown in Figure 3c.
The DataTank creates a data adapter between the original data source
and the data consumer (e.g., App developer). According to the
hierarchy present in the data, a set of resources is created allowing
the data to be traversed in a directory-style manner. This makes the
original set fully or partially accessible.

Sources are added using The DataTank’s own Web API by creat-
ing a so called resource definition. Such a definition is a collection

6https://github.com/
7https://github.com/VilleDeMontpellier/
8https://github.com/Chicago/
9https://github.com/datasets

10https://github.com/bundestag/gesetze
11https://github.com/statengeneraal/wetten-tools
12https://github.com/okfn-be/codex-vlaanderen
13https://github.com/rsinger/LinkedMARCCodes/
14http://government.github.com/stories/forking-your-
city/

955

https://github.com/
https://github.com/VilleDeMontpellier/
https://github.com/Chicago/
https://github.com/datasets
https://github.com/bundestag/gesetze
https://github.com/statengeneraal/wetten-tools
https://github.com/okfn-be/codex-vlaanderen
https://github.com/rsinger/LinkedMARCCodes/
http://government.github.com/stories/forking-your-city/
http://government.github.com/stories/forking-your-city/

1 @prefix prov: <http://www.w3.org/ns/prov#>.

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4 @prefix result: <http://git2prov.org/git2prov?giturl=https%3A%2F%2Fgithub.com%2Fdatasets%2Fcountry-codes.git&serialization=PROV-O#>
.

5 result:commit -1 c036643ef668ef836f251ead1cdd0835dbfdb3b a prov:Activity ;

6 prov:endedAtTime "2013 -12 -09 T09 :03:46.000Z"^^xsd:dateTime ;

7 prov:wasAssociatedWith result:user -ewheeler .

8
9 result:commit -ff1406b10dd4f484376db0c27b9c5d92643ef22e a prov:Activity ;

10 prov:endedAtTime "2013 -12 -09 T10 :02:48.000Z"^^xsd:dateTime ;

11 prov:wasAssociatedWith result:user -ewheeler .

12
13 result:file -data -country -codes -csv a prov:Entity ;

14 rdfs:label "data/country -codes.csv"@en .

15
16 result:file -data -country -codes -csv_commit -1 c036643ef668ef836f251ead1cdd0835dbfdb3b a prov:Entity ;

17 prov:specializationOf result:file -data -country -codes -csv ;

18 prov:wasAttributedTo result:user -ewheeler ;

19 prov:wasGeneratedBy result:commit -1 c036643ef668ef836f251ead1cdd0835dbfdb3b .

20
21 result:file -data -country -codes -csv_commit -ff1406b10dd4f484376db0c27b9c5d92643ef22e a prov:Entity ;

22 prov:specializationOf result:file -data -country -codes -csv ;

23 prov:wasAttributedTo result:user -ewheeler ;

24 prov:wasDerivedFrom result:file -data -country -codes -csv_commit -1 c036643ef668ef836f251ead1cdd0835dbfdb3b ;

25 prov:wasGeneratedBy result:commit -ff1406b10dd4f484376db0c27b9c5d92643ef22e .

Listing 1: A partial example of the Git2PROV output for the OKFN Country Codes dataset9: the metadata stored in git commits are
transformed into PROV descriptions

of metadata, i.e., location of the source, the format, format-specific
parameters (e.g., delimiter). The definition is serialised in JSON and
added to send in the body of a PUT request. This request is sent to the
definitions collection (http://{datatank}/api/definitions/),
appended with an identifier. Its Content-Type header contains the
media type application/tdt.definition+json. The stored
definition creates an API, whose base URI is returned in the Location
header. For instance, if L is a CSV file with delimiter ’,’, URI-L is
created with the following request:

PUT /api/definitions/{identifier} HTTP/1.1

Content-Type: application/tdt.definition+json

{"type": "text/csv", "url": "L", "delimiter": ","}

HTTP/1.1 200 OK

Location: http://{datatank}/{identifier}

From the provenance P, generated by Git2PROV , we can assem-
ble resource definitions to create URI-L and URI-Ai, based on L and
Ai. These dereferencable URIs are required by Generic Memento, as
discussed in Section 3.4. In P, the datasets from the repository are
included with a specific URI and are typed as prov:Entity. This
URI contains the file name and the commit hash, which we use to
reconstruct the GitHub URL giving direct access to a certain version.
For each extracted GitHub URL L or Ai, we create a source definition
and add it to our The DataTank instance. Each created URI is added
to the provenance with an owl:sameAs link to its corresponding
file, resulting in extended provenance P∗.

3.4 Adding datetime negotiation
Finally, we will add Memento support to our created resources

by feeding P∗ to a Generic Memento proxy server (Figure 3d).
We decide on a Memento URI-Mi using semantic reasoning. The
resulting rules are demonstrated in Listing 2. First, we identify
all Mementos. Each revision is linked to its predecessor using the
predicate prov:wasRevisionOf, forming a chain of revisions with

URI-R as endpoint. Relying on the transitive property defined in
OWL logic, the relation between URI-R and URI-Mi is derived by
adding the triples on lines 5 and 6.

Next, we select a version valid at a given datetime, which is added
by the triple at line 9. The predicate prov:wasGeneratedBy links
each version to an instance of prov:Activity, whose
prov:endedAtTime predicate indicates the initiation of validity.
The rule starts with extracting the defined datetime [line 12] and
creating a finite list of occuring datetimes. This list is composed by
finding all datetimes [line 13] that occur on or before the requested
datetime [line 16]. The valid version occurs on the latest datetime
in that list [lines 18 and 19], and is added to the response [line 21].
In addition, we define analogue rules to select the first, the last, the
next and the previous Memento as well, since links to all of these
resources are required. The complete rule file can be found here:
http://goo.gl/dz13UN.

After the rule execution, the derived result can be mapped directly
to the response. We add a Location header pointing at Mi. We add a
Link header, if applicable, to the first Memento URI-M0, the next
Memento URI-Mi+1, the previous Memento URI-Mi−1, as well as
the Original Resource URI-R.

4. EXAMPLE: OKFN COUNTRY CODES
In this section, we demonstrate our approach with a detailed

example, applying each step defined in Section 3 to a real-world
example.

1. Versioning Data.
As sample dataset, we use the Country Codes CSV file in the

OKFN Country Codes repository15 LCC. At the time of writing, the
file was subject to two commits:
• Commit Cx with hash x = 1c036643ef668ef836f251ead1c...db3b

created at tx = 2013-12-09T09:03:46.000Z, which creates a ver-
sion ACCx

15https://github.com/datasets/country-codes

956

http://goo.gl/dz13UN
https://github.com/datasets/country-codes

1 @prefix prov: <http://www.w3.org/ns/prov#>.

2 @prefix pred: <http://www.w3.org/2007/rif-builtin-
predicate#>.

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

4 @prefix e: <http://eulersharp.sourceforge.net/2003/03swap/log-
rules#>.

5 prov:wasRevisionOf rdfs:subPropertyOf :memento.

6 :memento a owl:TransitiveProperty.

7
8 :request :datetime

9 "2012 -04 -11 T12 :30:00Z"^^xsd:dateTime.

10
11 {

12 :request :datetime ?req_datetime.

13 [] e:findall (? datetime {

14 ?rev prov:endedAtTime ?datetime .

15 (? datetime ?req_datetime)

16 pred:dateTime -less -than -or-equal true.

17 } ?datetime_list) .

18 ?datetime_list e:max ?current_datetime.

19 ?current prov:endedAtTime ?current_datetime.

20 } => {

21 :response :memento ?current.

22 }.

23 ...

Listing 2: NLogic selects the Memento valid at datetime 2012-
04-11T12:30:00Z

• Commit Cywith hash y = ff1406b10dd4f484376db0c27b9...f22e
created at ty = 2013-12-09T10:02:48.000Z, which creates a ver-
sion ACCy

2. Generating Provenance.
We generate its provenance PCC by adding the repository using

Git2PROV16. An extract of its output is shown in Listing 1.

3. Creating the API.
Next, we set up a The DataTank instance on a local server

(localhost), for which we defined the following resources:
• Resource Definition URI-RDCC:

http://localhost/api/definitions/okfn/country-codes

• Resource Definition URI-RDCCx:
http://localhost/api/definitions/okfn/country-codes-x

• Resource Definition URI-RDCCy:
http://localhost/api/definitions/okfn/country-codes-y

• Resource URI-LCC publishing LCC:
http://localhost/okfn/country-codes

• Resource URI-ACCx publishing ACCx:
http://localhost/okfn/country-codes-x

• Resource URI-ACCy publishing ACCy:
http://localhost/okfn/country-codes-y

As shown in Listing 3, adding URI-RDCC, URI-RDCCx and URI-
RDCCy to our The DataTank instance creates the resources URI-LCC,
URI-ACCx and URI-ACCy, returned in the HTTP Location header of
each reponse. Next, we add owl:sameAs links to PCC between
each prov:Entity and its corresponding resource. For instance,
URI-LCC is added with the following triple:

result:file-data-country-codes-csv

owl:sameAs

<http://localhost/okfn/country-codes>

16http://git2prov.org/git2prov?giturl=https%
3A%2F%2Fgithub.com%2Fdatasets%2Fcountry-codes.
git&serialization=PROV-O

1 : UA −−− HTTP PUT; Content−Type:
a p p l i c a t i o n / t d t . d e f i n i t i o n + json
{ " type " : " t e x t / csv " ,

" u r i " : "LCC " , " d e l i m i t e r " : " , " } −−−−> URI−RDCC
2 : UA <−− HTTP 200; Loca t i on : URI−LCC −−−−−−−−−− URI−RDCC

3 : UA −−− HTTP PUT; Content−Type:
a p p l i c a t i o n / t d t . d e f i n i t i o n + json
{ " type " : " t e x t / csv " ,

" u r i " : "ACCx " , " d e l i m i t e r " : " , " } −−−> URI−RDCCx
4 : UA <−− HTTP 200; Loca t i on : URI−ACCy −−−−−−−−− URI−RDCCx

5 : UA −−− HTTP PUT; Content−Type:
a p p l i c a t i o n / t d t . d e f i n i t i o n + json
{ " type " : " t e x t / csv " ,

" u r i " : "ACCy " , " d e l i m i t e r " : " , " } −−−−−> URI−RDCCy
6 : UA <−− HTTP 200; Loca t i on : URI−ACCy −−−−−−−−− URI−RDCCy

Listing 3: Resource definitions are added to The DataTank with
sending PUT request to the API, creating the required resources

1 : UA −−−−− HTTP GET/HEAD; Accept−Datet ime: t j −> URI−RCC
2 : URI−RCC −−−−−−−−−− HTTP GET/HEAD −−−−−−−−−−−> URI−LCC
3 : URI−RCC <−−−−−−−−− HTTP 200 −−−−−−−−−−−−−−−−− URI−LCC
4 : UA <−−−− HTTP 200; L i n k : URI−GCC −−−−−−−−−−−− URI−RCC

5 : UA −−−− HTTP GET/HEAD; Accept−Datet ime: t j −−> URI−GCC
6 : UA <−−− HTTP 302; Loca t i on : URI−Mx ; Vary ;

L i n k : URI−RCC ,URI−GCC ,URI−MCCy −−− URI−GCC

7 : UA −−−− HTTP GET; Accept−Datet ime: t j −−−−−−−> URI−Mx
8 : URI−Mx −−−−−−−−−−− HTTP GET −−−−−−−−−−−−−−−−−> URI−Ax
9 : URI−Mx <−−−−−−−−−− HTTP 200 −−−−−−−−−−−−−−−−−− URI−Ax
10 : UA <−−− HTTP 200; Memento−Datet ime: t j ;

L i n k : URI−RCC ,URI−GCC ,URI−MCCy −−−− URI−Mx

Listing 4: A valid state of our dataset at time t j = 2013-12-
09T09:30:00.000Z can now be accessed through an API using
only HTTP interaction

4. Adding Datetime negotiation.
As a final step, we have a Generic Memento proxy running at the

location http://localhost/memento/. We register the resource
URI-LCC and supply its provenance P∗CC. The following resources
are created as a result:
• Original Resource URI-RCC:

http://localhost/memento/okfn/country-codes

• Timegate resource URI-GCC:
http://localhost/memento/tmgate/okfn/country-codes

• Memento resource URI-MCCx, proxying URI-ACCx:
http://localhost/memento/okfn/country-codes/x

• Memento resource URI-MCCy, proxying URI-ACCy:
http://localhost/memento/okfn/country-codes/y

The HTTP interaction between a User Agent (UA) requesting the
valid state of resource URI-RCC at time t j = 2013-12-09T09:30:00.000Z
is demonstrated in Listing 4. First, the agent requests the resource
from the proxy [Line 2], which forwards the request to the corre-
sponding resource URI-LCC from The DataTank instance [Line 3].
When the response returns, the proxy adds a Link header pointing
to URI-GCC [Line 3,4] to provide the Datetime negotiation func-
tionality. Next, the agent sends a request to URI-GCC adding an
Accept-DateTime header holding the desired timestamp t j [Line
5]. The memento URI-MCCx is selected by the proxy, since tx is
the highest timestamp occurring before t j, and sent back in the Lo-
cation header [Line 6]. Finally, the agent requests the memento
URI-MCCx [Line 7], which forwards the request to URI-ACCx [Line
8]. The proxy adds extra Link headers to the response and sends it
back to the agent [Line 9,10].

957

http://localhost/api/definitions/okfn/country-codes
http://localhost/api/definitions/okfn/country-codes-x
http://localhost/api/definitions/okfn/country-codes-y
http://localhost/okfn/country-codes
http://localhost/okfn/country-codes-x
http://localhost/okfn/country-codes-y
http://git2prov.org/git2prov?giturl=https%3A%2F%2Fgithub.com%2Fdatasets%2Fcountry-codes.git&serialization=PROV-O
http://git2prov.org/git2prov?giturl=https%3A%2F%2Fgithub.com%2Fdatasets%2Fcountry-codes.git&serialization=PROV-O
http://git2prov.org/git2prov?giturl=https%3A%2F%2Fgithub.com%2Fdatasets%2Fcountry-codes.git&serialization=PROV-O
http://localhost/memento/
http://localhost/memento/okfn/country-codes
http://localhost/memento/tmgate/okfn/country-codes
http://localhost/memento/okfn/country-codes/x
http://localhost/memento/okfn/country-codes/y

5. RELATED WORK
The closest related work is Camlistore17, an archiving storage

space. Users can add and modify blobs of data, of which changes
are stored over time. The stored data is accesible through several
interfaces, including a Web API. Although it serves data over HTTP,
it does not allow fine-grained access to the data, nor does it offer
resource-based versioning. Furthermore, it is an integrated, central-
ized solution. The components of the stack described in this paper
can work distributed, i.e. not every party needs to offer the complete
stack. Also, it does not publish provenance, which enables obtaining
trust.

Also related are server-side implementations of the Memento
framework. The Wayback software [14] is a webpage archiving sys-
tem that stores snapshots of a registered resource’s representation,
and assignes a new URI to it. Since this system relies on snapshots, it
does not contain all the versions of a resource. The SiteStory exten-
sion for Apache [1] webservers works in a similar way, but allows
more fine-grained archiving. A snapshot is made each time the data
is requested, approximating a full history. However, only the last
occuring change between two requests is stored, loosing the others.
These systems rely on polling, i.e. snapshots are made on certain
points in time, while our approach is data-driven: every change
to the data is reflected in the Memento interface. Another data-
driven implementation is the Memento MediaWiki extension [8].
The history of content changes is automatically exposed as Me-
mento resources. However, this solution is a MediaWiki-specific
implementation.

In the context of provenance, an extension to the Memento frame-
work was proposed to publish provenance [3]. For each published
resource by the framework, a Link header of type provenance is
added to its response for discovery. This work is complementary
to the Generic Memento proxy, valuable for republishing the prove-
nance for each Memento.

6. FUTURE WORK
In the future, we will research the applicability in the Linked Data

publishing domain. In prior work, we have developed R&Wbase[17],
a distributed version controlled triple store. Instead of storing snap-
shots of the whole triple set, only deltas are stored according to
a numbering scheme. This scheme enables a fast and lightweight
retrieval algorithm, that allows real-time version retrieval. PROV is
used at operation level to describe the relation between the different
versions. In other words, the git storage layer described in this paper
would be replaced by a R&Wbase instance. Additionally, we will
study the capabilities of Memento as a versioning access method for
known triple store interfaces like SPARQL [7].

7. CONCLUSION
In this paper we introduced a fast and flexible method for pub-

lishing datasets as a time-based versioned Web API. It facilitates
publishing data on the Web, which is an advantageous activity in
many domains, e.g., Cultural Heritage and Open Government Data.
The potential lies in reusing and combining these data to extract
information. Our work addresses three main issues for such organi-
sations: simplifying the creation of a resource-oriented RESTAPI,
supporting constant state over different combined resources, and
disseminating provenance. All components of the stack, and their
connections, were discussed in detail.

17http://camlistore.org/

8. REFERENCES
[1] Balakireva, L.: The SiteStory extension for Apache (2013),

http://mementoweb.github.io/SiteStory

[2] Berners-Lee, T., Connolly, D.: Notation3 (N): A readable
RDF syntax. WC Team Submission (Mar 2011), available at
http://www.w3.org/TeamSubmission/n3/

[3] Coppens, S., Mannens, E., Van Deursen, D., Hochstenbach, P.,
Janssens, B., Van de Walle, R.: Publishing provenance
information on the Web using the Memento datetime content
negotiation. In: WWW2011 workshop on Linked Data on the
Web (LDOW 2011). vol. 813, pp. 6–15 (2011)

[4] De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth,
P., Mannens, E., Van de Walle, R.: Git2prov: Exposing
Version Control System Content as WC PROV. In: Poster and
Demo Proceedings of the 12th International Semantic Web
Conference (2013)

[5] De Roo, J.: Euler Proof Mechanism (1999–2013), available at
http://eulersharp.sourceforge.net/

[6] DuVander, A.: 3,000 web APIs: Trends From a Quickly
Growing Directory (2011), http://blog.
programmableweb.com/2011/03/08/3000-web-apis/

[7] Garlik, S.H., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1
Query Language. World Wide Web Consortium (2013),
http://www.w3.org/TR/sparql11-query/

[8] Jones, S., Shankar, H.: The Memento extension for
MediaWiki (2013), http:
//www.mediawiki.org/wiki/Extension:Memento

[9] Maali, F., Erickson, J., Archer, P.: Data Catalog Vocabulary
(DCAT). W3C Working Draft (2012)

[10] Moreau, L., Hartig, O., Simmhan, Y., Myers, J., Lebo, T.,
Belhajjame, K., Miles, S.: PROV-AQ: Provenance Access and
Query. Tech. rep. (2012),
http://www.w3.org/TR/prov-aq/

[11] Polock, R.: Building the Open Data Ecosystem (2011),
http://blog.okfn.org/2011/03/31/building-the-

open-data-ecosystem/

[12] Rao, J., Su, X.: A survey of automated Web Service
composition methods. In: Semantic Web Services and Web
Process Composition, pp. 43–54. Springer (2005)

[13] Van de Sompel, H., Sanderson, R., Nelson, M.L., Balakireva,
L., Shankar, H., Ainsworth, S.: An HTTP-based Versioning
Mechanism for Linked Data. CoRR abs/1003.3661 (2010)

[14] Tofel, B.: Wayback (2011), http://archive-
access.sourceforge.net/projects/wayback

[15] Torvalds, L.: git(1) Manual Page (2013), https:
//www.kernel.org/pub/software/scm/git/docs/

[16] Vander Sande, M., Colpaert, P., Van Deursen, D., Mannens,
E., Van de Walle, R.: The DataTank: an Open Data adapter
with Semantic output. In: 21st International Conference on
World Wide Web, Proceedings. p. 4 (2012)

[17] Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S.,
Mannens, E., Van de Walle, R.: R&Wbase: git for triples. In:
Proceedings of the 6th Workshop on Linked Data on the Web
(May 2013)

[18] Vander Sande, M., Coppens, S., Verborgh, R., Mannens, E.,
Van de Walle, R.: Adding Time to Linked Data: A Generic
Memento proxy through PROV. In: Poster and Demo
Proceedings of the 12th International Semantic Web
Conference (2013)

[19] W3C Provenance Working Group and others: PROV-DM: The
PROVData Model (L. Moreau & P. Missier, Eds.). (2012)

958

http://mementoweb.github.io/SiteStory
http://www.w3.org/TeamSubmission/n3/
http://eulersharp.sourceforge.net/
http://blog.programmableweb.com/2011/03/08/3000-web-apis/
http://blog.programmableweb.com/2011/03/08/3000-web-apis/
http://www.w3.org/TR/sparql11-query/
http://www.mediawiki.org/wiki/Extension:Memento
http://www.mediawiki.org/wiki/Extension:Memento
http://www.w3.org/TR/prov-aq/
http://blog.okfn.org/2011/03/31/building-the-open-data-ecosystem/
http://blog.okfn.org/2011/03/31/building-the-open-data-ecosystem/
http://archive-access.sourceforge.net/projects/wayback
http://archive-access.sourceforge.net/projects/wayback
https://www.kernel.org/pub/software/scm/git/docs/
https://www.kernel.org/pub/software/scm/git/docs/

	Introduction
	Technology stack
	Git2PROV
	The DataTank
	Generic Memento
	The Memento framework
	A Generic Memento proxy

	Operational steps
	Versioning Data
	Generating Provenance
	Creating the API
	Adding datetime negotiation

	Example: OKFN Country Codes
	Related Work
	Future work
	Conclusion
	References

