
Easy Access to the Freebase Dataset

Hannah Bast, Florian Bäurle, Björn Buchhold, Elmar Haußmann
Department of Computer Science

University of Freiburg
79110 Freiburg, Germany

{bast, baeurlef, buchhold, haussmann}@informatik.uni-freiburg.de

ABSTRACT

We demonstrate a system for fast and intuitive exploration
of the Freebase dataset. This required solving several non-
trivial problems, including: entity scores for proper ranking
and name disambiguation, a unique meaningful name for ev-
ery entity and every type, extraction of canonical binary re-
lations from multi-way relations (which in Freebase are mod-
eled via so-called mediator objects), computing the transi-
tive hull of selected relations, and identifying and merging
duplicates. Our contribution is two-fold. First, we provide
for download an up-to-date version of the Freebase data,
enriched and simplified as just sketched. Second, we offer a
user interface for exploring and searching this data set. The
data set, the user interface and a demo video are available
from http://freebase-easy.cs.uni-freiburg.de.

Categories and Subject Descriptors

H.0 [Information Systems]: General

Keywords

Freebase; Knowledge Base; Ontology

1. INTRODUCTION
Freebase [2] is designed as an open, community-curated

knowledge base. With more than 40 million topics and over
2 billion facts, it is today by far the most comprehensive
publicly available source of general-knowledge facts.
The complete Freebase data is available for free use, shar-

ing, and adaption (even commercially) under a creative com-
mons license. The data format is N-Triples RDF, which is
standard for triple data. In principle, the data can therefore
be loaded into any state-of-the-art triple store and queried
via standard semantic query languages such as SPARQL.
Freebase also provides an own API. The query language used
there is MQL.
However, when working with this raw data via SPARQL

or with the Freebase API via MQL, several major usability
issues arise, also for expert users. Consider the query for

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2567948.2577016.

winners of the Palme d’Or1, shown in Figure 1. This appears
to be a simple query, which requires only a single relation.
In SPARQL one would like to write something like this:

select ?x where { ?x Awards-Won ”Palme d’Or” }

But the required SPARQL query on the provided RDF data
dump looks like this:

select ?name where {
?x ns:award/award winner/awards won ?m .
?m ns:award/award honor/award ?a .
?a ns:type/object/name ”Palme d’Or”@en .
?x ns:type/object/name ?name .

}

Already this simple example hints at a number of usability
issues. How to guess the right relation names? How to guess
the right schema (the object of the awards won relation is
a so-called mediator object, which is linked, via another re-
lation, to the actual award entity)? How to guess the right
entity names (Palme d’Or in this case)? The results are
opaque, too. Here is the link to the result for the equivalent
MQL query (the complexity of which is similar to that of
the SPARQL query above): http://tinyurl.com/l2pdms5.
In particular, the ranking is merely lexicographic and there
are ambiguous names like Michael Moore. For more complex
queries, e.g. http://tinyurl.com/qzrc77j, these problems
intensify.

In contrast, the query in Figure 1 is as one would ex-
pect. As we will see later, the user interface helps in finding
the proper relation names. The results are properly ranked,
with the most prominent hits (directors in this case) at the
top. The names of the directors are as expected, and accom-
panied by pictures. What is not shown is that there are 16
persons in Freebase with the name Michael Moore. In our
version of the Freebase data set, only the (in)famous direc-
tor gets exactly that name. The others are disambiguated
by meaningful suffixes, e.g.Michael Moore (Soccer Forward).
Finally, the user interface offers suggestions for sensible ways
to augment the query, e.g. by the relation Country of na-
tionality.

1.1 Our contribution
We address all of the problems from the example query

above, as well as several other problems that occur with
typical queries and impact usability.

Entity Scores. As in standard text search, long result lists
demand for a proper ranking. For example, for our exam-
ple query above, we would like to have the most prominent
1This is the highest prize at the annual Cannes Film Festival.

95

http://freebase-easy.cs.uni-freiburg.de
http://tinyurl.com/l2pdms5
http://tinyurl.com/qzrc77j


Your Query: 

Hits: 

Types: 

Award Winner (73) 

Film Crew (73) 

1 - 10 of 118 

Country of nationality, the RELATION 

Michael Moore 

Martin Scorsese 

David Lynch 

Quentin Tarantino 

(237455) 

(131749) 

(112143) 

(92768) 

1 - 10 of 73 

Instances: 

Relations: 

Award Won 

Date of birth 

Country of nationality 

(73) 

(73) 

(73) 

1 - 32 of 73 

Michael Moore 

David Lynch 

Martin Scorsese 

Quentin Tarantino 

• Award Won: Palme d‘Or 

• Award Won: Palme d‘Or 

• Award Won: Palme d‘Or 

• Award Won: Palme d‘Or 

Award Won Palme d‘Or 

Person 

1 - 10 of 101 

Figure 1: A screenshot of our demo system showing results for a query for winners of the Palme d’Or. For

explanations of the various components and features, see the paragraph before Section 1.1 and Section 3.

people at the top. We provide a prominence score for each
entity in Freebase; see Section 2.2.

Entity Names. In Freebase, each entity has a unique
alpha-numerical so-called machine id or mid, e.g. /m/0jw67.
In most applications, it is desirable to also have unique
names that are meaningful for humans. This is also the
approach Wikipedia takes. There, entities are distinguished
with suffixes. For example, Europe denotes the continent as
expected, while the Swedish rock band with the same name
is called Europe (band). For the sake of consistency, these
suffixes follow several rules, but ultimately they are chosen
by humans. We automatically compute such names for each
entity in Freebase. This is described in Section 2.3.

Mediators. In our introductory example, we have encoun-
tered the complex awards won relation. It involves a medi-
ator object that itself is related to several entities, includ-
ing not only the person who won the award and the award
won, but also supplementary information like the date of
the award and the winning work. Still, for many queries the
“main” binary relation (between the person and the award
in this case) is all that is needed, and would be much easier
to use. We automatically extract this binary relation from
each mediator; see in Section 2.4.

Transitivity. Many relations are practically unusable when
they are not closed under transitivity. The relation Con-
tained by between locations is a prominent example. We
compute the transitive hull for several large (manually se-
lected) relations from Freebase; see Section 2.5.

Duplicates. Duplicate entities or types with the same or a
similar name are frequent in Freebase. For example, there
are four classes called Person or person. Usually, addi-
tional types with the same name have few instances and
are added as a user’s mistake. The problem is aggravated
by our own addition of types to the taxonomy; see the next
item. We identify duplicates, merge them and give them a
proper canonical name; see Section 2.6.

Taxonomy. Freebase by itself has a comparably shallow
taxonomy (3,557 different types at the time of this writ-
ing) expressed via its type/object/type relation. However,
many intuitive semantic classes like plant or politician are
not types. Instead this information is available only via re-
lations, e.g. Profession. We apply a set of configurable rela-
tions with objects that are to be included in the taxonomy.
Our resulting taxonomy has a total of 21,042 different types.
See http://freebase-easy.cs.uni-freiburg.de for more
details.

User Interface. We provide a fully-functional user inter-
face that allows for an interactive exploration and search
using all of the features above. See Figure 1 and our de-
scription in Section 3. The demo is available under the link
above; we encourage the reader to try it out.

Download. Along with the demo, we also provide our ver-
sion of the Freebase data set, with all of the mentioned fea-
tures, for download. A zip file (2.4 GB at the time of this
writing) is available under the link above. Our data curation
pipeline (see Section 2) is fully automized. This allows us to
easily update the data set on a regular basis, and thus keep
pace with the continuously growing Freebase data.

We remark that some of the items above represent major
research challenges. For this demo paper, we apply compa-
rably simple and straightforward solutions. However, as can
be seen from the demo, these already go a long way towards
an easier access to and better usability of the Freebase data.

1.2 Related Work
There is an abundance of work on providing more conve-

nient front ends for semantic search. See [4] for a small
survey, and the many papers citing that work. None of
these achieve context-sensitive query suggestions at inter-
active speed as in our user interface (for a data set as large
as Freebase); see also [1, Section 2].

Concerning our data curation pipeline, we do not claim
particular novelty for any of the components. Our contri-

96

http://freebase-easy.cs.uni-freiburg.de


Freebase 

RDF 

Dump 

sanitize 
RDF3X 

Triple 

Store 

Compute 

Entity Scores 

Assign 

Entity Names 

Identify 

Relevant Relations 

Resolve 

Mediated Relations 

Compute Transitive 

Closures 

Enrich Taxonomy 
Reconcile 

Duplicate Entities 

Extract Triples 

Extract & Enrich Pre-process 

Final 

KB 

Improve Usability Simplify Schema 

Figure 2: Architectural overview of our pipeline for a more easy-to-use version of the Freebase data set.

bution is that we have identified the major issues for the
(widely used) Freebase data set, and provide a version that
is much more easily accessible, and a ready-to-use demo ap-
plication. We know of no comparable effort to date.

2. DESCRIPTION OF OUR PIPELINE
Freebase provides raw data dumps in the form of RDF-

triples. As explained above, working with this raw data
is complex for a variety of reasons. We therefore seek to
simplify and enrich it in several ways. Figure 2 illustrates
the general pipeline of our architecture. The various steps
of the pipeline are described in the following subsections.

2.1 Data Sanitization
The raw RDF data contains redundant information as

well as information which is undesired or even annoying in
most use cases. We therefore first load the raw RDF data
into RDF-3X [5], a fast triple store, and then extract the
relations we are interested in using appropriate SPARQL
queries. Namely, we omit relations with few facts (< 5)
and relations that are not part of the core data in Freebase
(e.g., facts in the domains user and base). Further, Free-
base contains many (but not all) relations in two directions,
e.g., place-of-birth and people-born-here. For all those, we
only extract one direction (the one with more subjects than
objects)2.

2.2 Entity Scores
Scores indicating the prominence of entities are essential

when ranking result entities (rank prominent entities first)
and when resolving naming conflicts (assign the most promi-
nent entity the canonical name, see Section 2.3). Intuitively,
the more people talk (or write) about an entity the more
prominent it is. We utilize the mentions of Freebase entities
in the ClueWeb’12 Corpus3 (733M web pages) from [3] to
count the number of mentions of each entity and use it as a
score. Given a set of mentions MCW e

of an entity e we use
sCW as the resulting score:

sCW (e) = |MCW e
|

About 4.5 million distinct entities were recognized in ClueWeb,
but our knowledge base contains a total of 39.6 million dis-
tinct entities. Therefore, we additionally compute a score
based on the knowledge base and its relations in the follow-
ing way:

2Most applications, including our own here, can handle
queries for the reverse direction without requiring a copy
of it.
3http://lemurproject.org/clueweb12/

sKB (e) =
∑

r∈R

log(max(1, |{x | (e, r, x) ∈ KB}|))

+
∑

r∈R

log(max(1, |{x | (x, r, e) ∈ KB}|))

R is the set of all relation types in the knowledge base and
KB denotes its set of relational triples (x, r, y). The above is
the sum of the log of a per-relation out-degree and in-degree
with the intuition that an entity with many incoming and
outgoing relations is more prominent. The main effect of
this score is as a tie-braker, when two entities have the same
number of occurrences in the ClueWeb collections or were
not mentioned or recognized at all. As final score for an
entity we use the sum of the ClueWeb and knowledge based
score:

s(e) = sCW (e) + sKB (e)

2.3 Entity names
As discussed in the introduction, a unique meaningful

name for each entity is highly desirable in many applica-
tions. However, the raw Freebase data only provides alpha-
numerical ids and highly ambiguous names. In Wikipedia,
this problem is solved manually as follows. For an ambigu-
ous name, the most prominent entity gets the name without
further additions. For example, the director from our ex-
ample query in Figure 1 is called Michael Moore. Other
contestants for the same name are distinguished by a mean-
ingful suffix, e.g. Michael Moore (Australian politician).

For the Freebase data, we automatically assign unique
names as follows.4 If there is no name at all, use the alpha-
numerical id from Freebase. Otherwise, there will be a set
of candidates that compete for a name. Note that these
candidates can be types (e.g. Director) as well as entities
(e.g. Michael Moore) Also note that a type and an entity
can have the same name in Freebase (e.g., there is a type
Person and several entities with that name). The score for
an entity is simply the score from Section 2.2. The score for
a type is simply the maximum score of an entity plus the
number of instances of that type. The literal name (without
suffixes) then goes to the candidate with the highest score.

The remaining candidates are disambiguated as follows.
If they are located in a country, they compete for the name
<name> (<country>). Again, the entity with the highest
score gets that name. The others get an additional numerical
suffix, e.g. Berlin (United States) #2. Entities without loca-
tional information are disambiguated using their notable-for
relation, e.g. Michael Moore (Soccer Forward). If that is not
enough to achieve unique names, again a numerical suffix is

4Note that for most Freebase entries, there is no associated
Wikipedia entry.

97



added. Entities that have neither locational nor notable-for
information are disambiguated using their Freebase ids, e.g.
Maria (m/0760g8).

2.4 Mediators
As explained in the introduction, Freebase realizes multi-

way relations using so-called mediator objects. For example,
for a fact from Freebase’s Awards won relation, the object is
such a mediator object of type award honor. This object is
then related to the actual award, but also to supplementary
information such as the winning work or the date of the
award.
For each mediator type m (e.g. award honor), we do the

following. Intuitively, there are two types of mediators,
which require a different approach. Namely, m either medi-
ates between two entities in different roles (e.g. a musician
and a group) or in the same role (e.g. siblings). We found the
following strategy to differentiate very well between these
two cases.
Consider the k relations that have m as subject.5 Let

n1 ≥ . . . ≥ nk be the number of facts in each of these k
relations, sorted in decreasing order. Let r be the relation
pertaining to n1. If k ≥ 2 and n2 ≥ n1/2, let r′ be the
relation pertaining to n2, otherwise let r′ = r. Intuitively, r
and r′ are hence the most “frequent” relations, with r = r′

for a relation like “sibling”. It remains to “merge” r and r′

to the desired binary relation and give it a proper name.
Let n be the name of the reverse direction of the relation

r according to Freebase. If no such name can be obtained,
try the reverse relation of r′. In the very rare event that
this fails too, fall back to n = r. We then extract a binary
relation rm in the following way.

rm = {(s, n, o) | (x, r, s) ∈ KB ∧ (x, r′, o) ∈ KB ∧ s 6= o}

This gives us exactly one binary relation for each mediator
type m.

2.5 Transitivity
Freebase does not provide the transitive closure of transi-

tive relations. Given R1 and R2, the tuples of two relations
r1 and r2, we compute the transitive closure of tuples to be
added during extraction as follows:

Rt = R1 ◦R
+

2

Where R+

2 is the transitive of relation r2 and ◦ is relation
composition. This allows computing the transitive closure
over two relations, e.g., profession and is-specialization-of to
ensure that a person with the profession physicist also has
the profession scientist (because the profession physicist is
a specialization of scientist). The classic transitive closure
is a special case where r1 equals r2. We currently provide a
manually compiled list of relations for which the transitive
closure should be computed.

2.6 Duplicate Classes
A common problem in knowledge bases is that of duplicate

entities or classes, often with identical or slightly different
names. We follow a simple approach and merge two classes if
they have the same name, ignoring case, and if the instances
of one class are included in the other by a threshold. Let
IA and IB be the instances/entities of some class A and
B, respectively. We only merge class A into class B if the

5We always have k ≥ 1 and for few relations, like “sibling”,
we indeed have k = 1.

instances of class A are contained to at least 70% in class
B, that is when:

|IA ∩ IB |

|IA|
≥ 0.7

and vice versa.

3. USER INTERFACE
We provide a convenient user interface for performing

complex searches on our version of the Freebase dataset,
as described in the previous section. The main features are
as follows. We encourage the reader to try our demo under
http://freebase-easy.cs.uni-freiburg.de.

(1) A single input field, as in standard text search.

(2) Incremental query construction with suggestions (for
matching types, instance and relations) after each keystroke.

(3) Example tooltips for each relation (shown on mouse
over), to help understand what the relation is about (re-
lation names in Freebase are sometimes opaque).

(4) Visual editing of the current query graph (e.g., removing
a part or double-clicking a node to make it the new root).

(5) Meaningful names (following Section 2.3) and images
(loaded from Freebase, if available).

(6) Proper ranking of results, using the scores from Section
2.2 where appropriate.

(7) Sort by an arbitrary query element, i.p. dates and values.

(8) Interactive query times, using the index from [1].

4. CONCLUSION
We provide a curated version of the Freebase data set that

fixes several major usability issues with the original data
set. We also provide a convenient user interface for interac-
tive search and exploration, making good use of the various
features we added. Several of the problems we addressed
are major research problems in their own right. The solu-
tions we provided here are simple and effective, yet by no
means perfect. For example, our entity scores (derived from
counts in the ClueWeb’12 corpus) work very well to bring
the prominent entities to the top, but in some cases show an
undesirable topic drift (e.g., Celine Dion is the fourth most
prominent person). Our canonical entity names work like a
charm for the more frequent entities, while names like Berlin
(United States) #2 could be improved.

5. REFERENCES
[1] H. Bast and B. Buchhold. An index for efficient

semantic full-text search. In CIKM, pages 369–378,
2013.

[2] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD, pages 1247–1250, 2008.

[3] E. Gabrilovich, M. Ringgaard, and A. Subramanya.
FACC1: Freebase annotation of ClueWeb corpora,
Version 1. (Release date 2013-06-26, Format version 1,
Correction level 0).

[4] E. Kaufmann and A. Bernstein. How useful are natural
language interfaces to the semantic web for casual
end-users? In ISWC, pages 281–294, 2007.

[5] T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In SIGMOD, pages 627–640,
2009.

98

http://freebase-easy.cs.uni-freiburg.de

	Introduction
	Our contribution
	Related Work

	Description of our pipeline
	Data Sanitization
	Entity Scores
	Entity names
	Mediators
	Transitivity
	Duplicate Classes

	User Interface
	Conclusion
	References



