
Seven Challenges for RESTful Transaction Models

Nandana Mihindukulasooriya, Miguel Esteban-Gutiérrez, Raúl García-Castro
Center for Open Middleware, Ontology Engineering Group

Universidad Politécnica de Madrid, Spain
{nmihindu,mesteban,rgarcia}@fi.upm.es

ABSTRACT
The REpresentational State Transfer (REST) architectural style de-
scribes the design principles that made the World Wide Web scalable
and the same principles can be applied in enterprise context to do
loosely coupled and scalable application integration. In recent years,
RESTful services are gaining traction in the industry and are com-
monly used as a simpler alternative to SOAP Web Services.

However, one of the main drawbacks of RESTful services is
the lack of standard mechanisms to support advanced quality-of-
service requirements that are common to enterprises. Transaction
processing is one of the essential features of enterprise information
systems and several transaction models have been proposed in the
past years to fulfill the gap of transaction processing in RESTful
services. The goal of this paper is to analyze the state-of-the-art
RESTful transaction models and identify the current challenges.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; H.1 [In-
formation Systems]: Models and Principles; H.2.4 [Information
Systems]: Transaction processing

Keywords
REST; Transactions; Challenges

1. INTRODUCTION
REpresentational State Transfer (REST) architectural style, ini-

tially known as “HTTP object model”, was developed as a means
of communicating Web concepts and is the foundation for the mod-
ern Web architecture [4]. REST introduces several architectural
constraints on hypermedia systems design such as resource identi-
fication (addressability), uniform interface, stateless interactions,
self-describing messages, and hypermedia as the engine of applica-
tion state (HATEOAS). These constraints induce certain desirable
properties that enable the development of loosely coupled scalable
systems.

However, not every web application (including those calling them-
selves RESTful) adheres to all these REST constraints. Models such
as the Richardson Maturity Model categorize services according to
their adherence to the REST constraints [24], and provide an insight
about the impact and consequences of dropping these constraints.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579218.

Nonetheless, Web Services built following the REST architectural
constraints (RESTful services, from now on) are getting traction in
the industry in recent years as a simpler alternative to application
integration. However, one of the main criticisms is the lack of
standard mechanisms to support the advanced quality of service
requirements that are required by enterprises [14].

Transaction support is an important quality-of-service require-
ment in most enterprise business scenarios. A real life transaction
example would be transferring money from one account to another
in a banking application. Both the deduction of money from one
account and the addition to the other should happen in an “all-or-
nothing” manner and the intermediate inconsistent states such as
when only one account is modified should not be visible outside the
transaction. In computer applications, a transaction is defined as a
sequence of operations on the physical or abstract application state
that can be considered as a single unit of work [7]. Gray defined the
transaction concept with atomicity, durability, and consistency [6]
and Haerder & Reuter coined the acronym ACID adding isolation
to the aforementioned three properties [8].

Beyond this basic flat transaction definition, further transaction
types have been developed in order to meet the requirements of
other real-life complex transactional scenarios: chained transac-
tions, nested transactions, distributed transactions, long-lived trans-
actions, etc [7].

However, the strong consistency property of the ACID model may
hinder other quality aspects of data-sharing systems. According to
the CAP theorem [2], these systems can only exhibit at most two
of the following three properties: consistency, availability, and
tolerance to network partitions. Furthermore, even in the absence of
network partitions, data replication based high-availability systems
require a tradeoff between consistency and latency as stated by the
PACELC theorem [1]. To overcome these issues, other consistency
models propose to make a compromise between consistency and
availability/latency by relaxing consistency guarantees in order to
catter for network partition fault-tolerance and high-availability (see
eventual consistency [23] and BASE [15]).

Up to now, there have been several efforts to define ACID-based
flat transactions for RESTful services. In this paper we analyze the
state-of-the-art to this extent and identify the current challenges for
REST-compliant strongly consistent transaction models.

The rest of the paper is organized as follows: Section 2 provides
an overview of RESTful transactions with different characteristics
and analysis of existing models; Section 3 presents a set of chal-
lenges that were identified based on the previous analysis; and,
Section 4 draws some conclusions.

949



2. RESTFUL TRANSACTIONS

2.1 RESTful transaction characteristics
In order to understand the nature of transactional scenarios for

RESTful applications, we have characterized them according to
three dimensions: (1) the resources that are involved in the trans-
action; (2) the workflow of actions that will be carried out during
the transaction; and (3) the specific characteristic of the business
application domain.

Resource characteristics include the number of resources (car-
dinality), the ownership and management of resources, and their
physical distribution. The characteristics of the workflow dimension
include flexibility (i.e., whether the transaction workflow has to be
known at design time or it can be defined on-the-fly at runtime),
whether the actions are interactive or not, whether the actions are
organized as a flat sequential workflow or include more complex
organizations such as chains or hierarchies, and whether the par-
ticipating resources have to have a pre-agreement (context) or they
are loosely-coupled (i.e. any resource in the wild can participate
in a transaction). Finally, domain-specific characteristics include
the average expected duration of a transaction, the reversibility or
compensability of actions, and the level of transactional guarantees
required by the business use case. Table 1 summarizes the different
characteristics.

Dimension Characteristic Variations

Resource

Cardinality Single
Multiple

Management Centralized authority
Decentralized authority

Distribution Single node
Distributed

Workflow

Flexibility Predefined
Free-form

Interactivity Interactive
Non-interactive

Structure Flat
Chained

Hierarchical
Scope Predefined context

Global

Domain-
specific

Lifetime Short-lived
Long-lived

Actions Reversible
Nonreversible
Compensable

Required guarantees ACID
BASE

Reservation (ACD)

Table 1: Characteristics of RESTful transaction scenarios

2.2 RESTful transaction models
The most intuitive way to support RESTful transactions is to

design the resource model in a way that atomic state transitions are
done via a single resource by introducing coarse-grained resources
that capture the complete transactional state (e.g. two account
resources vs. a single money transfer resource). However, looking
at the different characteristics in the previous section, it becomes
clear that this is not always possible. Thus, several transaction
models have been proposed for RESTful services over the past
years as summarized in Table 2. In addition to the aforementioned
approaches, there are other implementation oriented approaches
such as REST-* / JBoss JAX-RS transaction support (both ACID
and compensating transactions)1.

1
https://community.jboss.org/wiki/

TransactionalSupportForJAXRSBasedApplications

Key Year Transaction Model
1 ∼2000 Batched transactions with overloaded POST
2 2007 Transactions as resources [18]
3 2009 Optimistic technique for transactions using

REST [19]
4 2009 A consistent and recoverable RESTful transac-

tion model (RETRO) [12, 17, 16]
5 2010 Timestamp-based two phase commit protocol

for RESTful services (TS2PC4RS) [20, 22, 21]
6 2011 Try-Cancel/Confirm pattern (TCC) [13]
7 2012 Atomic REST batched transactions [9]

Table 2: RESTful transaction models

We have analyzed the aforementioned models using an example
scenario of updating two resources with each model, summarized in
Table 3. The goal was not to select one model as the best model but
to understand the state of the art about RESTful transaction models.
First we looked at the model’s ability to provide ACID guarantees in
transactions. One thing to note is that while atomicity and isolation
are guaranteed by the transaction protocols, consistency validation
and durability are mostly guaranteed by the implementation (thus are
not included in Table 3). Another criterion was the RESTfulness of
the model, remarking whether or not the protocol communications
adhere to relevant REST constraints.

Property Transaction models
1 2 3 4 5 6 7

Transaction properties
Atomicity X X X1 X X X X
Isolation X X2 X X X X X

REST Constraints
Uniform interfaces X X X X X X X
Statelessness X X3 X X3 X X X
HATEOAS X X X X X X X

HTTP related properties
Semantics not violated X X X X X X X
Common verbs supported X X X X X X X
Low overhead X X X X X X X

Miscellaneous properties
Optionality X ? ? X ? ? X
Discoverable ? ? ? X ? ? X
Distributed transactions X X X ? X X ?
Theoretical proofs ? ? ? X X X ?
Implementation available X ? ? X ? X X
Performance evaluation ? ? ? ? ? X ?
Legend - XTrue / X False / ? Unknown or not defined in the model
1 - Given the actions can be compensated
2 - Possible lost update problem
3 - See section 3.3

Table 3: Analysis of existing RESTful transaction models

Because in practice most RESTful services are implemented using
HTTP, we verified that the models do not violate HTTP semantics
(e.g. safety and idempotency of certain operations), support the
commonly used HTTP verbs (GET, PUT, POST, and DELETE) and
only use the standard verbs defined in HTTP/1.1. These aspects are
important for the interoperability and wide adoption of the model.
In addition, we analyzed the overhead added by the transaction
protocol (in the success case) to the communication, i.e. additional
HTTP round trips and payload data.

Further, other miscellaneous properties were considered: (a) pro-
tocol optionality, that is, whether or not servers and clients that
do not support the protocol can co-exist with others that support
it (this should facilitate the progressive adoption of the model);
(b) discoverability, that is, all the metadata needed to execute the
transactions can be discoveredws in a RESTful manner without
out-of-band knowledge (i.e. following links); (c) the availability

950

https://community.jboss.org/wiki/TransactionalSupportForJAXRSBasedApplications
https://community.jboss.org/wiki/TransactionalSupportForJAXRSBasedApplications


of theoretical proofs that demonstrate whether or not the model is
correct; (d) the availability of implementations; and (e) the provision
of an evaluation of the overhead introduced by the protocol.

The results of the analysis show that most models fail to fulfill
several desirable properties and cannot be used in some of the
scenarios identified in Table 1 due to some challenges for RESTful
transaction processing that will be discussed in the next section.

3. CHALLENGES FOR RESTFUL TRANS-
ACTIONS

Based on the analysis of the existing transaction models and com-
paring them with the different characteristics of RESTful transaction
scenarios, we have identified the following challenges.

3.1 Decentralized authorities
Transactions that involve resources managed by multiple author-

ities is one of the main challenges in current RESTful transaction
models. The main problem of decentralized authorities is the need
for coordination and agreement with regards to the final outcome
of a transaction whilst ensuring its atomicity, an issue that requires
complex failure modes and recovery mechanisms [3]. This is a
common problem in distributed computing that is typically solved
using a consensus protocol such as two-phase commit. However,
the majority of the RESTful transaction models do not cover this
scenario and the challenge is the design a stateful consensus protocol
without violating REST constraints.

3.2 Distributed servers
Distributed systems in which the ordering and timing of events is

relevant2 require the synchronization of logical clocks of different
nodes [10]. Currently, mechanisms such as Lamport timestamps
and vector clocks are used for ordering events in distributed systems
[10]. How these approaches can be applied in REST services for
ordering the actions on different resources and how timestamps can
be used consistently still remains a challenge to be solved.

3.3 Statelessness and isolation
The statelessness REST constraint states that servers should be

stateless and should not maintain any conversation state with the
client [5]. However, the isolation ACID property states that any
intermediate change of a transaction should not be visible to ongoing
parallel transactions. This requires servers to maintain intermediate
states for actions that are not committed by maintaining a session
state for a transaction. Thus, these two properties are in conflict.

Current isolation-preserving REST transaction models solve this
problem representing these session states as a set of temporary re-
sources that have their own identifiers (URLs). Despite this approach
aligns with W3C best practices3, it is arguably a REST anti-pattern,
as those temporary resources do not represent resource state but
application (or session) state. Furthermore, this approach introduces
a new challenge: link transparency. When working with temporary
resources, it is necessary to distinguish links that point to temporary
resources from those that point to original resources, so that when
the transaction is committed, all the links of original representations
point to original resources.

An alternative approach to solve this issue could be the usage of
a mechanism similar to that proposed by the Memento framework4

2Those in which agents residing in different nodes of the system
have to perform actions in a particular order.
3
http://www.w3.org/2001/tag/doc/IdentifyingApplicationState#

UseURIsforStates
4
http://www.ietf.org/rfc/rfc7089.txt

for providing access to representations of different resource states
using the same identifier (URL). However, this approach directly
violates the stateless REST constraint.

3.4 Availability, deadlocks, and fairness guar-
antees

Locking has been the prominent solution for achieving isolation in
transactions in the database field [7] and most RESTful transaction
models have followed the same path. However, there are several
issues that need to be taken care of when using this technique, in
particular: availability, deadlock prevention, and fairness guarantees.

Availability is a fundamental aspect of distributed applications,
therefore transaction models should minimize the negative effects
of locks on the availability of resources. This issue is deepened
by the fact that is REST applications operations take longer due to
transport overheads (HTTP).

Deadlocks and resource starvation are common problems when
locks are not used consistently or when fairness is not guaranteed.
These become important specially when the acquisition and release
of locks is managed by different clients. One corner case would be a
misbehaved client (or a client with a defect) not releasing the locks
after it has finished with a transaction.

Current approaches use two-phase locking with a growing phase
and a shrinking phase to prevent deadlocks, and use timeouts to
get some degree of fairness (lock auto-release after timeout). How-
ever, the enforcement of two-phase locking and achieving fairness
remains a challenge for the RESTful transaction models.

Another alternative is to use optimistic concurrency control mech-
anisms provided by HTTP using conditional updates with ETags.
However, this approach does not guarantee isolation as intermediate
states of the resources become visible outside the transaction.

3.5 Resource granularity and composition
REST allows resources to be at different granularity levels. Think-

ing in a hierarchical model, an application could simultaneously
provide a high-level view of an entity via a coarse-grained resource
and a detailed view using a fine-grained resource. Also, collection
resources found in specifications such as AtomPub5, Hydra [11], or
the Linked Data Platform6 are special cases of resource composition.
These particular cases lead to problematic situations when locks are
used with these resources, i.e., locking a specific resource might
not prevent the information carried in that resource from being read
or updated because this information is not exclusively bounded to
such resource. Thus, resource locking might not effectively prevent
the access to the locked resource state since the same data may be
exposed by a different resource that is not being locked. Managing
the overall consistency when the same state is exposed via multiple
resources remains a challenge for RESTful transaction models.

3.6 Heuristic generation
Most of the transaction models make use of heuristics when

deciding on certain transaction parameters such as the timeouts
used in [12, 13]. In this case, generating a suitable timeout is
a challenge because it not only affects the performance but the
correctness of the model, i.e., a premature timeout can decrease the
performance or make the system consistently fail [13]. In scenarios
that involve decentralization and distribution, heuristics generation is
even more difficult since most of the information is (a) not known in
advance, and (b) not known by a single party. Most of the RESTful
transaction models do not provide algorithms nor guidelines for
heuristic generation, and thus remains as a challenge.
5
http://atompub.org/

6
http://www.w3.org/TR/ldp/

951

http://www.w3.org/2001/tag/doc/IdentifyingApplicationState#UseURIsforStates
http://www.w3.org/2001/tag/doc/IdentifyingApplicationState#UseURIsforStates
http://www.ietf.org/rfc/rfc7089.txt
http://atompub.org/
http://www.w3.org/TR/ldp/


3.7 Gap between research and industry
Though several transaction models have been proposed in the past

decade, only few are used in industry. Out of the current approaches,
the overloaded POST method seems to be the most widely used
mechanism for REST transactions due to its simplicity and efficiency.
However, it has a main disadvantage: it cannot handle distributed
and decentralized authority scenarios.

It is worth taking a look at why the other approaches are not
taking as much traction. One of the key issues is the complexity and
overhead added by the transaction mechanisms. Another aspect is
that they are defined on their own, when in practice they have to be
integrated with existing development frameworks as well as to take
into account other cross-cutting concerns, i.e., security. Thus, the
challenge is defining a simple yet efficient REST-compliant protocol
that provides transactional guarantees, which can be seamlessly
integrated with other technologies of the REST development stack.

4. CONCLUSIONS
The main conclusion of the analysis of the existing RESTful trans-

action models is that one model does not fit all. RESTful transaction
scenarios are diverse in many dimensions and no transaction model
fulfills the requirements of every scenario. On the contrary, these
models are designed to cover specific scenarios. However, there are
still some scenarios that are not sufficiently supported by the current
models.

In this paper we have identified several challenges that have been
overlooked by current models, which have to be considered when
addressing the uncovered RESTful transaction scenarios. Some of
the challenges are similar to those faced by distributed database
transactions (i.e., decentralized authorities and distributed servers)
while others (i.e., statelessness and resource granularity) are specific
to REST architectural style. Thus, it is worth to take a look at
how these problems are solved in database and distributed systems
research areas to evaluate whether the same solutions apply or how
they can be adapted in the context of RESTful services.

5. ACKNOWLEDGMENTS
This research is supported by the ALM iStack project of the

Center for Open Middleware.

6. REFERENCES
[1] Abadi, D.J.: Consistency Tradeoffs in Modern Distributed

Database System Design: CAP is Only Part of the Story.
Computer 45(2), 37–42 (2012)

[2] Brewer, E.A.: Towards Robust Distributed Systems. In:
Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Distributed Computing. p. 7. PODC ’00, ACM,
New York, NY, USA (2000)

[3] Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.:
Distributed Systems: Concepts and Design, 5th edition.
Addison-Wesley (2011)

[4] Fielding, R.T., Taylor, R.N.: Principled design of the modern
web architecture. ACM Transactions on Internet Technology
(TOIT) 2(2), 115–150 (2002)

[5] Fielding, R.T.: Architectural styles and the design of
network-based software architectures. Ph.D. thesis, University
of California (2000)

[6] Gray, J.: The Transaction Concept: Virtues and Limitations
(Invited Paper). In: Proceedings of the Seventh International
Conference on Very Large Data Bases - Volume 7. pp.
144–154. VLDB ’81, VLDB Endowment (1981)

[7] Gray, J., Reuter, A.: Transaction processing. Kaufmann
(1993)

[8] Haerder, T., Reuter, A.: Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR) 15(4),
287–317 (1983)

[9] Kochman, S., Wojciechowski, P.T., Kmieciak, M.: Batched
transactions for RESTful web services. In: Current Trends in
Web Engineering, pp. 86–98. Springer (2012)

[10] Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM 21(7),
558–565 (1978)

[11] Lanthaler, M., Guetl, C.: Hydra: A Vocabulary for
Hypermedia-Driven Web APIs. In: Bizer, C., Heath, T.,
Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) LDOW.
CEUR Workshop Proceedings, vol. 996. CEUR-WS.org
(2013)

[12] Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.:
RETRO: A consistent and recoverable RESTful transaction
model. In: Web Services, 2009. ICWS 2009. IEEE
International Conference on. pp. 181–188. IEEE (2009)

[13] Pardon, G., Pautasso, C.: Towards distributed atomic
transactions over RESTful services. In: REST: From Research
to Practice, pp. 507–524. Springer (2011)

[14] Pautasso, C., Zimmermann, O., Leymann, F.: Restful Web
Services vs. "Big"’ Web Services: Making the Right
Architectural Decision. In: Proceedings of the 17th
International Conference on World Wide Web. pp. 805–814.
WWW ’08, ACM, New York, NY, USA (2008)

[15] Pritchett, D.: BASE: An Acid Alternative. Queue 6(3), 48–55
(May 2008)

[16] Razavi, A., Marinos, A., Moschoyiannis, S., Krause, P.:
Recovery management in RESTful interactions. In: Digital
Ecosystems and Technologies, 2009. DEST’09. 3rd IEEE
International Conference on. pp. 419–424. IEEE (2009)

[17] Razavi, A., Marinos, A., Moschoyiannis, S., Krause, P.:
RESTful transactions supported by the isolation theorems. In:
Web Engineering, pp. 394–409. Springer (2009)

[18] Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly
(2008)

[19] da Silva Maciel, L.A.H., Hirata, C.M.: An optimistic
technique for transactions control using REST architectural
style. In: Proceedings of the 2009 ACM symposium on
Applied Computing. pp. 664–669. ACM (2009)

[20] da Silva Maciel, L.A.H., Hirata, C.M.: A timestamp-based
two phase commit protocol for web services using rest
architectural style. Journal of Web Engineering 9(3), 266–282
(2010)

[21] da Silva Maciel, L.A.H., Hirata, C.M.: Extending
timestamp-based two phase commit protocol for RESTful
services to meet business rules. In: Proceedings of the 2011
ACM Symposium on Applied Computing. pp. 778–785. ACM
(2011)

[22] da Silva Maciel, L.A.H., Hirata, C.M.: Fault-tolerant
timestamp-based two-phase commit protocol for RESTful
services. Software: Practice and Experience (2012)

[23] Vogels, W.: Eventually Consistent. Queue 6(6), 14–19 (Oct
2008)

[24] Wilde, E., Pautasso, C.: REST: From Research to Practice.
Springer (2011)

952


	Introduction
	RESTful transactions
	RESTful transaction characteristics
	RESTful transaction models

	Challenges for RESTful transactions
	Decentralized authorities
	Distributed servers
	Statelessness and isolation
	Availability, deadlocks, and fairness guarantees
	Resource granularity and composition
	Heuristic generation
	Gap between research and industry

	Conclusions
	Acknowledgments
	References



