
Pragmatic Hypermedia:
Creating a Generic, Self-Inflating API Client

for Production Use

Pete Gamache

Localytics, Inc.
Boston, Massachusetts, USA

pete@gamache.org

ABSTRACT
Hypermedia API design is a method of creating APIs using hyper-
links to represent and publish an API’s functionality. Hypermedia-
based APIs bring theoretical advantages over many other designs,
including the possibility of self-updating, generic API client soft-
ware. Such hypermedia API clients only lately have come to exist,
and the existing hypermedia client space did not compare favorably
to custom API client libraries, requiring somewhat tedious manual
access to HTTP resources. Nonetheless, the limitations in creating
a compelling hypermedia client were few.

This paper describes the design and implementation of Hyper-
Resource [19], a fully generic, production-ready Ruby client library
for hypermedia APIs. The project leverages the inherent practicality
of hypermedia design, demonstrates its immediate usefulness in
creating self-generating API clients, enumerates several abstractions
and strategies that help in creating hypermedia APIs and clients, and
promotes hypermedia API design as the easiest option available to
an API programmer.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hypertext/Hy-
permedia — Architectures.; D.2.12 [Software Engineering]: Inter-
operability — Data mapping, interface definition languages; H.3.5
[Information Storage and Retrieval]: Online Information Ser-
vices — Web-based services

Keywords
hypermedia API; generic API client; service-oriented architecture

1. INTRODUCTION
Hypermedia API design is the practice of using hyperlinks to

identify server resources and expose API functionality. In a hyper-
media API, each response returned by the API contains a set of
hyperlinks that specify where to access related resources. The base
output format of the API may vary — XML, JSON, and HTML are
all viable underpinnings for hypermedia formats — but the defining
feature of a hypermedia API is that hyperlinks are used to guide
usage of the API, both to client software by removing the need

Copyright is held by the author/owner(s).
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04. http://dx.doi.org/10.1145/2567948.2579220.

to construct URLs from scratch, and to client users by providing
links to only those API features that are accessible to the user’s
authorization level.

Hypermedia-driven APIs afford several advantages over alterna-
tive designs. Foremost, generic API client software may be used to
connect to disparate APIs, as long as the APIs support an output for-
mat accepted by the client software. This is similar to WSDL [15] in
its overall goal; both approaches allow the creation of auto-generated
client libraries. In a typical WSDL installation, an API will publish
a document in WSDL format formally describing the API’s features
and how to access them, and end users will run generator software
to create a set of API bindings targeted at a particular computer
language, which can then be imported into a software project where
API access is desired.

The crucial difference between hypermedia and WSDL is that
hypermedia APIs and clients are designed to publish and consume
these hyperlinks with each API request, turning the cycle of API
feature advertisement and client upgrade to a hands-off, closed-loop
system. API updates are available instantly, without any update to
client library software. Users who read the API documentation and
discover the a new feature are able to immediately put it to use. API
designers are freed from maintaining custom client software and
pushing updates to end users. An API with only hypermedia clients
can even change its API structure with a transition period of hours,
not months, because they may have confidence that client software
can start to use the updated structure immediately.

Despite these very attractive benefits, industry and community
adoption of hypermedia designs has been low. In the last several
years, several hypermedia formats such as Collection+JSON [16],
HAL [22], JSON-LD [10], and Siren [25] have appeared. This
bloom of formats has yielded a handful of client libraries sup-
porting them, for instance Ruby’s HyperClient [8], JavaScript’s
HyperAgent [7], and Java’s Siren4J [14]. Still, acceptance by API
designers at large has been spotty at best. There are examples such
as the Github v3 API [6], Amazon’s AppStream REST API [3], and
MapMyFitness’ API [12], but most end users still use traditional,
pre-hypermedia API client layers, ignoring the hypermedia data
these APIs emit.

Ultimately, the main reason API designers and end users do
not yet reach for hypermedia is because it is not yet the easiest
thing they can do. On the API side, there is a limited amount
of existing software to assist in the formation and serialization of
hypermedia resources, but even if custom solutions are involved, it
is a problem to be solved only once per API. Much more troublingly,
on the consumer side, current client software packages provide
unsatisfyingly shallow abstractions over the mundane details of

931

accessing an HTTP-based API. This creates a problem to be solved
by dozens or hundreds of users of each API, not just a few API
implementors.

This paper details the conception, strategy, implementation, and
debugging of a next-generation generic client for hypermedia APIs,
named HyperResource [19]. At each step of its design, the expres-
siveness and brevity of end-user code was emphasized, in order to
produce a generic client with identical or preferable look and feel to
hand-built clients. It is the hope of this author that HyperResource
will inspire similar clients in other languages, and eventually aid in
reducing friction against the greater adoption of hypermedia as a
practice.

2. DESIGN
The design of HyperResource began with a number of external

factors, as well as baggage from previous experience writing APIs
and API clients.

First, this was a client designed to be put into production use
almost immediately. The development of HyperResource began
when the author was busy creating an API for analytics queries [11]
for his employer, Localytics. The API needed a client library written
in either Ruby or JavaScript. Ruby was selected as HyperResource’s
platform in order to allow server-side use in the current Localytics
production environment, including on the API itself, a JRuby on
Rails application. As a production client, it needed to be reliable,
threadsafe, and graceful about error-handling out of the box.

2.1 Serialization Format
Another client design factor, serialization format, originated more

from server-side concerns than client-side. In the author’s case, this
was largely because the implementation of an API provided a sense
of urgency and concrete purpose to this client’s development. But
it is not hard to accept that this lesson of API design dictating a
client’s input format may apply widely, and in any case a client
cannot impose any conditions that an API does not support.

As one of few hypermedia APIs in the wild, and given the sparse
selection of hypermedia client libraries of the time, it was important
that any format chosen be equally usable in hypermedia and non-
hypermedia contexts. In other words, the API needed to be as easy
to use by non-hypermedia clients as the best non-hypermedia APIs
are. To this end, it was desired for the output format to resemble a
“plain old data” response as closely as possible.

It is generally preferable that a serialization format for any API be
able to express all features directly in the response body, rather than
relying on HTTP headers or other information outside the response
body. Proxy servers, in-browser JSON-P, integration with third-
party systems, and other factors can challenge any API design, but
in most cases the response body has the best chance of making it to
the client unmolested.

After reviewing the options at the time, HAL was picked be-
cause of its extremely small footprint: it adds only two fields to
a response, _links and _embedded, which can be safely ignored
by non-hypermedia clients yet completely encapsulate all hyper-
media and embedded resource information. While HAL did not
include ways to express concepts like sample forms, default pa-
rameter values, input parameter data types, in-band error handling,
default HTTP verbs for links, and differentiation between “links”
and “actions,” the HAL format supported everything necessary to
allow full usage of the API by someone armed with a generic client
and the API documentation.

Thus, HyperResource had to support at least the HAL format.

2.2 Influential Clients
Given that HyperResource would inevitably be compared to its

peers, it was useful to examine the strengths and weaknesses of
other API client software on the Ruby platform, and other influential
Ruby software in general. Many Ruby programmers are familiar
with the ActiveResource [2] library, formerly part of the Rails core
project. ActiveResource provided a wrapper around resourceful
APIs, offering a look and feel similar to Rails’ extremely popular
ORM library, ActiveRecord [1]. ActiveResource transforms API
responses into native Ruby objects, comparably to ActiveRecord’s
representation of database tables and rows as classes and instances.
An API response is returned as an instance of a predictable class,
which led to ActiveResource’s key strength: API data could be
easily extended with user code by adding methods to the class. Each
API endpoint still required manual configuration, though, as with
virtually all non-hypermedia clients.

HyperClient is one of the best of Ruby’s first-generation hyper-
media clients. Its usage pattern is markedly different from ActiveRe-
source; instead of defining named subclasses of ActiveResource
to represent API data types, all HyperClient API interaction takes
place through instances of HyperClient itself. This arrangement
allows for simple, lightweight, zero-configuration consumption of
hypermedia APIs. However, the inability to automatically extend
incoming data types with additional code is inconvenient. And, as
hinted at earlier, actually using the hypermedia bits of an API is
accomplished with a thin veneer over the Faraday [5] HTTP library,
rather than the simple method calls of ActiveResource.

It became a chief design intention to marry the killer features of
these very different API clients. Given the provenance of this client’s
feature set and its goals, the name HyperResource was selected, a
compact mission statement for the project.

2.3 What Makes a Good Client?
One thread tying together the author’s favorite client libraries is

an understanding and acceptance of the language and platform on
which the client is running. An ideal client library should impedance-
match any sort of API (resource-based, RPC-based, etc.) to the
client’s native platform, whether that means object model, type sys-
tem, or similar. A good client fits in with its environment; it is best
that code using the client does not stick out from its surroundings.

Code that uses HyperResource, then, should look like Ruby code.
HyperResource needed to embrace the Ruby object model, a world
of single-inheritance and mixins, where everything is an object and
they communicate by message-passing-based method invocation. 1

It is important to note that all access to remote systems brings
with it exposure to different kinds of problems absent from local
code access — network failure or intermittence, latency, increased
security concerns, and non-local concurrency challenges, to name
a few. Code which accesses APIs may not be as simple as code
accessing functionality which doesn’t require a network roundtrip,
or even going outside the running process or thread.

In decades past, it was considered unwise by some to hide many
of these complexities by providing a unified interface for both local
and remote data. [26] However, in today’s computing environment,
the benefits and drawbacks of service-oriented architecture and
distributed systems are more well-understood by programmers at
large. Developers consume more external APIs than ever before,
and API consumers are required to address these topics no matter
what client design they are using. And since HTTP APIs do not refer
to local data, unlike the systems criticized in the aforementioned
analysis. The line between what requires remote access and what is

1Close enough for this working group, anyway.

932

local is clear. A client need not inconvenience the user just to prove
a point about the complexity of distributed systems.

To that point, a strong factor of API client quality is the expres-
siveness of the finished end-user code. Given something the API
can do, is it straightforward to type it out? Has all boilerplate code
been factored out? Don’t Repeat Yourself, or DRY, is a requirement
for a good, modern client. End-user code must be terse, to the limits
of its language environment.

2.4 The Central Metaphor
The primary conceit of HyperResource is that a response’s hyper-

links can represent the full set of API functions or relations that can
be applied to the response. Or, in terms more familiar to a Rubyist,
every object comes with its own method list. Responses are treated
as objects, links as methods, rels as method names.

Assigning the role of methods to hyperlinks is more powerful
than it appears at first glance. At once, it gives a handy guideline
for those API implementors applying hypermedia for the first time,
and it provides a tidy metaphor for accessing these links in an OO
language like Ruby.2

A response from a hypermedia API can contain three kinds of
data: regular attributes (e.g., first_name), links to other API re-
sources, and other API resources embedded within this one. Once
committed to the idea of wiring up links as methods on the returned
object, and considering that object attributes are in general serviced
by accessor methods in Ruby, it becomes apparent that embedded
objects might make sense to be accessed via methods as well.

Adopting the structure of methods and objects, however, should
not be seen as a suggestion that all, or even many, APIs fit neatly
into an object-oriented worldview. It is simply an admission that
in the target language, Ruby, objects and methods are the most
convenient way to do much of anything. It can be safely stated
that HyperResource objects have a one-to-one mapping to API
responses; nothing more about API structure is assumed.

2.5 No Religion
In order to be maximally useful to the greatest number of people,

HyperResource does not impose any non-essential conduct upon the
user. Hypermedia API design is typically associated with the “Rep-
resentational State Transfer”, or REST, described in Roy Fielding’s
thesis [17]. But hypermedia is just the practice of an API supplying
a bunch of named URLs and a client consuming them somehow
— nothing more. Hypermedia is extricable from RESTful design,
proper use of HTTP verbs, human-readable URLs, and just about
every other best practice you can think of.

In a RESTful API, the hyperlinks generally represent formal
relationships between two resources. In an RPC-based API, it is
likely that the hyperlinks may include not only related resources,
but also procedures taking the original resource as input. In many
cases, these approaches coëxist in the same API. It is not essential
that a hypermedia API client prescribe a usage pattern, only provide
a convenient way to access the data at these links’ URLs.

Hypermedia, though surrounded by other good ideas pertaining
to API design. stands on its own. It depends on nothing but the API
knowing its own URLs and publishing that information somehow.
Even on its own, hypermedia can support the possibility of generic
clients. Many real-world APIs do not map cleanly to a theoretical,
ideal, fully RESTful structure. Sometimes an API must support
GET or POST in non-semantic situations, and some problems — for
example, the analytics API that I put together for Localytics — do
not map perfectly to a world consisting of states and transitions.
2In fact, given Ruby’s facility for dynamic method dispatch via
method_missing, the implementation almost writes itself. Almost.

As such, HyperResource does not take an official stance on best
or worst practices outside of hypermedia itself. As long as an API’s
hyperlinks are well-formed, everything should work. RPC-over-
JSON, page-long URLs, unexpected verbs at unexpected times: all
of these can be made to work with little or no effort on the part of
the user.

It is the position of the HyperResource project that it is best to
consider hypermedia as orthogonal to other axes of API design. This
maximizes adoption of hypermedia, a treasured side goal of this
project.

2.6 Do The Right Thing
Choosing a single way to access all API features brings benefits

and drawbacks. A unified interface goes a long way toward code
clarity and a general spirit of Do The Right Thing. One possible
problem is namespace collisions; for instance, an API response
could contain an attribute named object_id, which conflicts with
a built-in Ruby method. For these cases, it is easy to provide a
fallback mechanism that allows explicit access to attributes, links,
or objects.

But in the other cases, as long as the client maximizes the con-
sistency between the different modes of access, APIs could even
refactor data between links, embedded objects, and attributes, and
the client code could run unchanged! A much less farfetched idea
is that making all API access feel as smooth as dealing with “plain
old data” is a worthy pursuit, and one of the keys to a generic client
library comparing favorably to a hand-rolled client.

Another intriguing way to Do The Right Thing, possible largely
thanks to Ruby’s method_missing catch-all method, is implicit
loading of resources. HyperResource opts to implicity load re-
sources when as-yet unknown methods are called on as-yet loaded
resources. In this case, an implicit GET could be performed, and
the method call repeated on the loaded object. This simple en-
hancement would be enough to eradicate some very common visual
clutter, while remaining predictable in how and when objects are
loaded.

These features of programmer convenience and code expressivity
are most clearly illustrated through code examples, which follow.

3. SAMPLE CODE
At this point in the development of HyperResource, the author

sketched out what sample code using this API client should look
like. In most cases, the sketches were compared to equivalent code
using HyperClient, to better point out opportunities for optimization
of HyperResource. This “docs-driven development” methodology
was extremely helpful in cementing design ideas and visualizing the
flow of data through typical HyperResource code. With the hope
of bringing some of these insights to the reader, here is a working
example of using HyperResource to connect to a HAL-based API,
almost unchanged from its initial, pre-implementation form.

Consider a hypermedia API whose entry point returns:

{ "message": "Hello!",
"_links": {
"self": {"href": "/"},
"users": {
"href": "/users{?email}",
"templated": true

}
}

}

We begin by defining a class to both represent our API and act
as a namespace for all resources from this API. If the API provides

933

information about the data type of each resource in some way, then
HyperResource can be configured to recognize it, and will instantiate
a properly-named class in our namespace. In this example, the API
entry point is tagged with the data type Root.3

class MyAPI < HyperResource
self.root = "https://myapi.example.com/v1"

end

Let’s imagine our goal is to load a resource representing a user
jdoe@example.com. We’ve read the API docs, and we know that
we can GET the link named users to receive a collection of user
objects, and that we can optionally send an email address as a URI
query parameter.

api = MyAPI.new
jdoe = api.users(email: "jdoe@example.com").first # =>

#<MyAPI::User:...>

That is extremely concise code.4 HyperResource performs a num-
ber of automatic expansions made possible by Ruby’s method_missing
catch-all method, which provides a facility to intercept and manually
dispatch unrecognized method calls at runtime.

Any unrecognized method call on a not-yet-loaded resource will
load the resource and retry the call. On a loaded resource, methods
that don’t exist will be cross-referenced by name against any links,
embedded objects, or attributes the resource contains. On a link,
nonexistent method calls will trigger the link to be loaded, optionally
applying values for any given parameters, returning a resource on
which the method call is repeated. Each resource provides links,
objects, and attributes accessors, which translate method calls
to hash access. And finally, as a way of supporting a common case,
calling .first on a HyperResource will return the first embedded
object in the response.

Taking these transformations into account, observe the progres-
sive expansions of the above expression.

api.users(email: "jdoe@example.com").first

api.get.users(email: "jdoe@example.com").first

api.get.links.users(email: "jdoe@example.com").first

api.get.links["users"]
.where(email: "jdoe@example.com").first

api.get.links["users"]
.where(email: "jdoe@example.com").get.first

api.get.links["users"]
.where(email: "jdoe@example.com").get
.objects.first[1][0]

Most prior hypermedia clients required end-user code to look
somewhat worse than the last line in the series. HyperResource’s
approach represents a leap in usability. Ruby’s ordering of function
application, coupled with the simple rules for intercepted method
calls we listed above, leaves no ambiguity about when network

3There is no standard way to specify this data type information
within a HAL document. Possible implementations include an
additional field in the response, e.g. data_type, or equivalent
information as part of the Content-Type header. Type annotations
are omitted in this example.
4It is also quite similar to modern ActiveRecord, and not by coinci-
dence.

access occurs, yet the programmer is no longer burdened with ex-
pressing anything but intent.

As an example of extending API data types, let us create a conve-
nience method to construct a user’s formal name given two attributes
in the User resource, first_name and last_name:

class MyAPI::User
def formal_name
"The Right Honorable #{first_name} #{last_name}"

end
end

jdoe.formal_name # => "The Right Honorable John Doe"

And no suite is complete without POST, PUT, PATCH, and
DELETE:

jdoe.first_name = "Jane"
jdoe.patch # sends ’first_name’ only
jdoe.put # sends all params

make a new user
red = api.users.post(first_name: "Red", last_name:

"Shirt")

unmake a new user
red.delete

4. PROBLEMS AND SOLUTIONS
Once HyperResource hit an acceptable level of implementation

and testing, it gained its first production deployment and first non-
author user. Of course, this is as essential a part of testing software
as any automated verification suite — the proof of the pudding
is in the eating. Not surprisingly, there was plenty of room for
improvement, and some of these topics are detailed below.

4.1 Cacheability
An important tool in the hypermedia API user’s toolbox is a

cache. Hypermedia APIs sometimes expose functionality that can’t
be reached directly from the API root, meaning that users must
retrieve certain intermediate resources along the way. For perfor-
mance reasons, it is often desirable to persist these intermediate
values, either in local memory or using an external cache such as
Memcached [13]. More broadly, non-local caches are an indispens-
able part of a modern systems engineer’s bag of tricks, and it is
highly preferable that a client’s objects support them.

It is worth mentioning that hypermedia offers no natural resis-
tance to the difficulty of correct caching. All the usual problems
relating to cache lifetime, invalidation, permission, etc. apply to
hypermedia APIs. Caching is hard to do properly, no more or less
so on hypermedia APIs than on any other data source.

HyperResource’s initial implementation defined singleton meth-
ods on each API response, one per link or embedded object or
attribute. This was intended to speed up method calls by leveraging
Ruby’s native method resolution. Unfortunately, and much more im-
portantly, this ended up preventing serialization of the objects with
Ruby’s Marshal.dump, in turn preventing storage in an external
cache. A solution was devised: methods would instead be properly
defined as regular instance methods on the resource class. More on
this in a moment.

Another, more interesting problem pertained to newly-launched
programs making use of a long-lived external cache. HyperRe-
source often automatically creates Ruby classes at runtime; in the
above sample code, MyAPI is declared by the programmer, but

934

MyAPI::Root is created by HyperResource upon encountering a
resource tagged with the data type Root. If an object of such an
auto-generated class is placed into a cache by one part of a system
(e.g., a server you deployed a week ago), other parts of the system
(e.g., a server you just deployed) must take care not to load these
objects from cache until having created the object class themselves,
in the current runtime. Otherwise, Ruby’s Marshal will not be
able to deserialize the cache object into a nonexistent class. One
solution to this problem is to ensure that these errors both freshen
the cache and update the current runtime’s class hierarchy. Another,
less elegant way to avoid this problem is to make a set of API calls
early in your program’s runtime, to instantiate ahead-of-time all the
classes that might be encountered in the cache.

4.2 Persistent vs. Dynamic Methods
The cacheability solution of defining instance methods on classes

at runtime had the advantage of using Ruby’s built-in method dis-
patch, as well as retaining the ability to use respond_to?, the Ruby
way of testing if an object responds to a given method name without
needing to resort to method_missing. It was implemented, and
it worked. The only major gotcha is that HyperResource must be
careful not to add methods to the HyperResource class or to API
namespace classes, only to API data type classes — not a big deal.

But there are deeper problems with persistent method definitions.
Ruby and JRuby both employ a cache when resolving precisely
what to do when a particular method is called on a particular object
or class of object, for performance reasons. Defining methods
at runtime, including singleton methods, causes the entire Ruby
method resolution cache to be emptied. [24] [23] 5 In the quest to
shave away a 0.1 millisecond toll for calling method_missing, in
all likelihood connected to a 100 ms network call, HyperResource
introduced a 1 ms penalty to the next invocation of any and all
methods in the Ruby runtime, until the method resolution cache
warms to each and every method in the program again. [20]

Obviously, this is a poor bargain, and in upcoming releases of
HyperResource this feature is disabled by default, leaving all dy-
namic method dispatch to method_missing, and respond_to? is
patched to tell the truth. HyperResources behave like Ruby objects
to the greatest extent that is practical, leaving fewer surprises for the
end developer.

4.3 Structured Data over GET
One notable oversight by the great architects of the Internet is that

there is no standard way to serialize data structures, such as arrays
or hashes, for inclusion in URIs as URI query parameters. [21]
Perhaps the most widely-adopted nonstandard serialization is the
one used by jQuery.param. [9] This scheme, also in use by the
Rails project, specifies an unsuitably ambiguous format for the data,
and was abandoned as a design shortly after the project began.

In order to confront and overcome the fact that there is no stan-
dard, default procedure for serializing nested data structures to URL
format, HyperResource introduced the outgoing_uri_filter, an
overridable method that takes as input a hash of parameter keys
and values, and outputs a hash of transformed keys and values.
This method is used as a filter for parameter keys and values as
URLs are being constructed, and can be used to perform custom
serialization of some fields — for example, passing structured data
through JSON.dump if the API supports it. A real life example
from production code, where the Localytics API’s query link takes

5Other actions also cause pre-2.1 Ruby’s method resolution cache
to be flushed, including Class.new, Object#extend, and and
OpenStruct.new.

conditions parameter consisting of structured data, over GET or
POST:

class LocalyticsAPI < HyperResource
class Root < LocalyticsAPI
def outgoing_uri_filter(params)
if params["conditions"]
params["conditions"] =

JSON.dump(params["conditions"])
end
params

end
end

end

api.get.query(conditions: {day: ["in", "2014-01-01"]},
...)

If the user chooses to use POST, no intervention is needed, since
the request body media type will be application/json, which
is quite well-suited to representing structured data. But if the user
accesses the API feature through a GET request as in the example
above, outgoing_uri_filter will be invoked, and the structured
conditions parameter value will be serialized into a JSON string
before sending to the API. Since the API is coded to accept this,
everyone goes home happy.

For symmetry, outgoing_body_filter was added to filter out-
going params for POST, PUT, and PATCH requests, and incom-

ing_body_filter was added to transform data coming from the
API. However, these methods provide only a partial solution to fil-
tering parameters. They are anchored not to a particular link relation
(the query part of api.get.query), but to the class of the originat-
ing object (the type LocalyticsAPI::Root of the api.get part
of api.get.query). If this same link relation is also accessible
from other API paths, they will not automatically be able to use this
filtering code. This is a candidate for refactoring in future versions
of HyperResource.

5. FUTURE WORK
HyperResource is a young project, and there are certainly many

unexplored opportunities for improvement. Here are some of the
ideas not yet having seen the chance at implementation.

5.1 More Formats
HyperResource was intended from the start to support multi-

ple hypermedia formats, but to date has full support for only one,
HAL+JSON. During a fairly major refactoring during 2013, Hy-
perResource’s hypermedia format adapter interface was created to
provide an abstract definition of the minimum functionality from
such an adapter. Three methods must be defined by an adapter imple-
mentation: serialize, deserialize, and apply, which applies
state from a deserialized API response onto a HyperResource object.
This separation works well in the case of the default HAL+JSON
adapter, and is holding together well during the present process
of adding Siren and Collection+JSON support. Being agnostic to
particular hypermedia format is the best way to support all use cases
in the future, and it has not hindered the progress of HyperResource
at all. More formats are good sense.

5.2 More Auth
HyperResource has mostly ducked the issue of authentication so

far. One method is currently supported, and that is HTTP Basic
Authentication [18], the simplest (and on its own, least secure)
standard authentication mechanism for the web. This is sufficient
for production use with many APIs that use HTTPS and Basic Auth

935

as an effective mechanism. However, APIs that require OAuth,
Amazon-style request signing, or other authentication schemes are
left in the cold right now. This is a simple matter of writing more
code.

5.3 More Languages
The ideas that constitute HyperResource’s functionality are di-

rectly applicable in many languages other than Ruby. For instance,
a more-or-less direct clone could be written in ECMAScript 6, given
the new Proxy API [4] which can perform similar functions to
Ruby’s method_missing. Even without Proxy, a JavaScript hyper-
media client could be made to function very much like HyperRe-
source if implicit object loading were abandoned.

It is interesting to consider what shape other implementations
of HyperResource’s core ideas should take on their respective plat-
forms. Should the JS client use a callback-based interface by de-
fault? Promises? Many of these considerations are driven by the
wants and desires of a language community, as much as by a lan-
guage itself. A library should make its users happy, and part of that
is fitting in nicely with their idea of a perfect world.

6. CONCLUSION
This paper details the design of HyperResource, a generic client

for hypermedia APIs, from the goals of terse, DRY code; extensib-
lity of API data; simplicity of expression; and native look-and- feel
on its platform of Ruby. The central concept of an API exposing its
entire functionality as links, and using these links as methods on the
returned object, was introduced, and demonstrated as a preferable
way to access API features. Preëxisting clients were examined,
ideal sample code for a new client was imagined, and then a client
was implemented to validate this sample code. Several implementa-
tion details were described, including a solution for URL-encoding
of structured data and production-inspired improvements around
cacheability and method resolution.

It is the conclusion of this author that HyperResource proves the
concept that generic hypermedia API clients can obtain the same
usability and user-comfort of hand-coded client libraries, and that as
more tooling catches up to this level of sophistication, hypermedia
will gradually supplant non-hypermedia, resource-based JSON APIs
as the simplest course of action for API designers and consumers
alike.

7. ACKNOWLEDGEMENTS
The author would like to thank his employer, Localytics, for

support, encouragement, and the chance to do something right when
the alternative wasn’t certain peril; HyperResource contributors Ian
Asaff, Étienne Barrié, Julien Blanchard, Frank Macneely, James
Martelletti, and Jean-Charles d’Anthenaise Sisk; and Benjamin
Darfler, Judy Margo, and Joel Rosen for reading drafts of this paper.

8. REFERENCES
[1] Activerecord,

https://github.com/rails/activerecord

[2] Activeresource,
https://github.com/rails/activeresource

[3] Amazon appstream rest api documentation,
http://docs.aws.amazon.com/appstream/latest/

developerguide/rest-api.html

[4] Direct proxies,
http://wiki.ecmascript.org/doku.php?id=harmony:

direct_proxies

[5] Faraday http library,
https://github.com/lostisland/faraday

[6] Github v3 api documentation,
http://developer.github.com/v3/

[7] Hyperagent, http://weluse.github.io/hyperagent/
[8] Hyperclient,

https://github.com/codegram/hyperclient

[9] jquery.param() documentation,
http://api.jquery.com/jquery.param/

[10] Json for linking data, http://json-ld.org
[11] Localytics api version 1 documentation,

https://api.localytics.com/docs

[12] Mapmyfitness api documentation,
https://developer.mapmyapi.com/docs

[13] Memcache: a distributed memory object caching system,
http://memcached.org

[14] Siren4j, https://code.google.com/p/siren4j/
[15] Web services description language (wsdl) 1.1,

http://www.w3.org/TR/wsdl

[16] Amundsen, M.: Collection+json hypermedia type,
http://amundsen.com/media-types/collection/

[17] Fielding, R.: Architectural Styles and the Design of
Network-based Software Architectures. Ph.D. thesis,
University of California, Irvine, Irvine, CA (2000)

[18] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., Stewart, L.: Http authentication:
Basic and digest access authentication. RFC 2617 (Mar 2012),
http://www.ietf.org/rfc/rfc2617.txt

[19] Gamache, P.: Hyperresource: A self-inflating ruby client for
hypermedia apis,
https://github.com/gamache/hyperresource

[20] Gamache, P.: Ruby method cache — a benchmark,
http://petegamache.com/ruby-method-cache-a-

benchmark/

[21] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
Orchard, D.: Uri template. RFC 6570 (Proposed Standard)
(Mar 2012), http://www.ietf.org/rfc/rfc6570.txt

[22] Kelly, M.: Hypertext application language,
http://stateless.co/hal_specification.html

[23] McCoy, S., Myers, R.: Understanding ruby’s method cache
(Oct 2013), http:
//wickedgoodruby.com/2013/speakers/mccoy_myers

[24] Somerville, C.: Things that clear ruby’s method cache,
https://charlie.bz/blog/things-that-clear-

rubys-method-cache

[25] Swiber, K.: Siren: Structured interface for representing
entities, https://github.com/kevinswiber/siren

[26] Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on
distributed computing (1994),
http://dl.acm.org/citation.cfm?id=974938

936

https://github.com/rails/activerecord
https://github.com/rails/activeresource
http://docs.aws.amazon.com/appstream/latest/developerguide/rest-api.html
http://docs.aws.amazon.com/appstream/latest/developerguide/rest-api.html
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
https://github.com/lostisland/faraday
http://developer.github.com/v3/
http://weluse.github.io/hyperagent/
https://github.com/codegram/hyperclient
http://api.jquery.com/jquery.param/
http://json-ld.org
https://api.localytics.com/docs
https://developer.mapmyapi.com/docs
http://memcached.org
https://code.google.com/p/siren4j/
http://www.w3.org/TR/wsdl
http://amundsen.com/media-types/collection/
http://www.ietf.org/rfc/rfc2617.txt
https://github.com/gamache/hyperresource
http://petegamache.com/ruby-method-cache-a-benchmark/
http://petegamache.com/ruby-method-cache-a-benchmark/
http://www.ietf.org/rfc/rfc6570.txt
http://stateless.co/hal_specification.html
http://wickedgoodruby.com/2013/speakers/mccoy_myers
http://wickedgoodruby.com/2013/speakers/mccoy_myers
https://charlie.bz/blog/things-that-clear-rubys-method-cache
https://charlie.bz/blog/things-that-clear-rubys-method-cache
https://github.com/kevinswiber/siren
http://dl.acm.org/citation.cfm?id=974938

	Introduction
	Design
	Serialization Format
	Influential Clients
	What Makes a Good Client?
	The Central Metaphor
	No Religion
	Do The Right Thing

	Sample Code
	Problems and Solutions
	Cacheability
	Persistent vs. Dynamic Methods
	Structured Data over GET

	Future Work
	More Formats
	More Auth
	More Languages

	Conclusion
	Acknowledgements
	References

