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ABSTRACT
This paper is focused on community-based crowdsourcing
applications, i.e. the ability of spawning crowdsourcing tasks
upon multiple communities of performers, thus leveraging
the peculiar characteristics and capabilities of the commu-
nity members. We show that dynamic adaptation of crowd-
sourcing campaigns to community behaviour is particularly
relevant. We demonstrate that this approach can be very
effective for obtaining answers from communities, with very
different size, precision, delay and cost, by exploiting the
social networking relations and the features of the crowd-
sourcing task. We show the approach at work within the
CrowdSearcher platform, which allows configuring and dy-
namically adapting crowdsourcing campaigns tailored to dif-
ferent communities. We report on an experiment demon-
strating the effectiveness of the approach.

1. INTRODUCTION
Crowdsourcing platforms such as Amazon Mechanical Turk

are a natural environment for deploying crowd-based appli-
cations, since they support the assignment to humans of sim-
ple and repeated tasks, such as translation, proofing, content
tagging and items classification, by combining human con-
tribution and automatic analysis of results [9]. Crowds take
part to social computations either for monetary rewards or
for non-monetary motivations, such as public recognition,
fun, or genuine will of sharing knowledge.

To get the best possible results, requestors need to dynam-
ically adapt the behaviour of the crowd-based applications.
However, in spite of the great importance of crowd adap-
tation and control, designing and deploying crowdsourcing
applications with sophisticated controls is not well covered
by existing systems, which lack methods for systematically
designing complex adaptation strategies.

The CrowdSearcher system we introduced in [2, 3] brings
together a conceptual framework, a specification paradigm
and a reactive execution control environment for designing,
deploying, and monitoring applications on top of crowd-
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based systems. We advocate a top-down approach to appli-
cation design that adopts an abstract model of crowdsourc-
ing activities in terms of elementary task types (such as:
labelling, liking, sorting, classifying, grouping) performed
upon a data set, and then we define a crowdsourcing task as
an arbitrary composition of these task types. Starting from
task types, we define strategies for task splitting, replica-
tion, and assignment to performers. We also define the data
structures which are needed for controlling the planning, ex-
ecution, and reactive control of crowd-based applications.

The main focus of this paper is leveraging social commu-
nities for improving the quality and cost of crowd-based in-
formation collection. By community we mean a set of people
that share common interests (e.g., football club fans, opera
amateurs, ...), have some common feature (e.g., leaving in
the same country or city, or holding the same degree title) or
belong to a common recognized entity (e.g., employee in an
office, workgroup or employer; students in a university; pro-
fessionals in a professional association; ...). Leveraging com-
munities for crowdsourcing includes both the possibility of
statically determining the target communities of performers,
and also dynamically changing them, taking into account
how the community members behave when responding to
task assignments. Design-level interoperability is guaran-
teed by the use of a high-level, platform-independent model.
Run-time interoperability is guaranteed by the use of a low-
level execution model, such that the tasks can be dynami-
cally created or rerouted in response to monitoring of com-
munity performance.

This paper is organized as follows: Section 2 describes
related work and our previous work; Section 3 dwells into
community-based crowdsourcing and presents our experi-
mental scenario; Section 4 briefly describes the system im-
plementation; Section 5 shows our experimental results; and
Section 6 discusses the results and concludes.

2. BACKGROUND AND RELATED WORK

2.1 CrowdSearcher
With our approach, the tasks which constitute a crowd-

sourcing campaign are described in terms of an abstract
model, that was initially presented in [2].

Model. The main strength of the model (represented
in Fig. 1) is its extreme simplicity. We assume that each
task receives as input a list of objects (e.g., photos, texts,
but also arbitrarily complex objects, with a schema) and
asks the users to perform one or more operations upon
them, which belong to a predefined set of abstract oper-
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Table 1: List of the crowdsourcing operation types.
Task Ty. Description

Choice Performer selects up to n items
Like Performer adds like/unlike annotations to some items
Score Performer assigns a score (1..n interval) to some items
Tag Performer annotates some items with tags
Classify Performer assigns each item to one or more classes
Order Performer reorders the (top n) items in the input list
Ins./Del. Performer inserts/deletes up to n items in the list
Modify Performer changes the values of some items attributes
Group Performer clusters the items into (at most n) groups
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Figure 1: Data model of crowdsourcing application.

ation types. Examples of operation types are Like, for
assigning a preference to an item; or Classify, for assigning
each item to one or more classes. The full list of currently
supported operation types is reported in Table 1. For in-
stance, a task may consist in choosing one photo out of an
input list of photos, writing a caption for it, and then adding
some tags. Tasks can be assigned to one or more commu-
nities of performers. For execution purposes, a set of
microtasks is spawned from each task. Every execution
is recorded, with the associated performer, community and
evaluation result.

Control. Our approach provides fine-level, powerful and
flexible reactive controls whose properties (e.g., termination)
have been proven[3]. We define high-level abstractions for
declaring task control, as well as low-level rules for imple-
menting such control, which typically encompasses the eval-
uation of arbitrary conditions on result objects (e.g., on their
level of confidence and of agreement), on performers (e.g., on
the number of performed tasks and their correctness, lead-
ing to the classification of performers as experts or spam-
mers) and on tasks. Control rules are defined upon Control
Marts, data structures designed for tracking the execution
flow, analogous to data marts used for data warehousing, as
its central entity represents the facts, surrounded by con-
trol dimensions. The control of objects, performers, tasks,
and interoperability is performed by active rules, expressed
according to the event-condition-action (ECA) paradigm.
This paper is concerned with Community Control as a
new aspect of task design.

2.2 Other approaches
Many crowdsourcing startups1 and systems [4] have been

proposed in the last years. Crowd programming approaches
rely on imperative programming models to specify the in-

1E.g., CrowdFlower, Microtask, uTest.

teraction with crowdsourcing services (e.g., see Turkit [10],
RABJ [7], Jabberwocky [1]).

As highlighted by [14], several programmatic methods for
human computation have been proposed [10][7][1][11][12],
but they do not support yet the complexity required by real-
world, enterprise–scale applications, especially in terms of
controlling the quality of the results. Our approach covers
the expressive power exhibited by any of the cited systems,
and provides fine grained targeting to desired performer pro-
files, as well as dynamic and adaptive control over the exe-
cutions.

Recent works propose approaches for human computa-
tion which are based on high level abstractions, sometimes
of declarative nature. In [14], authors describe a language
that interleaves human-computable functions, standard re-
lational operators and algorithmic computation in a declara-
tive fashion. Qurk [11] is a query system for human compu-
tation workflows that exploits a relational data model and
SQL. CrowdDB [5] also adopts a declarative approach by
using CrowdSQL (an extension of SQL). DeCo [15] allows
SQL queries to be executed on a crowd-enriched datasource.
CrowdLang [12] supports workflow design and execution of
tasks involving human and machine activities. Differently
from ours, these works do not discuss how to specify the
control associated with the execution of human tasks, leav-
ing its management to opaque optimisation strategies.

Datasift [13] is a toolkit for configuring search queries so
as to involve crowds in answering them, which allows de-
ciding the number of involved human workers, the query
reformulation in steps, the number of items involved at each
step and their cost; in this, it is similar to Crowdsearcher.
In this paper we go one step beyond and control whole com-
munities.

In designing our system, we have been inspired by several
applications of human computation. Among them, [16] com-
pares seven strategies for improving the quality and diversity
of worker-generated explanations of social analysis tools; [8]
presents alternatives in allocating tasks to workers; and [6]
compares some alternatives for involving Mechanical Turk
users in terms of their cost and quality.

3. COMMUNITY CONTROL
In our approach, crowd-based applications can assign tasks

to performers belonging to different communities. By com-
munity we mean a set of people that share common inter-
ests, have some common feature or belong to a common
recognized entity or social networking group. Communities
of performers can be solicited through various media, typ-
ically going beyond the classical crowdsourcing platforms,
e.g., by addressing social networks, mailing lists, online fo-
rums, and so on. Being able to address communities of users
is paramount for getting high quality or specialized feedback
from the crowd. Results can be further improved by apply-
ing adaptation, i.e., any change of allocation of the tasks
to their performers, based on the performers behavior.

Adaptation can be applied at task granularity, when
the replanning or reinvitation occurs for the whole task, or
at object granularity, when the replanning or reinvitation
is focused on one (or a few) objects (for instance, objects on
which it is harder to achieve an agreement among perform-
ers, with a majority-based decision mechanisms).

Adaptation at execution time is either statically or dy-
namically determined.
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Figure 2: Customized UI for the cross-community
scenario (Professors).

• With Static adaptation, adaptation is planned, and
it occurs at a given time or after receiving a given
number of task responses. E.g., an application could
migrate from a community to another at a given time
of the day, so as to meet lower costs or better perfor-
mances.

• With Dynamic adaptation, adaptation occurs in re-
action to specific events that are observed, such as the
case of crowds which do not respond as expected.

Dynamic adaptation is quite relevant, as crowd reactions
can hardly be anticipated. Thanks to dynamic adaptation,
it is also possible to guarantee certain constraints or require-
ments on application execution:

• Cost Constraints can be enforced by limiting the
number of tasks which are posted, or by adapting their
cost to the allocated budget. This is made possible
by the availability of communities (e.g., on social net-
works) that are willing to participate without a mon-
etary reward.

• Time Requirements can be dealt with by adding
more processing capability, and possibly by subsequently
inviting performers from more and more communities.

• Diversification Requirements can be dealt with by
involving different performers communities.

In our approach we implement cross-community crowd-
sourcing through active rules. For ease of presentation, we
show them in the context of a concrete scenario.
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Figure 3: Control mart for the experiment.

3.1 Experimental Scenario
The scenario is concerned with image classification. The

dataset consists of images about professors of our depart-
ment retrieved through the Google Image API. In the crowd-
sourcing campaign we ask the performers to specify whether
each image represents the professor himself, some relevant
people or places, other related materials (papers, slides, graphs
or technical materials), or it is not relevant at all. The ex-
perimental settings are as follows:

• Dataset: we selected 16 professors within two re-
search groups in our department (DB and AI groups)
and we downloaded the top 50 images returned by the
Google Image API for each query (the professor’s name
followed by the keyword “Politecnico”); we excluded
the images that were not linked or extremely small in
size. We asked the professors themselves to define the
ground-truth on the images, through a specific crowd-
sourcing task (not described here).

• Crowdsourcing: each microtask consisted of evalu-
ating 5 images regarding a professor. A customized UI
(in Italian) has been developed within Crowdsearcher
(as shown in Figure 2).2 Results are considered ac-
cepted (and thus the corresponding object is closed)
when some agreement level on the class of the image
is reached among performers. Closed objects are re-
moved from new executions.

• Communities: we defined 3 types of communities as:
the research group of the professor (e.g., Databases);
the research area containing the group (e.g., Computer
Science); and the whole department (which accounts
for more than 600 people in different areas).

3.2 Community Control Implementation
We implement community control through the control mart

and the adaptation rules.

2 The experiment is up and running for evaluation purposes
at the following URL (in Italian): http://is.gd/expprofs
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Rule 1 Invitation of CS-Area community after deadline.
e: AFTER 2 days ON TASK[TaskID == ’Professor’]
c: ---
a: SET COMMUNITY_ctrl[CommunityID == ’CS-Area’].Enabled
= true,

reinvite(’GoogleImages’,’CS-Area’)

Rule 2 Maintenance of last task execution timestamp.
e: UPDATE for M_T_O_EXECUTION (EndTS)
c: ---
a: SET TASK_ctrl[TaskID == NEW.TaskID].LastExec = NEW.EndTS

Control Mart. Figure 3 depicts the control mart en-
abling community control. The objects of interest are im-
ages returned by Google about professors. The community
dimension is represented by the Community and Communi-
tyControl concepts.

Adaptation Rules. We report here some exemplary
adaptation rules that show how the application dynamically
adapts by expanding to larger communities, starting from
the research group, then expanding to the area, and finally
to the whole department (the whole scenario includes addi-
tional rules).

• Rule 1 invites performers from the research area (CS-
Area) after two days since the initial invitations, which
were sent to a specific research group (DB-group). Note
that if the task completes before two days, then the
rule does not fire and the task uses just the research
group. This rule implements a static adaptation de-
termined at task granularity.

• The next two rules are used to invite the performers of
a broader community when the current crowd ceases
to produce answers. Rule 2 saves the timestamp of
the last execution of the current task; Rule 3 invites
performers of the broader community (CS-Area) af-
ter one hour of idle time, i.e. when the last execu-
tion occurred more than one hour ago in the smaller
community (DB-Group). Rules implement a dynamic
interoperability at task granularity.

• Rule 4 is used for replanning the crowdsourcing task
on a specific object when the performers of a commu-
nity are in disagreement, e.g., if there is are vote on
every category of the classify operation. In this exam-
ple we assume that the invitations were initially sent to
CS-Area and then are routed to the DB-Group, repre-
senting a group of experts in recognizing images about
colleagues of the same group. This rule implements a
dynamic interoperability determined at object granu-
larity.

Note that Crowdsearcher offers an environment for fast
prototyping of experiments which allows a progressive tun-
ing of execution rules, as we did in the experiments reported
in Section 5.

4. IMPLEMENTATION
We implemented cross-commuity rules in CrowdSearcher3,

a platform for crowd management written in JavaScript and
running on Node.js 4 server; this is a full-fledged event-based

3
http://crowdsearcher.search-computing.com

4
http://nodejs.org

Rule 3 Invitation of CS-Area community when the DB-
Group is idle.
e: EVERY 1 minute ON TASK[TaskID == ’GoogleImages’]
c: now() - TASK_ctrl[TaskID == ’GoogleImages’].LastExec
> 1 hour

AND COMMUNITY_ctrl[CommunityID == ’CS-Area’].Enabled=false
a: SET COMMUNITY_ctrl[CommunityID == ’CS-Area’].Enabled=true,

reinvite(’GoogleImages’,’CS-Area’)

Figure 4: One step of the configuration user inter-
face of CrowdSearcher: definition of the object con-
trol strategies, i.e., level of agreement, number of
awaited answers, platform where to replan, etc.

system, which fits the need of our rule-based approach. Each
control rule is translated into scripts; triggering is modelled
through internal platform events. Precedence between rules
is implicitly obtained by defining the scripts in the proper
order.

CrowdSearcher offers a plug-in environment to transpar-
ently interface with social networks and crowdsourcing plat-
forms. A built-in Task Execution Framework (TEF) pro-
vides support for the creation of custom task user inter-
faces, to be deployed as stand-alone application, or embed-
ded within third-party platforms such as Amazon Mechan-
ical Turk or Facebook[2]. Specific modules are devoted to
the invitation, identification, and management of perform-
ers, thus offering support for a broad range of expert selec-
tion paradigms, from pure pull approaches of open market-
places, to pre-assigned execution to selected performers.

Our platform is cloud-based and is provided with on-
line configuration interfaces where designers can design their
crowdsourcing applications through a wizard–like, step by
step approach. Figure 4 shows one step of the configura-
tion. A demonstration video of the platform is available.5

5
http://www.youtube.com/watch?v=wX8Dvtwyd8s

Rule 4 Replanning of an object, by invoking an expert com-
munity (the DB-Group).
e: UPDATE for M_T_O_EXECUTION
c: OBJECT_ctrl[ObjectID == NEW.ObjectID].ProfPhoto >= 1 AND

OBJECT_ctrl[ObjectID == NEW.ObjectID].PeoplePlace >= 1 AND
OBJECT_ctrl[ObjectID == NEW.ObjectID].Materials >= 1 AND
COMMUNITY_ctrl[CommunityID == ’DB-Group’].Enabled = false

a: SET COMMUNITY_ctrl[CommunityID == ’DB-Group’].Enabled = true,
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5. EXPERIMENTS
We performed several experiments on the running scenario

presented in Section 3. The groundtruth and results are
available online.6

We devised two experiments: in the first one, named
inside-out, we started with invitations to experts, e.g. peo-
ple the same groups as the professor (DB and AI), and
then expanded invitations to Computer Science, then to
the whole Department, and finally to open social networks
(Alumni and PhDs communities on Facebook and Linkedin);
in the second one, named outside-in, we proceeded in the op-
posite way, starting with the Department members, then re-
stricting to Computer Scientists, and finally to the group’s
members. Our assumption is that researchers that work
closer to the person mentioned in the query know him bet-
ter and are more able to recognize relevant images.

All invitations (except for the social networks in the first
experiment) were sent by email by the system. The commu-
nities were not overlapping: every performer received only
one invitation. For doing that, the members of the Depart-
ment, of Computer Science area, and of the DB Group were
randomly split into two sets. Invitations have been imple-
mented as a set of dynamic, cross-community interoperabil-
ity steps, with task granularity and with continuous switch-
overs starting one working day after a community was idle
(stopped to produce results); interoperability control rules
very similar to Rules 2 and 3.

Table 2 shows the number of invitations sent out, the num-
ber of performers responding, and the average precision of
their evaluations. Notice that precision is decreasing when
moving towards less expert people, while the social network
had good precision as the invitation was posted on groups
that know very well the people involved (who were their
professors or advisors). For space reasons, in the paper
we report only on the second experiment(outside-in strat-
egy), but results and datasets are available online for both,
(outside-in strategy).

Figure 5 shows the number of executions (a) and per-
formers (b) by community. Again, influence of nighttime
and weekend on executions is very evident. Figure 6 shows
the number of closed objects vs. the number of performed
evaluations. Figure 7 (a) shows the precision of evaluations
by community and Figure 7(b) shows the final precision on
closed objects.

Figure 7(b) compares also the precisions of the inside-out
and outside-in experiments, and shows that former performs
better than the latter in terms of quality of results. This is
quite evident in the initial phases (when the first half of
the objects close), as the performance of experts (research
group) is much higher than performance of the people of the
rest of department.

6. DISCUSSION AND CONCLUSIONS
This paper proposes an empowered programming and con-

trol of crowdsourcing applications across different performer
communities. We describe dynamic adaptation and we show
how it can be implemented through suitable active rules.

Experimental results show that our method can improve
the effectiveness and efficiency of crowd-based applications,
by improving quality through dynamic replanning strate-

6
http://crowdsearcher.search-computing.com/
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Figure 6: Number of closed objects vs. number of
performed evaluations across communities.

Table 2: Cross-Community scenario statistics

Community #Invites #Performers Precision

Research Group 28 13 0,68
Research Area 61 15 0,64
Department 214 34 0,58
Social Networks N/A 9 0,65

Total 303 71 0,63

gies. Experiments let us collect interesting lessons learned
regarding interoperability. We noticed that expert perform-
ers have a completely different attitude towards the tasks:
in a sense, they felt more involved and part of a “mission”,
they frequently contacted us (about 30% of performers sent
us messages) for providing feedback for improving the appli-
cation, they way questions were asked, or even the dataset.
Participants appeared more demanding than generic crowds
with respect to the quality both of the application UI and of
the evaluated objects. The limited number of participants
implied a strong impact of the temporal aspect (responses
come in more slowly than in traditional crowdsourcing sys-
tems).
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