
A New Architecture Description Language
for Social Machines

Leandro M. Nascimento1,2, Vanilson A. A. Burégio1, Vinicius C. Garcia1, Silvio R. L. Meira1
1 Informatics Center - Federal University of Pernambuco (UFPE)

2 Department of Informatics - Federal Rural University of Pernambuco (UFRPE)
Recife – Pernambuco – Brazil

{lmn2, vaab, vcg, srlm}@cin.ufpe.br

ABSTRACT
The term ‘Social Machine’ (SM) has been commonly used as a
synonym for what is known as the programmable web or web 3.0.
Some definitions of a Social Machine have already been provided
and they basically support the notion of relationships between
distributed entities. The type of relationship molds which services
would be provided or required by each machine, and under certain
complex constraints. In order to deal with the complexity of this
emerging web, we present a language that can describe networks
of Social Machines, named SMADL – the Social Machine
Architecture Description Language. In few words, SMADL is as a
relationship-driven language which can be used to describe the
interactions between any number of machines in a multitude of
ways, as a means to represent real machines interacting in the real
web, such as, Twitter running on top of Amazon AWS or mash-
ups built upon Google Maps, and obviously, as a means to
represent interactions with other social machines too.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Languages, Domain-specific
architectures

General Terms
Languages, Design, Algorithms.

Keywords
Architecture description language, programmable web, web 3.0,
social machines.

1. INTRODUCTION
We are entering the web 3.0 phase. Also known as the
programmable web, it is the networked space-time where
innovation lies on the power of developing software for the web,
through the web, and in the web, using the web as both
programming and deployment platform, and execution
environment, replacing the usual “computer + operating system +
development environment” platform. A good picture of this whole
scenario can be found on programmableweb.com site, where more
than 10,000 web APIs are catalogued and more than 7,000 mash-
ups are being built upon those.

This multifaceted scenario brings up several different
technologies, each with its own peculiarities, such as SOA [2],
REST [3], Cloud Computing and Everything-as-a-Service (XaaS)
[4]. Such diverse possibilities in web-based software development
represent serious difficulties in understanding software basic

elements and how they can be efficiently combined to develop
real, practical systems in either personal, social or enterprise
contexts. In order to overcome those difficulties, we try to
understand and explain this emerging web in terms of a concept
called Social Machines and envisage a language that can describe
networks of such. The main goal of this work is to present an
architecture description language that abstracts many complex
details while developing real-world social machines.

2. SOCIAL MACHINES: UNDER-
STANDING THE PROGRAMMABLE WEB
We firstly investigated the concept of a Social Machine in [5] and
evolved it in a following publication, shown in [1]. Based on this
last work, we believe a Social Machine (SM) can be defined as:

“A connectable and programmable building block that wraps
(WI) an information processing system (IPS) and defines a set of
required (RS) and provided services (PS), dynamically available
under constraints (C) which are determined by, among other
things, its relationships (Rel) with others.”

According to [1], an Information Processing System (IPS)
abstracts any computational unit whose behavior is defined by the
functional relationship between inputs and outputs. The
Relationship (Rel) is the centerpiece of the SM model. A
relationship “defines the kinds of interactions between a
computing process and its environment”. The Wrapper Interface
(WI) abstracts any communication layer through which a SM
externalizes its services to allow interactions with other SMs. The
Provided Services (PS) represent the SM’s business logic that is
exposed as a dynamic set of services, which are directly affected
by the type of relationship established with other SMs. The
Required Services (RS) are an optional element defined by the
model. They represent the set of services that a Social Machine
needs to invoke in order to work properly. In addition, the
Constraints (C) element specifies the rules or limitations that take
place during the establishment of relationships between SMs.

In order to deal with every aspect of a SM, as formerly described,
we created a high-level architecture description language. Other
initiatives, such as service composition/orchestration, do not take
into consideration the fundamentally simple SM concept.

3. SMADL: A NEW LANGUAGE FOR
DESCRIBING SOCIAL MACHINES
We define SMADL – the Social Machines Architecture
Description Language – as an attempt to be a different way to
program the Web, mixing concepts from Architecture Description
Languages (ADLs) and Domain-Specific Languages (DSLs).

SMADL presents a simple textual syntax in favor of
expressiveness. It was developed in Xtext language workbench,
making it fully integrated to the Java Virtual Machine and Eclipse

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2578831

873

IDE. The language can be used with or without low-level
constructions (conditionals and loops). The concepts of the SM
model are directly mapped into the language, facilitating new
comers to use it. In SMADL, a relationship is represented by a
single keyword, so composition possibilities for several SMs can
be infinite, making it possible to create a network of SMs. Each
SM establishes a relationship with others, just like an import
mechanism in Java. To exemplify the language syntax, Figure 1
shows a code snippet of SMADL. The code sections are
numerated to facilitate the following explanations.

/*
 * The 'relates to' section is optional. When present, this
 * section lists the other social machines used in
 * MyNewSocialMachine scope. If any relationships are listed
 * here, it is mandatory to setup each appropriate
 * interaction view according to its particular constraint
 */
SocialMachine MyNewSocialMachine relates to facebook, dpbox {

 general constraint UNLIMITED

 Relationships {
 //SM 'dpbox' must be listed in the 'relates to' section
 dropBoxFiles with dpbox [
 uri = " https://www.dropbox.com/oauth2/"
 api‐key = "745132132131"
 secret = "ysdhgfs8485gas098hoashq98eyo3qwe"
 user‐token = "745132132131|HYlks234BeNj67V9kj323e4"
] type: FULL_ACCESS //every single operation of dpbox

 //SM 'facebook' must be listed in the 'relates to' section
 facebookPosts with facebook [
 uri = "https://graph.facebook.com/oauth/token"
 api‐key = "543216431893328"
 secret = "55dey851g0ff43b4df8e0n3dad1a32a0"
 user‐token = "5432164318933286BTeH0BSpUF6Cbj1EM3MI"
] type: LIST_OF_OPS (wallPost, listOfFriends)
 }

 constructor(String baseUrl, Integer initialPort) {
 //Constructor body (dynamically typed expression)
 var destination = baseUrl + initialPort
 }

 op listFilesInDropboxFolder returns
 java.util.List<java.io.File> (String folder)
 constraint PRE_AUTH_SM

 op createFacebookPost(String text)
}

Figure 1 – SMADL code snippet

A SM entity is defined using scopes between curly braces,
following a Java-like syntax. In Figure 1, a SM entity is defined
and called MyNewSocialMachine. Following, the SM model
elements are mapped on SMADL structures: (IPS)  Part 1
allows the definition of an optional constructor, which may
contain code in a JVM-based dynamically typed language called
Xbase, provided as part of Xtext framework. (Rel)  Parts 2, 3
and 4 show how relationships are handled in SMADL. Notice
that, in the piece of code, facebook and dpbox must have been
previously defined as Social Machine entities just like
'MyNewSocialMachine'. Parts 3 and 4 in code snippet show the
actual configuration of each relationship in the ‘Relationships’,
hereby called interaction view. The current version of SMADL
allows the creation of two types of relationships: OAuth-based
and generic. The former abstracts all the details involved with
authorization protocol OAuth, commonly used in nowadays web
apps. The later allows the establishment of generic relationships,
with any given number of parameters. (WI)  Part 7 illustrates
the set of provided services that, in conjunction with their
respective access constraints, composes the wrapper interface.

(PS)  Part 7 shows an example of a provided service abstractly
defined in terms of their signature. Notice that when defining PS,
there is no need to establish relationships. The actual declaration
of the relationship is under responsibility of the service requester.
To define open common services in SMADL, the user only needs
to write an operation without constraints as shown in the
createFacebookPost operation, for instance. Relationship-driven
services are supposed to be defined under certain constraints in
the provider and declared in the LIST_OF_OPS section (part 6) for
each interaction view in the requester code. (RS)  Parts 2 and
6, these sections illustrate dependencies of the services provided
by other SMs listed in the ‘relates to’ section. Notice that the
interaction view named ‘facebookPosts’ can only access the
following operations ‘(wallPost, listOfFriends)’ from
‘facebook’ social machine. This implicitly defines the set of
required services in SMADL. And (C)  Parts 5, 6 and 7,
represented by the keyword ‘constraint’ and ‘type’. In
SMADL, constraints can be of three types: (1) general constraint,
applicable to all provided services and written right after SM
definition; (2) operation constraint, applicable to one operation
(provided service) at once, it has a higher priority than a general
constraint, that means, when an operation declares a constraint,
the general constraint is not considered anymore; and (3)
relationship constraint, which restricts which operations of the
provider SM can be accessed in an interaction view.

SMADL was intentionally conceived in a level of abstraction to
enable the generation of code for different contexts, augmenting
its future use. Such contexts are covered by what we hereby name
as a generation profile. Initially two profiles are defined: 1) Web
Apps, where the main goal is to generate code targeting well-
known web architectures, such as Model-View-Controller (MVC)
pattern using RESTful services and enabling OAuth 2.0 compliant
authentication; and 2) Datacenter as a Service (DaaS), which
describes the internal elements of a data center and their
relationships, including routers, data bases, load balancers, virtual
machines, and so on, generating scripts for automatic instantiation
of virtual machines according to the configuration the user gives.
For this profile, a visual representation of the language was
created using Eclipse Graphical Modeling Framework (GMF).

Creating two generation profiles helps on establishing SMADL as
a practical solution and a relevant contribution out of this work.
For future developments, we intend to provide more practical case
studies of both visual and textual representations of SMADL,
using it to specify web-enabled systems as crowd sourced
platforms, combining already existent popular APIs, such as
Facebook and Twitter, to acquire and process information, so
creating practical social systems. This work was partially
supported by the Brazilian National Institute of Science and
Technology for Software Engineering (INES, www.ines.gov.br).

REFERENCES
[1] Buregio, V.A.A., Meira, S.L., Rosa, N.S. and Garcia, V.C. 2013. Moving

Towards “Relationship-aware” Applications and Services: A Social Machine-
oriented Approach. 17th IEEE International EDOC Conference (EDOCW 2013)
(Vancouver, Canada, 2013).

[2] Erl, T. 2005. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR.

[3] Fielding, R. and Taylor, R. 2000. Principled design of the modern Web
architecture. Proceedings of the 2000 International Conference on Software
Engineering. ICSE 2000 the New Millennium (2000), 407–416.

[4] Hazra, K. 2009. Cloud computing-the next chasm. 2009 International
Conference on Computers and Devices for Communication (2009).

[5] Meira, S.R.L., Buregio, V.A.A., Nascimento, L.M., Figueiredo, E., Neto, M.,
Encarnacao, B. and Garcia, V.C. 2011. The Emerging Web of Social Machines.
2011 IEEE 35th Annual Computer Software and Applications Conference (Jul.
2011), 26–27.

5

2

3

4

6

1

7

874

