
CrowdFill: A System for Collecting Structured Data
from the Crowd∗

Hyunjung Park
Stanford University

hyunjung@cs.stanford.edu

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT
CrowdFill is a system for collecting structured data from the crowd.
Unlike a typical microtask-based approach, CrowdFill shows an en-
tire partially-filled table to all participating workers; workers col-
laboratively complete the table by filling in empty cells, as well
as upvoting and downvoting data entered by other workers, using
CrowdFill’s intuitive data entry interface. CrowdFill ensures data
entry is leading to a final table that satisfies prespecified constraints,
and its compensation scheme encourages workers to submit useful,
high-quality work. We demonstrate how CrowdFill collects struc-
tured data from the crowd, from the perspective of a user as well as
from the perspective of workers.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces—Computer-supported cooperative work

Keywords
crowdsourcing; data collection

1. INTRODUCTION
We consider the problem of collecting high-quality structured

data from the crowd, while adhering to constraints on the collected
data, capping total monetary cost, and keeping latency low. Most
previous work on crowdsourcing structured data, e.g., [4, 5, 7], has
focused on a microtask-based approach: ask workers for specific
pieces of data, then assemble the answers into a complete table.
We propose to demonstrate our CrowdFill system, which takes a
different approach. Instead of partitioning data collection into a set
of microtasks, CrowdFill shows an entire partially-filled table to all
participating workers. Workers are asked to contribute what they
know by filling in empty cells, as well as upvoting and downvoting
data entered by other workers. Prespecified constraints on table
size and entered values ensure that the final table is populated with
useful data.
∗This work was supported by the NSF (IIS-0904497), the Boeing
Corporation, and a KAUST research grant.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577029.

In a companion full paper [6], we describe in detail how Crowd-
Fill provides an intuitive interface for data entry and voting, while
allowing simultaneous operations on the same table by different
workers, and ensuring data entry is leading to a final table that
satisfies the prespecified constraints. As workers perform actions,
CrowdFill propagates them to other workers and seamlessly re-
solves conflicts due to concurrency. We have also devised a com-
pensation scheme that encourages useful work, provides compen-
sation commensurate with a worker’s efforts, yields high-quality
data, and adheres to a fixed monetary budget.

2. FORMAL MODEL
We begin by describing CrowdFill’s formal model using a run-

ning example. For more details see [6].

Table Schema: To collect structured data, a CrowdFill user must
provide a table schema consisting of:
• Column definitions: A column name, data type, and option-

ally a domain (set of allowed values) for each column.
• Primary key: One or more key columns that together should

uniquely identify each row in the final table. By default, all
columns together are a key, i.e., there should be no duplicate
rows in the final table.

As a running example, suppose we are interested in collecting in-
formation about international soccer players. We use the following
schema:

SoccerPlayer(name, nationality, position, caps, goals)

Columns name and nationality together are the primary key.

Scoring Function: To ensure the quality of collected data, our
model allows workers to provide upvotes and downvotes on data.
To aggregate votes, the user provides a scoring function f(ur, dr)
where ur and dr denote an upvote count and a downvote count, re-
spectively, for a given row r. The intention is for a higher score to
indicate that the row is more likely to be correct. Without any votes,
a row must always have a zero score. Also, we require that f(u, d)
is a monotonically increasing function of u, and a monotonically
decreasing function of d. We will see shortly that CrowdFill only
allows rows with positive scores to appear in the final table.

For our running example, we’ll use a scoring function that im-
plements a “majority of three or more” voting scheme, with short-
cutting:

f(ur, dr) =

{
ur − dr, if ur + dr ≥ 2

0, otherwise

Candidate table: A candidate table R is a set of rows, where each
row r is annotated with its upvote count ur and downvote count

87



dr . The candidate table can be modified by performing one of the
following primitive operations. Note empty, partial, and complete
describe rows with no values filled in, some values filled in, and all
values filled in, respectively.
• insert(r): Insert a new empty row r into R.
• fill(r,A,v): Fill in an empty column A in row r ∈ R to have

value v.
• upvote(r): Upvote a complete row r ∈ R. Increment uq for

each row q ∈ R whose value is equal to the value of row r.
• downvote(r): Downvote a partial row r ∈ R. Increment dq

for each row q ∈ R whose value is equal to or a superset of
the value of row r.

We will see in Section 3 that worker actions are described in terms
of these primitive operations.

In our example SoccerPlayer table, here is one possible candi-
date table. The columns labeled ↑ and ↓ contain upvote and down-
vote counts, respectively. Note in particular that candidate tables
need not have unique rows with a given primary key; keys are en-
forced in the final table, defined next.

name nationality position caps goals ↑ ↓
Lionel Messi Argentina FW 83 37 2 0
Ronaldinho Brazil MF 97 33 3 0
Ronaldinho Brazil FW 97 33 2 1

Neymar Brazil FW 0 2
Iker Casillas Spain GK 150 0 2 0

David Beckham England MF 115 17 1 0

Final table: A final table S derived from a candidate table R con-
tains each complete row r ∈ R such that f(ur, dr) > 0, and
f(ur, dr) is the highest score of any row with the same primary
key as r. Ties are broken arbitrarily, and groups of rows with no
positive scores don’t contribute to the result. Note a final table re-
spects the primary key constraint by definition.

Based on our example candidate table and scoring function, we
obtain the following final table:

name nationality position caps goals
Lionel Messi Argentina FW 83 37
Ronaldinho Brazil MF 97 33
Iker Casillas Spain GK 150 0

Note Neymar is omitted because the row is not complete, while
Beckham is omitted because the score for the row is zero.

Values Constraint: Constraints enable CrowdFill users to specify
restrictions on the final table of collected data. For the demon-
stration we focus on values constraints, specifying that rows with
certain values or combinations of values must be present in the fi-
nal table. Specifically the user can specify a set T of “initial” rows,
which we refer as template rows. Template rows can be complete,
meaning they should also be present in the final table; they can be
partial, with workers expected to fill in missing values; and they can
be empty, in which case they are specifying how many additional
rows are needed. Note that requiring a certain minimum number of
rows—a cardinality constraint—is a special case of a values con-
straint. (In [6] we describe more generalized constraints, e.g., spec-
ifying that collected values must satisfy a given predicate.)

Our goal is to obtain a final table S that satisfies the following
values constraint with template T :

For each row t ∈ T , there exists a unique row s ∈ S
such that the values in row s are equal to or a superset
of the values in row t.

In our running example, if we wish to collect a forward from any
country and any player from Brazil and Spain, we would specify
the following template:

name nationality position caps goals
FW

Brazil
Spain

Note the example final table above satisfies the values constraint
with this template.

Concurrent operations and convergence: Using the primitive op-
erations defined above, the workers make changes to the candidate
table. To support concurrent operations across workers, the Crowd-
Fill server has a master copy of the candidate table, and each client
has its own copy, which is initially identical to the master copy.
Suppose the worker at client C performs a primitive operation op.
Client C applies op to its own copy of the table, then sends a cor-
responding message m to the server. Once the server receives mes-
sage m from client C, it first processes m on the master table, then
forwards m to all clients except C. Finally all clients except C re-
ceive m and process m on their copies of the table. Details of mes-
sage generation, and the application of operations and messages to
a table, are covered in [6].

Clients generate and process messages concurrently, so Crowd-
Fill’s protocol must ensure that the result is consistent and correct.
We can see easily that the server and all clients process the same
set of messages once and only once; however, the server and each
client may process the messages in a different order. The primary
potential conflict occurs when two different workers fill in empty
values in the same row at the same time—either for the same col-
umn or for different columns. CrowdFill avoids this conflict by
effectively generating a new row for each new column value, in-
stead of filling the value into the existing row; details appear in [6].
The full paper [6] includes a convergence theorem, guaranteeing
that the server and all clients always have the same candidate table
whenever the system “quiesces” (i.e., all generated messages are
propagated and processed).

3. SYSTEM OVERVIEW
We have implemented a fully-functional prototype of the Crowd-

Fill system, based on the formal model of Section 2. In this section,
we describe CrowdFill’s overall architecture and key components.

3.1 Architecture
Figure 1 shows the overall architecture of the CrowdFill sys-

tem. It consists of several major components: a web interface for
users, a front-end server, a back-end server, and one or more worker
clients. It also connects with one or more crowdsourcing market-
places (only one is shown in our diagram), and a database. In the
course of data collection, these components interact with each other
as follows.

1. Using the web interface, a user sends a table specification to
the front-end server to launch data collection.

2. The front-end server creates one or more tasks in the crowd-
sourcing marketplace.

3. Each worker accepting a task is redirected to the back-end
server and establishes a bidirectional persistent connection to
the back-end server.

4. Workers perform actions through their data entry interfaces
(see Figure 2c), until the back-end server determines that enough
data has been collected.

88



Front-end Server

Back-end Server

Database

Worker 
Client

Web Interface

Crowdsourcing
Marketplace

task
acceptance

task setup,
payment

results collectiontable specs, payment

Execution 
Server

Central
Client

Worker 
Client

Worker 
Client

Worker 
Client

data
entry

Figure 1: CrowdFill Architecture

5. Using the web interface, the user retrieves collected data from
the front-end server and pays workers through the crowdsourc-
ing marketplace.

We built the front-end and back-end servers using Node.js [2], with
the Socket.IO library [3] for connections between the back-end
server and clients. All metadata and collected structured data are
stored in a MongoDB [1] database.

3.2 Data Entry Interface
Each worker client provides its worker with a data entry inter-

face running in a web browser. Through this interface, workers can
perform three kinds of actions: fill, upvote, and downvote. These
actions correspond to the primitive operations from Section 2 with
the same names, with some restrictions on vote operations men-
tioned below. Note worker clients never generate insert operations.
For now suppose that there are enough incomplete rows in the can-
didate table; we will discuss this issue further in Section 3.3.

Fill action: As shown in Figure 2c, the main part of this interface
is an HTML table. This table shows an up-to-date local copy of
the candidate table, and it allows workers to fill in empty cells in-
place. Filling in an empty cell generates a fill operation as described
in Section 2.

Upvote and downvote actions: The rightmost column in the HTML
table contains thumb-up and thumb-down icons for each row. Click-
ing these icons generates upvote and downvote operations, respec-
tively, on the corresponding row.

Although the formal model in Section 2 does not prevent a single
worker from contributing multiple upvotes and/or downvotes to the
same row, the CrowdFill data entry interface intentionally prohibits
this behavior: each worker may provide, directly or indirectly, at
most one vote for each row. Thus, upvote and downvote counts
represent the number of different workers who approve or disap-
prove of a given set of values. To further enforce this semantics,
when a worker provides the last value that completes a row, that
worker automatically upvotes the row, without additional payment.

3.3 Satisfying the Constraints
Recall from Section 2 that our overall goal is to obtain a final

table satisfying the values constraints with a template. To guide
the final table towards the template, and to minimize wasted work,
the CrowdFill system only allows new rows to be inserted into the

candidate table by a special client, which we call CC (for “Central
Client”), in the back-end server (Figure 1). With this approach,
workers never need to add rows, and they need not be aware of the
constraints, allowing them to simply fill in empty values in existing
rows, and cast votes.

The overall objective of the special client CC, as it adds rows
to the candidate table, is to keep the table in a state where fill-
ing in empty values might produce a final table satisfying the con-
straint. In [6] we have defined the notion of a row being probable—
informally, given the current state of the candidate table, a probable
row may eventually contribute to the final table. Through special
client CC, the CrowdFill system maintains the following invariant
at all times, based on the values constraint.

Probable Rows Invariant (PRI): Each template row
t corresponds to a unique probable row r in the candi-
date table such that the values in row r are equal to or
a superset of the values in row t.

Maintaining the PRI turns out to be an interesting application of the
maximum bipartite matching, and is covered in detail in [6].

3.4 Compensating Workers
Instead of offering fixed compensation for each data entry or

voting action, CrowdFill’s compensation scheme is based on each
worker’s overall contribution to the final table. This approach en-
courages workers to submit useful, high-quality work, while mak-
ing the total monetary cost more predictable.

CrowdFill allows a user to simply specify a total monetary bud-
get. When the table is complete, the system calculates the final
compensation for each worker based on how and when they con-
tributed to the table. Our approach also can take into account vari-
ability in the difficulty of providing values for different columns,
and the fact that entering new key values can get progressively more
difficult as the table fills up. At the same time, CrowdFill needs to
keep workers engaged and focused on entering the needed data,
so it displays estimated compensation for individual actions during
table-filling.

In [6] we define the notion of contribution, describe how final
compensation is calculated after the table is complete, and discuss
compensation estimation during data collection.

4. DEMONSTRATION
In the demonstration, we will show CrowdFill’s data collection

process, from the perspective of a user as well as from the perspec-
tive of workers. Here we walk through each step and describe the
aspects of the system we will highlight.

Specifying table: To begin with, we, as a user, provide a table
specification, including a table name, instruction for workers, a ta-
ble schema, a scoring function, and a total monetary budget. We
plan to use the example SoccerPlayer schema from Section 2:

SoccerPlayer(name, nationality, position, caps, goals)

Figure 2a shows CrowdFill’s Table Schema Editor, with our Soc-
cerPlayer schema filled in.

Once we save the table schema, we populate a template for the
values constraint. Figure 2b shows CrowdFill’s Constraint Editor.
Then, we launch data collection. At this point, data entry interfaces
become available to workers, and the user waits until CrowdFill’s
data collection finishes.

Entering and voting on data: Instead of attempting to hire work-
ers through crowdsourcing marketplaces during the demonstration,

89



(a) Table Schema Editor (b) Constraint Editor

(c) Data Entry Interface (d) Data Monitor
Figure 2: CrowdFill Screenshots

we will act as workers ourselves through a proxy marketplace, en-
tering and voting on data. More interestingly, our proxy market-
place and CrowdFill server will be hosted on the web, so confer-
ence attendees will be able to participate as workers in the demon-
stration. Using multiple worker clients, we will see how a fill action
performed at one client propagates to the other clients. We will also
demonstrate how conflicting fill actions are seamlessly resolved by
duplicating rows. Since data entry interfaces do not show total up-
vote and downvote counts, we will use CrowdFill’s Data Monitor
(Figure 2d) to confirm that upvote and downvote actions are being
propagated.

Observing the Probable Row Invariant: CrowdFill’s Data Mon-
itor (Figure 2d) not only shows the candidate rows along with their
vote counts, but it also allows us to observe the status of rows. Each
candidate row is color-coded based on the following criteria:
• Red: rows with negative scores.
• Yellow: rows with non-negative scores, but another row with

the same primary key has a higher score.
• Blue: rows with zero scores, and no other row with the same

primary key has a higher score.
• Green: complete rows with positive scores, and no other row

with the same primary key has a higher score.
Both green and blue rows are considered probable, based on our
formal definition of probable rows [6].

As workers fill in empty cells and vote on rows, we will observe
on the Data Monitor that each row goes through different colors
over time. Whenever there are not enough probable rows in the
candidate table to satisfy the PRI, CrowdFill inserts some of the
template rows into the table, to maintain the PRI.

Getting compensated: To keep workers engaged during data col-
lection, CrowdFill shows estimated compensation for each action,
in the table header of the Data Entry Interface (Figure 2c). We will
see these estimates stabilize over time as the table becomes com-
plete.

Once enough data has been collected to satisfy the values con-
straint, CrowdFill terminates data collection and notifies each worker
client with the final compensation for the client. At this point we
will compare expected compensation (based on the estimates pro-
vided during data collection) to the final compensation. In addition,
the final status of all rows is broadcast to all clients using our color
scheme. We will observe that workers are compensated based on
their contribution to the final table.

5. REFERENCES
[1] MongoDB. http://www.mongodb.org/ .
[2] Node.js. http://www.nodejs.org/ .
[3] Socket.IO. http:// socket.io/ .
[4] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and

R. Xin. CrowdDB: Answering queries with crowdsourcing. In
SIGMOD, 2011.

[5] H. Park, R. Pang, A. Parameswaran, H. Garcia-Molina,
N. Polyzotis, and J. Widom. An overview of the deco system:
data model and query language; query processing and
optimization. SIGMOD Record, 41(4):22–27, 2012.

[6] H. Park and J. Widom. CrowdFill: Collecting structured data
from the crowd, http://ilpubs.stanford.edu:8090/1079/.
Technical report, Stanford InfoLab, 2013.

[7] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.
Crowdsourced enumeration queries. In ICDE, 2013.

90

http://www.mongodb.org/
http://www.nodejs.org/
http://socket.io/
http://ilpubs.stanford.edu:8090/1079/

	Introduction
	Formal Model
	System Overview
	Architecture
	Data Entry Interface
	Satisfying the Constraints
	Compensating Workers

	Demonstration
	References



