
Extracting and Aggregating Temporal Events from Text

Lars Döhling
doehling@informatik.hu-berlin.de

Ulf Leser
leser@informatik.hu-berlin.de

Department of Computer Science
Humboldt-Universität zu Berlin

Unter den Linden 6, 10099 Berlin, Germany

ABSTRACT
Finding reliable information about a given event from large
and dynamic text collections is a topic of great interest. For
instance, rescue teams and insurance companies are inter-
ested in concise facts about damages after disasters, which
can be found in web blogs, newspaper articles, social net-
works etc. However, finding, extracting, and condensing
specific facts is a highly complex undertaking: It requires
identifying appropriate textual sources, recognizing relevant
facts within the sources, and aggregating extracted facts into
a condensed answer despite inconsistencies, uncertainty, and
changes over time. In this paper, we present a three-step
framework providing techniques and solutions for each of
these problems. We tested the feasibility of extracting time-
associated event facts using our framework in a comprehen-
sive case study: gathering data on particular earthquakes
from web data sources. Our results show that it is, under
certain circumstances, possible to automatically obtain reli-
able and timely data on natural disasters from the web.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering, Query formu-
lation; I.2.7 [Artificial Intelligence]: Natural Language
Processing—Text analysis

Keywords
Query expansion; Natural language processing; Information
extraction; Publication date extraction; Information fusion;
Curve fitting; Earthquake

1. INTRODUCTION
Everyday, millions of people use the web as an informa-

tion source, browsing blogs, tweets, newspaper articles etc.
Given long-lasting events like disasters, people seek for reli-
able and timely data describing the event and its aftermath.
Today, even rescue teams use the web to gather facts about

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579043.

damages and casualties, especially if no on-site contact is
available. Knowing these facts helps them to determine the
required scale of relief operations and supports their coor-
dination [16]. Surely, such information can be found on
the web, but with diverse timeliness, quality, and granu-
larity, imposing several challenges. First, one needs to find
those documents (web pages, blog entries, tweets) poten-
tially containing the facts of interest. Next, one has to an-
alyze the documents and extract the desired facts. This
also includes the temporal alignment of the documents and
their contained facts. Knowing the temporal dimension of
facts is the key to their usefulness, as facts change over
time. Since the analyzed documents originate from various
sources, published at different points in time, the extracted
facts will contain inconsistencies. Resolving these inconsis-
tencies requires adequate aggregation strategies, resulting in
condensed views on events. Performing such complex tasks
manually is cumbersome, clearly calling for automation.
Although information extraction from the web has been

studied before, to our knowledge, no previous work exists
providing comprehensive solutions for all of the outlined
challenges at once. Query formulation, for example, has
been examined by Endrullis et al. [6]. They analyzed the
problem of formulating specific queries to retrieve informa-
tion on consumer products from the web through textual
search interfaces. Similar to our approach, they employed
alternative product labels to generate multiple queries for
the same product. Focusing on fact extraction, Banko et
al. created the TextRunner system, capable of efficiently
analyzing millions of web pages [3]. By applying a naïve
Bayes classifier, they extracted millions of facts from a large
collection of web pages and estimated their correctness. In
contrast to our work, neither inconsistencies between these
facts are examined, nor their temporal dimension. Aug-
menting facts by their temporal scope has been studied by
Wang et al. [19]. They extracted additional year informa-
tion within the same sentences containing the facts, using
wikipedia articles and web pages. Talukdar et al. [18] uti-
lized frequency changes of fact occurrences in time-stamped
data to scope facts, again at a yearly granularity. Both bene-
ficially employed temporal constraints for scoping facts, e.g.
birth is before death. While the achieved temporal granular-
ity might be sufficient for facts like isMarriedTo, it is insuf-
ficient for facts describing shorter-termed or current events.
Exploring the temporal dimension of documents (and their
contained facts) has two perspectives: (1) the time described
within the document and (2) the publication date. Although
there are temporal taggers available focusing on the first per-

839

Event
Query builder

Document filterWWW API

Documents

Publication date

Facts

Facts

Intra-document

Outlier removal

Inter-document

Retrieval Extraction Fusion

Aggregations

Figure 1: Framework overview.

spective [17], we observed poor accuracy for recognizing the
publication date, tested on a sample set of web pages. Sala-
hEldeen et al. studied the second perspective, utilizing tem-
porally tagged links to the questioned document, hosted on
third-party sites [14]. Hence, only web pages already linked
on these sites can be temporally aligned, a crucial limita-
tion not present in our approach, as we use the page con-
tent itself. Furthermore, applying their approach results in
solely rough estimates of publication dates, since the utilized
link creation dates constitute only upper bounds. Moving
from web pages to user-generated content, Sakaki et al. cre-
ated a system to trace earthquakes and typhoons reported
on Twitter [13]. They applied particle filters to aggregate
tweets into spatiotemporal trajectories describing evolutions
of event locations. In contrast to web pages, tweets are al-
ready temporally tagged, easing information aggregation.
In this paper, we suggest a three-step framework provid-

ing solutions for retrieval, extraction, and aggregation. The
framework’s input are events – defined by type, date, and lo-
cation – along with training examples of the demanded facts.
The output are collected facts, aggregated and temporally
aligned. We use search engines for web source identification
and utilize regular expression-based heuristics for temporal
alignment. For fact extraction, we apply pattern matching
in dependency graphs. The specific focus of our framework
is on time-dependent fact aggregation despite inconsisten-
cies. Here, we employ curve fitting and sliding aggregates
as suitable fusion strategies. Furthermore, our solutions are
capable of forecasting further development of facts. We ex-
plain and evaluate the framework using a comprehensive
study in the domain of natural disasters. In the study, we
search for casualty numbers and are able to return their
temporal evolution with satisfying high accuracy. We con-
sider 33 earthquakes, 4752 search engine queries and analyze
61 083 documents, leading to 696 extracted facts per event
on average over a period of 30 days. We also show that, for
our case study, curve fitting is a proper aggregation method
producing quality forecasts.
The contributions of this paper are threefold: First, we

present a configurable framework for extracting event-related
facts from the web. Second, we suggest suitable methods for
each step: document retrieval, information extraction, and
time-aware aggregation. Third, we apply our framework to
a real-life case study. Altogether, we see our main contribu-
tion at the first proposal, implementation, and evaluation
of a complete pipeline for solving the complex problem of
extracting temporal, event-specific facts from web sources.
Section 2 gives a brief overview of our proposed frame-

work. The three individual steps are described in Sections 3,
4, and 5, respectively. In Section 6, we describe our case
study and present evaluation results. Section 7 discusses
our findings and concludes.

2. FRAMEWORK OVERVIEW
Our framework is designed to find, extract, and aggre-

gate numerical facts from the web describing long-lasting

events. An example is the number of casualties during and
after natural disasters. The framework especially focuses
on the temporal evolution of these facts, providing a consis-
tent view despite uncertainty and changes over time. It has
three major modules, each performing one step: document
retrieval, fact extraction, and information fusion (Figure 1).
(1) The retrieval module takes an event as input and re-

turns a set of event-relevant HTML documents. As we em-
ploy search engine APIs to retrieve such documents from the
web, the module contains a query builder generating appro-
priate queries for the event (see Section 3.1). The module is
complemented by a document filter removing probably irrel-
evant documents (see Section 3.2). (2) The extraction mod-
ule takes a set of documents as input and initially extracts
for each document its structure, i.e. the title, the descrip-
tion and the content. Since we later require temporal aligned
documents, the module contains a regular expression-based
heuristic for publication date extraction (see Section 4.1).
Furthermore, we apply machine learning methods to ex-
tract contained facts (see Section 4.2). The module’s out-
put are accordingly structured documents and extraction
results. (3) The fusion module takes as input a set of tem-
poral aligned facts and returns a condensed view over time.
Here, we utilize a set of time-aware strategies to deal with
inconsistencies in the extracted facts. This includes outlier
detection (see Section 5.2) and intra-/inter-document fusion
(see Section 5.1, 5.3).

3. FINDING RELEVANT DOCUMENTS
There are basically two options available for retrieving

event-relevant documents from the web. Self-crawling (a
subset of) all documents and applying some established re-
trieval model like vector space model [15] is the first. The
second option is to invoke search engines via API calls. Since
we do not know in advance which sites report on the desired
event, option one would require extensive crawling, a labori-
ous task. Hence, we included option two in our framework,
namely adapters for Bing’s and Google’s search APIs. Uti-
lizing established search providers also has the advantage
of potential low latencies between the publication and the
retrieval of new articles. Their high crawl frequency is of
great help for analyzing current events.

3.1 Query Builder
The goal of the query builder is to generate appropriate

queries based on the event, resulting in high precision and
recall. Here, recall also has a temporal dimension, as we are
interested in retrieving documents covering the full period
of the event. In our framework, Queries are automatically
generated based on the event type, location, and date. We
further utilize alternative terms for each argument, known
as query expansion [12]. For example, the 2012’s Philip-
pines earthquake can be queried by ’earthquake Philippines
2012’ or ’quake Negros February’. As API providers limit the
number of results returned, sending multiple queries helps
to increase the document recall and event coverage.

840

3.2 Document Filter
To increase the precision of the returned results, we in-

cluded several event type-independent document filters into
our framework. These filters are configurable. Examples
are (1) a regular expression-based URL filter and (2) a doc-
ument size filter. In our study, we focus on news-like articles,
therefore dropping documents whose
(1) URL consists of the domain name only, assuming that

news articles have identifiers as path component.
So http://www.example.com/ will be removed,
http://www.example.com/articleId=123 not.

(2) size exceeds 500 kB, a limit determined by page sizes
found in an external news articles collection.

4. FACT EXTRACTION
To enable fact extraction from retrieved documents, we

first convert the HTML code into text strings, distinguish-
ing between title, description, and content. The first two
are defined by their respective HTML tag, whereas the ac-
tual page content is extracted by Boilerpipe [7], a boiler-
plate removal library. Boilerplate here denotes non-content
elements on a web page like advertisements or navigation
bars. The text extraction process implicitly discards non-
HMTL documents. We also remove documents whose text
do not contain one of the desired type strings like ’quake’ for
earthquakes. The reasons for this are two general observa-
tions: (1) Search engines also return results not containing
all query terms and (2) event-relevant documents contain
at least one type-specific key word. For example, there is
hardly any article thinkable of reporting about an earth-
quake, without including the string ’quake’.
When describing events by facts, their correctness highly

depends on the considered point in time as truth evolves
over time. In other words, extracted facts like “4081 people
are involved” are nearly rendered useless, if the temporal
dimension is unknown. Hence, our framework uses a reg-
ular expression-based heuristic for temporal alignment of
news-like documents and their contained facts, outlined in
Section 4.1. In Section 4.2, we present the machine learning
methods utilized for fact extraction.

4.1 Publication date extraction
Typically, news-like documents contain one dedicated line

reporting on the publication date. Examples are ’Febru-
ary 6, 2012 -- Updated 2315 GMT (0715 HKT)’ or ’Posted
at 02/06/2012 4:40 PM | Updated as of 02/06/2012 5:10
PM’. Although we suspect a limited number of possible line
formats in general, specifying a regular expression for each
would be a cumbersome and error-prone task. Instead we
apply date expression-specific stemming as a preprocessing
step before the actual publication date extraction. This rule-
based stemming removes all characters in text lines which do
not belong to possible date expressions, reducing the num-
ber of required extraction patterns substantially. Stemming
the two examples results in ’February 6 2012 2315 GMT
0715 HKT’ and ’02/06/2012 4:40 PM 02/06/2012 5:10 PM’.
After stemming, regular expressions are applied for the final
date extraction, constructed from external data.
In general, we select the first date found as the publica-

tion date of a document, excluding dates before 1995 (act-
ing as pre-WWW boundary) and after the fetch date. If
we detect two date expressions in one line, we suspect a
combination of creation and modification time, propagating

the most current one. With more than two hits, we ignore
this line completely. Consequently, all documents without
publication date are excluded from further processing.
We also try to detect the correct time zone if contained

in the date expression. While terms like ’+1300’ or ’GMT’
uniquely identify time zone offsets, there are many abbre-
viations which do not. For example PST denotes both,
Pacific Standard Time (UTC−08) and Philippine Standard
Time (UTC+08), differing in 16 h. Depending on the time-
sensitivity of the examined facts, this bias might have signif-
icant influence on the final results. To minimize the effect,
we apply the average offset for non-unique abbreviations, as
listed on Wikipedia1. If we cannot identify any time zone,
we use the event’s time zone derived from the location.
Furthermore, we included a configurable publication date-

based document filter in our framework. It allows to remove
documents created probably too early to be valid, targeting
at the time delay between the event and possible mentions
on the web. For processing earthquake events, we apply
a 15min filter, since we do not expect informative articles
earlier after the event.

4.2 Fact extraction
For fact extraction, we utilize the method presented in [5].

This method allows to extract arbitrary facts from texts,
formalized as complex n-ary relationships, a technique called
relationship extraction [2]. Here, n denotes the number of
entities – single words or word groups – used to express the
fact. Complex indicates that not all n entities are required to
form a valid relationship tuple. Taking reports on casualties
as example, the sentence ’The death toll is now at least 32,
with 467 injuries’ contains two facts: ≥ 32 killed and 467
injured. These facts can be formalized as 3-tuples [modifier,
quantity, type], resulting in [at least, 32, death toll] and [–,
467, injuries].
The automatic fact extraction consists of three steps: First,

we recognize all entities (relevant words or word groups) by
evaluating them against a lexicon and regular expressions.
Second, we infer semantic relationships between pairs of en-
tities by matching patterns in dependency graphs [8]. Here,
patterns consist of shortest paths [4] between two entities.
The results of this pattern matching step are entity graphs
with edges between all pairs of related entities. By find-
ing maximal cliques [9] in these entity graphs, the binary
relationships are finally merged into tuples of the desired
n-ary relationship. The required entity lexicon and depen-
dency patterns are automatically learned from annotated
training texts, provided by the user. Hence, configuring the
framework to extract different facts just requires to provide
different training data.
In our case study, we extract casualty numbers, encoded

as 3-tuples [modifier, quantity, type]. We utilized previously
annotated articles for training [5]. We skip documents con-
taining more than 25 fact tuples, a configurable limit derived
from the same training articles. This filter is intended to
separate event-specific articles from compilation-like ones,
describing more than one event2.

1https://en.wikipedia.org/w/index.php?title=List_
of_time_zone_abbreviations&oldid=516840413
2http://news.bbc.co.uk/2/hi/2059330.stm

841

https://en.wikipedia.org/w/index.php?title=List_of_time_zone_abbreviations&oldid=516840413
https://en.wikipedia.org/w/index.php?title=List_of_time_zone_abbreviations&oldid=516840413
http://news.bbc.co.uk/2/hi/2059330.stm

5. MERGING EXTRACTED FACTS WITH
RESPECT TO THE TIMELINE

Extracted facts are inherently inconsistent as they were
sourced from multiple documents, which were retrieved from
different web sites and were published at various points in
time. Furthermore, facts might be additionally distorted
due to irrelevant documents (see Section 3), wrong tem-
poral alignment (Section 4.1) or erroneous fact extraction
(Section 4.2). Our framework contains a set of time-aware
strategies to deal with these inconsistencies adequately, pro-
viding a consistent view on events. First, we reach consen-
sus on the document level by a frequency-based aggrega-
tion (see Section 5.1). This is complemented by applying
a median-based outlier detector to discard unlikely values
for the examined facts, explained in Section 5.2. Finally, we
fuse all remaining facts coming from different documents by
curve fitting, outlined in Section 5.3. The result is a time-
dependent function describing the evolution of the requested
facts.

5.1 Intra-Document Fusion
The first step in our fusion strategy is to aggregate for each

document all extracted facts of similar type into one value,
called intra-document fusion. The underlying hypothesis
is that each document, even if it reports different values
for the same fact type, can be reduced to one most-likely
value. For example, articles reporting on disasters might
contain the official casualty number, an estimate from on-
site units and some historic numbers from previous disasters
in this region3. All numbers are equally extracted, but in
most cases the desired information is the official count. We
observed that generally key information in news-like articles
are already contained in the title, the description or the first
sentence/paragraph of the content [20]. Also, key facts are
often repeated across these article elements. Hence, we use
the most frequent value or, if ambiguous, the first value as
the fusion result on the document level.

5.2 Outlier Detection & Removal
The next step is to detect among fused facts those which

are hardly correct, called outliers, which will be ignored in
later processing. We do this by comparing them with facts
previous in time, resulting in an adapted version of an online
median filter [10]. Median filters in general have the advan-
tage of not assuming any specific probability distribution of
the values, supporting even discontinuities.
Ordering the documents according to their publication

date creates a temporal sequence of fused facts, more pre-
cisely a sequence of numerical values attached to facts. For
each value we calculate the median of the last n values (in-
cluding this value) and mark the value as outlier if its below
a fraction or above a multiple of that median.
In our case study, we determined the outlier detector pa-

rameters from our training set (see Section 6). We found a
window size of n = 9 to be appropriate and label all values
outside the interval [0.5 ∗median, 2.0 ∗median] as outliers.

5.3 Inter-Document Fusion
The final step in our fusion strategy is to combine the

facts of all remaining documents – the inliers – into func-
tions describing the fact evolution over time. For this inter-
3http://www.bbc.co.uk/news/world-asia-16901385

document fusion, we employ curve fitting with specific func-
tions, based on the type of facts. We assume that by encod-
ing typical evolutions of facts, i.e. linear increase, as event
type-specific functions, this a priori knowledge later helps
to fuse noisy inliers into a consistent view on events. Our
framework supports various function families, each defined
by an expression containing a number of parameters, e.g. the
affine linear family f(x) = a ·x+b with parameters a, b. The
parameter values are optimized based on the inlier values,
utilizing a least-squares approach. The optimization process
can be influenced by assigning weights to inliers affecting
the fitting error calculation. For example, confident values
might be assigned weights above the default and doubtful
values weights below. The resulting parameterized functions
are directly applicable to return exactly one value per point
in time as requested by the fusion process. Furthermore,
they allow extrapolation into the future. Additionally, the
framework includes configurable sliding window aggregates
like mean, e.g. applicable as baseline. Here, the aggregate
of the last n inliers (window size) form a step function, re-
turning exactly one value per point in time as well.
For natural disasters, we observed in the reference set of

the training data (see Section 6) that evolutions of casu-
alty numbers are very well approximated by saturation func-
tions [11]. In our experience, the best results are achieved
with Monod’s hyperbola f(t) = a · t · (b + t)−1. Here, t is the
time elapsed since the event and a, b are the parameters to
be optimized. Since we presume that reported facts are be-
coming more trustful with time elapsed, we assign for each
value a weight proportional to its age, penalizing fitting er-
rors in the early stages of events less than at the end. To
determine if curve fitting is a suitable inter-document fusion
strategy, we utilized a sliding window average (n = 5) as
baseline. The window size n is tuned on the training set.

6. EVALUATION
We evaluated our framework in a comprehensive case study

from the domain of natural disasters, tracking casualty num-
bers after earthquakes. Using Wikipedia articles as refer-
ence, we compared evolutions of casualty numbers with ex-
tracted numbers from Bing search results, processed by the
framework. Here, we focused on two scenarios: The real-
time scenario covers the quality of current fact values re-
turned by the framework whereas the forecast scenario deals
with the quality of future values.

6.1 Data sets
We used Wikipedia articles as reference as their stored

revisions allow to access previous article versions. These re-
visions represent descriptions of the same event at different
points in time, forming an excellent gold standard for analy-
ses of time-dependent facts. Focusing on earthquake events
between 2006 and 2012, we retrieved all article revisions
and automatically extracted the casualty numbers contained
in the infoboxes. These infoboxes contain semi-structured
key-value pairs, allowing exact parsing. After that, we semi-
automatically removed obviously incorrect values, e.g. due
to vandalism. From all fetched articles, we selected 33 earth-
quakes as data set. The selection criteria were: ≥ 10 casu-
alties and at least five revisions. Ten earthquakes were ran-
domly assigned to the training set and all remaining events
to the evaluation set. Based on the training set, we deter-

842

http://www.bbc.co.uk/news/world-asia-16901385

mined a suitable framework configuration (see Section 6.2),
later applied in the evaluation.
We processed each of the events with our framework. The

query builder generated up to 100 queries per event. The
framework invoked the Bing Search API and fetched the
top 100 result per query. Both searching and downloading
were executed in April 2013, resulting in 1851 documents
per event on average.

6.2 Framework configuration
We used the training set – consisting of Wikipedia refer-

ences and downloaded documents – to adjust the framework
according to our case study. Here, the goal was to mini-
mize the difference between the framework’s output and the
Wikipedia reference. By testing several configurations, we
determined
• appropriate limits for the median-based outlier detec-
tor (Section 5.2),
• a suitable function class for approximating casualty
number evolutions (Section 5.3),
• the baseline for inter-document fusion (Section 5.3).
Figure 2 plots the framework’s output for one training

event, demonstrating close approximation of the Wikipedia
reference by curve-fitted inliers. The concluded configura-
tion was then used to process the evaluation set.

0

500

1000

1500

2000

2500

0 5 10 15 20

N
u

m
b

e
r

o
f

ca
su

a
lt

ie
s

Days since the event

Fitted Curve

Approx. Wikip. reference

Sliding average

Wikipedia reference

Inlier

Outlier

Figure 2: The framework’s output for the 2010 Yushu earth-
quake. Single points are the result of the intra-document
fusion (Section 5.1), classified by the outlier remover (Sec-
tion 5.2). The purple step function is the Wikipedia ref-
erence, the purple dashed line the approximated Wikipedia
reference. The blue step function (crosses) is the sliding
average baseline, calculated from the inliers (green). The
solid green line is the result of the inter-document fusion,
the fitted curve of the inliers (green).

6.3 Real-time scenario
The fist scenario we evaluated in our case study is the

real-time scenario: How well does the framework report the
current fact value, given all facts prior in time? In general:
Given all documents/extracted facts until a point in time
t, what quality can be expected for f(t), the framework’s
output for t? We measure this quality at t by calculating
e(t), the absolute value of the relative error between our
Wikipedia reference value r(t) and the framework’s output
f(t), i.e. e(t) = |r(t) − f(t)| · r(t)−1. The reference values
r(t) are derived from the extracted casualty numbers from

the Wikipedia revisions, continuously approximated by a
Monod hyperbola (see Section 5.3). This approximation has
the advantage of better representing possible intermediate
values not mentioned in Wikipedia.
Figure 3 depicts the real-time quality of our framework,

comparing curve fitting and sliding average (baseline). It
shows that both fusion strategies are capable of returning
current casualty numbers with a difference of less than 20%
compared to the Wikipedia reference. Furthermore, curve
fitting significantly outperforms the baseline in the analyzed
interval [0.5, 5] in terms of median errors (p = 9.5× 10−5;
Wilcoxon signed-rank test).

0

0,05

0,1

0,15

0,2

0,25

0,3

0 1 2 3 4 5

M
e

d
ia

n
(
e
(t
)

)

Days since event t

Fitted curve Sliding average

Figure 3: Real-time differences for curve fitting and sliding
average compared to the Wikipedia reference. Both were
calculated on the evaluation set, aggregated across events
by median.

6.4 Forecast scenario
The second scenario we evaluated is the forecast scenario:

How well does the framework predict future fact values,
given all facts until now? In general: Given all documents/ex-
tracted facts until a point in time t, what quality can be
expected for f(t + x) with x > 0, the framework’s output
for t + x? We measure this quality at t + x by calculating
the unsigned relative error e(t+x) as defined in Section 6.3.
Figure 4 illustrates the forecast quality of our framework,

comparing fitted curves with sliding averages. Taking the
forecast error at (1, 1) as starting point, it shows that both
fusion strategies are able to return forecasts with a difference
of about 30% compared to the Wikipedia reference. Here,
(t, x) indicates the forecast error at day (t + x) since the
event, taking the facts until day t as known. Increasing
both t and x, one can observe two trends: (1) Increasing the
number of days to forecast increases the error as well and
(2) increasing the number of days since the event decreases
the error. Although both strategies follow these trends in
general, curve fitting produces a smaller overall error than
the baseline (Figure 4c). The average difference between
both is 0.063 in favor of curve fitting, based on the data
points (2..7, 1..7). Especially the forecasts after the first day
(1, 2..7) expose large advantages of fitted curves resulting in
error differences up to 0.234.

7. DISCUSSION & CONCLUSION
Extraction and aggregation of event data from the web

is a complex task. It includes source identification, fact ex-
traction, and time-aware aggregation of these facts. The

843

1

3

5

7

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7

Forecasted

days x

M
e

d
ia

n
(
e
(t
+
x
)

)

Days since event t

(a) Fitted curve

1

3

5

7

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7

Forecasted

days x

M
e

d
ia

n
(
e
(t
+
x
)

)

Days since event t

(b) Sliding average

1

3

5

7

-0,05

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7

Forecasted

days x

Δ
e
(t
+
x
)

Days since event t

(c) Difference between (b) and (a); positive
values indicate less forecast error by curve fit-
ting than sliding average

Figure 4: Forecast differences for curve fitting and sliding average compared to the Wikipedia reference. Both were calculated
on the evaluation set, aggregated across events by median. The value at (x, y) means: Taking all facts until the end of day
x, what is forecast error at the end of day (x + y)?

results of our case study show that our framework is capa-
ble of automating this task. We measured an overall error
rate between 10 and 40%, even holding for forecasting seven
days ahead. As expected, predicting current fact values pro-
duces more precise results than forecasting with a maximum
error rate of 26%. These are surprising low error rates given
the large number of – probably imperfect – processing steps
within the framework and their complex interaction. We
think that for many applications this error rate is accept-
able, taking the costs of manual information gathering into
account. For example after natural disasters, knowing the
scale of casualties is more important for determining the re-
quired extend of relief operations than knowing the exact
numbers.
Taking the current framework as a starting point, we see

different future directions. We plan to apply our frame-
work to other natural disaster like floods, assuming gener-
alizable patterns in casualty number evolutions. Following
the idea of generalization, it would be very interesting to
include domain-independent fact extraction methods, mov-
ing towards Open Information Extraction [3]. Additionally,
incorporating user-generated content like tweets as novel in-
formation source might be beneficial for the framework’s
applicability [1] and output quality.

8. ACKNOWLEDGEMENTS
We thank Jirka Lewandowski for contributing to the curve

fitting implementation. We thank him and Philippe Thomas
for providing valuable feedback on drafts of this article.

9. REFERENCES
[1] S. Asur and B. Huberman. Predicting the future with

social media. In WI-IAT ’10, 2010.
[2] N. Bach and S. Badaskar. A survey on relation

extraction. LTI, Carnegie Mellon University, 2007.
[3] M. Banko, M. Cafarella, et al. Open information

extraction from the web. In IJCAI, volume 7, 2007.
[4] R. Bunescu and R. Mooney. A shortest path

dependency kernel for relation extraction. In HLT’05,
2005.

[5] L. Döhling and U. Leser. Equatornlp: Pattern-based
information extraction for disaster response. In Terra
Cognita 2011, 2011.

[6] S. Endrullis, A. Thor, and E. Rahm. Entity search
strategies for mashup applications. In ICDE ’12, 2012.

[7] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
WSDM ’10, 2010.

[8] C. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. MIT, 1999.

[9] R. McDonald, F. Pereira, et al. Simple algorithms for
complex relation extraction with applications to
biomedical ie. In ACL ’05, 2005.

[10] P. Menold, R. Pearson, and F. Allgower. Online
outlier detection and removal. In MED99, 1999.

[11] D. Ratkowsky. Handbook of nonlinear regression
models. New York : M. Dekker, 1990.

[12] J. Rocchio. Relevance feedback in information
retrieval. In G. Salton, editor, The SMART Retrieval
System: Experiments in Automatic Document
Processing. Prentice-Hall, 1971.

[13] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes twitter users: real-time event detection by
social sensors. In WWW2010, 2010.

[14] H. SalahEldeen and M. Nelson. Carbon dating the
web: estimating the age of web resources. In
WWW2013, 2013.

[15] G. Salton, A. Wong, and C. Yang. A vector space
model for automatic indexing. Commun. ACM,
18(11), 1975.

[16] J.-B. Sheu. An emergency logistics distribution
approach for quick response to urgent relief demand in
disasters. Transportation Research Part E: Logistics
and Transportation Review, 43(6), 2007.

[17] J. Strötgen and M. Gertz. Heideltime: High quality
rule-based extraction and normalization of temporal
expressions. In SemEval ’10, 2010.

[18] P. Talukdar, D. Wijaya, and T. Mitchell. Coupled
temporal scoping of relational facts. In WSDM’12,
2012.

[19] Y. Wang, B. Yang, et al. Harvesting facts from textual
web sources by constrained label propagation. In
CIKM’11, 2011.

[20] Y. Watanabe, Y. Okada, et al. Aligning articles in tv
newscasts and newspapers. In ACL ’98, 1998.

844

	1 Introduction
	2 Framework Overview
	3 Finding relevant documents
	3.1 Query Builder
	3.2 Document Filter

	4 Fact extraction
	4.1 Publication date extraction
	4.2 Fact extraction

	5 Merging extracted facts with respect to the timeline
	5.1 Intra-Document Fusion
	5.2 Outlier Detection & Removal
	5.3 Inter-Document Fusion

	6 Evaluation
	6.1 Data sets
	6.2 Framework configuration
	6.3 Real-time scenario
	6.4 Forecast scenario

	7 Discussion & Conclusion
	8 Acknowledgements
	9 References

