
Random Walks in Recommender Systems:
Exact Computation and Simulations∗

Colin Cooper Sang Hyuk Lee Tomasz Radzik

Yiannis Siantos

Department Of Informatics
King’s College London, U.K.

ABSTRACT
A recommender system uses information about known as-
sociations between users and items to compute for a given
user an ordered recommendation list of items which this user
might be interested in acquiring. We consider ordering rules
based on various parameters of random walks on the graph
representing associations between users and items. We ex-
perimentally compare the quality of recommendations and
the required computational resources of two approaches: (i)
calculate the exact values of the relevant random walk pa-
rameters using matrix algebra; (ii) estimate these values by
simulating random walks. In our experiments we include
methods proposed by Fouss et al. [7, 8] and Gori and Pucci
[10], method P 3, which is based on the distribution of the
random walk after three steps, and method P 3

α, which gener-
alises P 3. We show that the simple method P 3 can outper-
form previous methods and method P 3

α can offer further im-
provements. We show that the time- and memory-efficiency
of direct simulation of random walks allows application of
these methods to large datasets. We use in our experiments
the three MovieLens datasets.

1. INTRODUCTION
We view a recommender system as an algorithm which

takes a dataset of relationships between a set of users and
a set of items and attempts to calculate how a given user
might rank all items. For example, the users may be the
customers who have bought books from some (online) book-
store and the items the books offered. The core information
in the dataset in this case would show who bought which
books, but it may also include further details of transactions

∗This research is part of the project “Fast Low Cost Meth-
ods to Learn Structure of Large Networks,” supported by
the 2012 SAMSUNG Global Research Outreach (GRO) pro-
gram.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579244.

(the date of transaction, the books bought together, etc.),
information about the books (authors, category, etc.), and
possibly some details about customers (age, address, etc.).
For a given customer, a recommender system would com-
pute a list of books 〈m1,m2, . . . ,mk〉 which this customer
might be interested in buying, giving the highest recommen-
dations first. Recommender systems viewed as algorithms
for computing such personalised rankings of items (rather
than overall “systems,” which would also include methods
for gathering data) are often referred to as scoring , or rank-
ing, or recommender algorithms.

In this paper, we focus on a simple scenario with two main
entity sets, Users (U) and Items (I), and a single relation-
ship R of pairs 〈u,m〉, where u ∈ U and m ∈ I. The fact
that 〈u,m〉 ∈ R means that u has some preference for m.
The pairs 〈u,m〉 ∈ R may have additional attributes which
indicate the degree of preference. The relationship R can
be modeled as a bipartite graph G = (U ∪ I, R), possibly
with edge weights, which would be calculated on the basis
of the attributes of pairs 〈u,m〉 ∈ R. A scoring algorithm
for a user u ∈ U orders the items in I according to some
similarities between vertex u and the vertices in I, which
are defined by the structure of graph G. More precisely, a
scoring algorithm is defined by a formula or a procedure for
calculating a p×q matrix M = M(G) which expresses those
similarities, where p = |U | and q = |I|. For a user u ∈ U ,
the items m ∈ I are ranked according to their M(u,m) val-
ues (in increasing or decreasing order, depending whether a
lower or a higher value M(u,m) indicates higher or lower
similarity between vertices u and m). Matrix M is called
the scoring matrix or the ranking matrix of the algorithm.

Fouss et al. [7, 8] proposed various scoring algorithms
which are based on parameters of random walks in G,
or more generally on the Laplacian matrix of G and
compared them with some other methods based on ma-
trix operations. They evaluated their performance on a
dataset of movie ratings gathered by the MovieLens web-
site [4]. There are three MovieLens datasets, contain-
ing 100K, 1M, 10M entries, respectively. Each entry is a
quadruple 〈UserId, MovieId, Rating, Timestamp〉, which we
view as pair 〈UserId, MovieId〉 with attributes Rating and
Timestamp.

Let Wu = 〈Wu(0),Wu(1), . . . ,Wu(t), . . .〉 be a random
walk on graph G starting from vertex u. That is, Wu(0) = u
and Wu(t + 1) is a randomly selected neighbour of Wu(t).
Let h(u, v) denote the first step t ≥ 1 such that Wu(t) = v.

811

The hitting time of v from u is the expectation H(u, v) of
the random variable h(u, v). The Laplacian matrix of graph
G is defined as L = D−A, where A is the adjacency matrix
of G and D is the diagonal matrix of the vertex degrees.
The main scoring algorithms considered in Fouss et al. [7, 8]
are the hitting-time, the reverse hitting-time, the commute-
time and the L-pseudoinverse algorithms. The scoring ma-
trices M of these algorithms are obtained from matrices H,
HT , C = H + HT and L+, respectively, where L+ is the
Moore-Penrose pseudoinverse of L, (also referred to as the
inverse Laplacian). Here, a lower value of M(u,m) indicates
higher similarity between vertices u and m, and a higher
rank of m in the ranking list of items for the user u.

Fouss et al. [7, 8] reported that for the 100K MovieLens
dataset which they used in their experiments, the L+ algo-
rithm (and its variants) performed the best. The hitting-
time and the commute-time algorithms performed similarly
to the simple user-independent algorithm which orders the
items according to their degrees in G (that is, ordering ac-
cording to their popularity). The reverse hitting-time algo-
rithm was the worst.

Our work expands Fouss et al. [7, 8] in several ways. We
consider simpler and faster scoring algorithms and show that
they can match, and sometimes exceed, the best perfor-
mance of the previous algorithms. Our experiments show
a good performance of the simple and intuitive method P 3,
which ranks the items for a user u according to the dis-
tribution of the third vertex on the random walk start-
ing at vertex u. Equivalently, P 3 stands for the third
power of the transition matrix P = D−1A of a random
walk. An item m1 gets a higher rank than an item m2,
if Pr(Wu(3) = m1) ≥ Pr(Wu(3) = m2). We generalise
method P 3 to a parameterised method P 3

α and demonstrate
that P 3

α, for an empirically optimised value α, can offer fur-
ther improvements. Method P 3

α is based on the third power
of the matrix Pα with entries equal to the entries in matrix
P raised to the power of α.

While including in our experiments the 100K MovieLens
dataset which was used in [7, 8], to be able to compare
results, we also use the medium and the large MovieLens
datasets with 1M and 10M entries (not used in [7, 8]) to
see how the performance of ranking algorithms scales up.
We also expanded the evaluation of performance of ranking
methods by adding a measure of result quality, based on
number of correct entries among the top recommendations.

Our experimental results show, for example, that meth-
ods L+ and P 3 perfom equally well (and clearly better than
the other methods) on the small 100K dataset, but P 3 out-
performs L+ on the medium 1M dataset. For the large 10M
dataset, method P 3 again shows the best performance, while
method L+ could not be tested because the memory and
computational time requirements were too high. We do not
include here details, but we note that the memory needed
to obtain the matrix P 3 for the 10M MovieLens dataset via
matrix operations was 64GB while P̂ 3 was obtained by sim-
ulating random walks and required approximately 2GB.

The exact values of the relevant parameters of random
walks can be obtained by algebraic matrix manipulations,
but this is costly in time and memory. Therefore we esti-
mate these parameters by simulating short random walks. In
common with our findings that P 3 gives best results among
matrix based methods, we find that random walks of length
3 give best results. We also compare the performance of

the P s method, s = 3, 5, which computes the s-th power of
matrix P , with the performance of the P̂ s method, which
estimates the s-th power of P by simulating random walks of
length s. We observe, for example, that in the small dataset
P̂ 3 approximates P 3 with a relative difference 0.05 after 20n
walk steps (that is, 6.7n random walks of length 3, where n
is the number of vertices in G). The large dataset reaches
this accuracy in less than n steps.

Recommender algorithms based on the third neighbour-
hoods of vertices in G, including methods P 3 and #3-Paths
(see Sec. 4.1), are actually widely used in practice. It is
still not clear, however, what is the best way of using the
structure of those neighbourhoods. Our experimental re-
sults indicate that the simple method P 3

α can offer further
clear improvements over the P 3 and #-3-Paths methods.

2. RELATED WORK
Kunegis and Schmidt [12] extend Fouss’ work of [8] by

taking user ratings into account while computing a similar-
ity measure on users-items bipartite graph. The similarity
measure used in the paper is resistance distance, which is
equivalent to the commute-time distance used in [8]. They
adapt a rescaling method proposed in [5], in which the user
ratings are rescaled into 1 (good) to -1 (bad). The au-
thors conduct experiments on two datasets: 100K Movie-
Lens dataset [4] and Jester [1] and the performance is mea-
sured by two evaluation metrics, the mean squared error and
the root mean squared error.

Gori and Pucci [9, 10] present a random walk based scor-
ing algorithm. In [10] the algorithm is applied to movie
recommendation whilst in [9], the algorithm is used for rec-
ommending research papers. For the movie recommenda-
tion, 100K (small) MovieLens dataset is used for the ex-
periments and for the research paper recommendation, they
use the dataset that is derived from the crawling of ACM
portal website. The algorithm is based on the Pagerank
algorithm applied to an item similarity graph called a cor-
relation graph. The correlation graph is constructed in [10]
from the users-items bipartite graph, and in [9] from cita-
tion graph. Zhang et al. [20, 19] extend Gori and Pucci’s
work [10] by taking into account user’s preference on item
categories. The proposed algorithm computes the ranking
scores based on the item genre and user interest profile.

Craswell and Szummer [6] consider a recommender algo-
rithm based on the distribution P jδ of the j-th step of the
random walk with the probabilities of self-transitions equal
to δ. In their experiments on click graphs, the best perfor-
mance was achieved when j ≈ 100 and δ = 0.9. For α > 1,
the method P 3

α which we consider in this paper can be de-
fined in terms of random walks with positive self-transition
probabilities, which are different for different vertices. Thus,
P 3
α is different from P 3

δ as the self-transition probabilities in
the latter are the same for all vertices.

Singh et al. [18] present an approach of combining a re-
lations graph (friendship graph) with the ownership data
(user-item graphs) to make recommendations. The com-
bined graph is represented as an augmented bipartite graph
and is treated as a Markov chain with an absorbing state.
The items are ranked according to the approximated ab-
sorbing distribution. This method is tested and evaluated
for on-line gaming recommendation.

Lee et al. [13] consider a multidimensional recommenda-
tion problem, which allows some additional contextual in-

812

formation as an input. They present a random-walk based
method, which adapts the Personalized PageRank algo-
rithm. They conduct experiments on two datasets: last.fm
[2] and LG’s OZ Store [3]. The performance is evaluated
using hit at top-k evaluation metric. Further work in this
direction is reported in [14, 15].

3. EVALUATION METHODOLOGY
To ensure reproducibility of results and to facilitate com-

parison between various recommender systems, each Movie-
Lens dataset is partitioned into two parts: a training, or
base, set B and a test set T . The test set is obtained
by selecting 10 random user-movie ratings for each user.
The training set consists of all remaining ratings. A rec-
ommender system is run on the training set to compute for
each user a ranking of movies, and then the computed rank-
ings are compared with the test set. A better recommender
system would be more effective in reconstructing the hidden
information, that is, would give a closer fit between the com-
puted rankings and the test set. It is not obvious, however,
how the closeness between the computed rankings and the
test set should be quantified and a number of measures have
been proposed (See, for example, Herlocker et al. [11]).

Among the most common ones are the percentage of cor-
rectly placed pairs (used in [7, 8]) and the number of hits
in the top k recommendations. We use both these measures
in this paper, referring to them as Metric I and Metric II,
respectively. For a ranking algorithm A and a user u, a pair
of items 〈m′,m′′〉, where m′ is in this user’s test set and m′′

in the training set, is ”correctly placed” in the ranking list
computed by A for user u, if m′ is higher than m′′. For the
top k recommendations measure (Metric II), we use relative
values for k (as fraction of the number of items) since this
is more appropriate when using datasets of varied sizes.

We experimented with all three MovieLens datasets, but
because of the space limit, in most cases we present only
the results for the small and large datasets. We have also
repeated our experiments for various randomly selected test
sets T observing each time very similar evaluation scores
which always gave the same order of the methods. We there-
fore use the same B and T used in [7, 8].

4. MATRIX BASED METHODS

4.1 Ranking algorithms
The input for the ranking methods is the bipartite graph

G = (U ∪ I,R). The methods are general, but we describe
them using the terminology of the MovieLens datasets, since
our evaluation are based on those datasets. Thus we refer to
U as the set of users, to I as the set of movies, and the edges
in G show which movies the users have watched. A ranking
algorithm computes for each user a ranking of movies.

We have experimented with a number of ranking methods,
looking for simple and intuitive methods which would match,
or ideally exceed, the performance of the methods investi-
gated in Fouss et al. [7, 8]. We include in this paper experi-
mental results for five ranking methods (Ranking by degree
(MaxF); Hitting-time (Hit→); Reverse hitting-time (Hit←);
Average Commute time (AVC); Pseudo-Inverse Laplacian
(L+)) considered in [7, 8], the ItemRank (IR) method de-
scribed in [10], and the following methods.

The s-step random walk distribution (Ps). Movies
that the user u has not watched are ranked based on the
probability distribution P s(u, .) of the random walk at step
s, if u was the starting vertex. If P s(u,m′) > P s(u,m′′),
then movie m′ is ranked higher than movie m′′. Matrix P s

is the s-th power of the transition probabilities matrix of the
random walk on G. Observe that only odd numbers s ≥ 3
should be considered: G is bipartite so for a user u and a
movie m not watched by u, the probability P s(u,m) can be
positive only for an odd s ≥ 3. In this paper we include
experimental results only for the P 3 and P 5 rankings.

Number of paths of length 3 (#3-Paths). Movies
that the user has not watched are ranked based on the num-
ber of distinct paths of length 3 from that user to the movies
in graph G. A movie m with the greater number of paths
has a higher ranking.

Inverse Laplacian of the transition matrix (Z/πππ).
Matrix Z is defined by letting

Zij =
∑
t≥0

(
P (t)(i, j)− πj

)
, (1)

where P (t)(i, j) is the probability that the random walk
starting at vertex i is at vertex j at step t, and π is the
stationary distribution. For a user u, the Z/π method ranks
the movies according to their Zu,m/πm values, with higher
values indicating higher ranks. Matrix Z appears in some
identities characterizing the parameters of the random walk.
For example, Zij/πj is the expected hitting time of j from
the stationary distribution minus the expected hitting time
of j from i. Matrix Z can be obtained from the inverse
Laplacian of the transition matrix P : Z = (I−P+Π)−1−Π,
where I is the identity matrix and Πij = πj [16].

4.2 Experimental results for matrix methods
In this section we present our experimental results for the

matrix based ranking methods. Tables 1 and 2 show the per-
formance of the ranking algorithms on the small and large
MovieLens datasets evaluated with Metric I and Metric II.
In Table 1 we obtained the same metric I scores as in [7, 8]
for the methods considered there. Regarding the additional
methods, the P 3 ranking method turns out to perform very
well, matching, and improving on the performance of the L+

method. We note that for the large dataset, due to insuf-
ficient memory space the ranking algorithms, Hit←, Hit←,
AVC, L+, IR, and Z/π are not included in the experiments.

Tables 1 and 2 also show the scores of the ranking algo-
rithms obtained using the metric II. We varied the param-
eter k of this metric from 1% to 10%. It turns out that
the relative performance of the ranking algorithms in our
experiments is exactly the same in both metrics. The scores
computed by the metric II, however, seem to be easier to in-
terpret. For example, the metric II scores in Table 1 clearly
show that the reverse hitting time ranking is much weaker
than the hitting time ranking.

4.3 Parametrised method P3
α

In this section we present a method for improving the per-
formance of P s by introducing a parameter α, which ranges
over the real numbers. We define matrix Pα as derived from
the transition probability matrix P by raising every positive
entry to the power of α.

We rank the movies for the users using matrices P 3
α with

the values of α ranging from 0 to 4 in steps of 0.1. The

813

Small size Dataset

Evaluation MaxF Hit→ Hit← AVC L+L+L+ IR1 Z/πππ P3 P5 3-Paths

Metric I 85.79% 85.74% 80.45% 85.76% 90.94% 89.03% 85.72% 90.99%90.99%90.99% 88.19% 87.95%
MetricII@1% 0.169 0.161 0.007 0.161 0.214 0.212 0.160 0.2610.2610.261 0.197 0.193
MetricII@3% 0.294 0.293 0.051 0.294 0.445 0.376 0.292 0.4520.4520.452 0.362 0.350
MetricII@5% 0.381 0.382 0.125 0.382 0.5820.5820.582 0.478 0.381 0.559 0.460 0.444
MetricII@10% 0.543 0.543 0.341 0.544 0.7360.7360.736 0.637 0.542 0.699 0.616 0.609

Table 1: Small-size dataset (User, Movie).

Large size Dataset

Evaluation MaxF P3 P5 #3-Paths

Metric I 93.94 95.9895.9895.98 94.64 94.69
MetricII@1% 0.353 0.4810.4810.481 0.405 0.407
MetricII@3% 0.569 0.6800.6800.680 0.604 0.607
MetricII@5% 0.679 0.7780.7780.778 0.714 0.714
MetricII@10% 0.816 0.8850.8850.885 0.839 0.842

Table 2: Large size dataset (User, Movie).

Figure 1: Medium Dataset: Optimisation of the per-
formance of P 3 using parameter α

quality of the obtained rankings for the small MovieLens
datasets is plotted in Figures 1. The quality is measured in
both Metric I and II. Note that the vertical lines at α = 0
and α = 1 denote the performance of the #3-Path and P 3

ranking algorithms, since P0 = A and P1 = P , respectively.
For the medium dataset, the performance measured in Met-
ric I is improved from 89.62% to 90.90% for α = 1.9 The
performance evaluated in Metric II is also increased com-
pared to the performance of P 3.

Note that of α 6= 1, then Pα is not a transition probability
matrix. It is possible to estimate entries of P 3

α using short
random walks, but we do not consider in this paper.

TheP 3 andP 3
α methods compute recommendations for a

userubased only on the neighbourhood ofu in graphG of di-
ameter 3. These methods perform well probably because the
diameter ofG is small, e.g. the small dataset has diameter 6.

5. RANKING METHODS BASED ON SIM-
ULATION OF RANDOM WALKS

Ranking algorithms based on matrix manipulations have
their natural limit: the sizes of the matrices may quickly
become too large to fit in the computer memory. We did
not have problems with running the ranking algorithms on
the small MovieLens dataset, but some technical issues of
insufficient memory became a major obstacle for computing
matrices in the largest MovieLens dataset.

An alternative approach is to gather information about
the structure of a graph from simulations of random walks
in this graph. For example, the hitting times used in the
ranking methods in the previous section can obviously be
estimated by simulating random walks. Such simulations
require only O(r) space, to store the adjacency lists of the
graph, with r � n2 for sparse graphs (n is the number of
vertices and r is the number of edges). Furthermore, the
computation can be organised in a distributed manner, if
the graph is scattered over a network.

5.1 Data capture
We consider ranking methods which compute the ranking

of items for a user u on the basis of the information gathered
by random walks starting from vertex u. We set the limit
of n on the total number of steps of all random walks per-
formed for one user (called the“budget”). More precisely, we
perform w = n/s random walks starting from a given vertex
u, with each walk having s steps, for some fixed parameter
s. Taking into account all w walks, we rank vertices on the
basis of how often they are hit on average, or how quickly
they are hit on average. For each vertex v and each random
walk i = 1, 2, . . . , w, we keep the following information: (a)
the step sv(i) when vertex v was visited by walk i for the
first time. (b) the indicator nv(i), which is equal to 1, if
vertex v was visited by walk i, and 0 otherwise, and (c) the
degree d(v) of vertex v.

5.2 Random Walks: Evaluation Methodology
Similarly to the work of Sarkar and Moore [17], we esti-

mate the truncated hitting time hT (u, v) of vertex v starting
from vertex u by 1

w

∑w
i=1 sv(i). To use this estimator, we

have to decide what should be the value of sv(i), if vertex v
was not visited during walk i. Vertices which have not been
visited by any of the walks are not ranked so we do not need
to worry about their sv(i) values. We consider now a vertex
v which was visited by some walks, but was not visited by,
say, walk i. Some hitting time penalty should be imposed for
unvisited vertices, and we experimented with various values
for this penalty. (a) Set the penalty to r̂, our estimate of

814

Figure 2: Convergence on small dataset

Figure 3: Convergence on large dataset

the number of edges incident with the subgraph we can visit
in s steps. (b) Set the penalty to 2m̂/d(v) the approximate
the first hitting time of a vertex. We do not use the total
number of edges of a graph to cover the cases when this is
unknown. (c) Set the penalty to s, the walk length. This
penalty used in [17]. (d) Set the penalty to zero.

Having estimated hT (u, v) and using one of the above
penalties, we can rank the movies in ascending order of their
hT (u, v) values. In addition to estimates of hT (u, v) we rank
movies based on the number of times they were hit on av-
erage. We calculate the average number of hits of a vertex
v from vertex u as n(u, v) = 1

w

∑w
i=1 nv(i). For example, if

a movie m is hit w/2 times by w walks, then the number of
hits is 0.5. Intuitively, movies which were hit often are more
relevant to a user and should be ranked higher. Movies are
ranked for recommendation in the descending order accord-
ing to their average number of hits. We also consider some
reweighting heuristics, such as (number of hits)*(degree).

We also rank movies based on an estimate of the s step
transition probability. We can estimate this simply by
counting P̂ (k)(u, v) – the number of walks which hit ver-
tex v at step s divided by the total number of walks w.
This value converges to P s considered in Section 4 if a large
number of walks are run.

Figure 4: Total variation distance

5.3 Random walks: Experimental results
In order to estimate random walk properties without using

matrix operations we made use of many short random walks
of various lengths. There were W random walks performed,
each of length s. Each individual walk visited a number of
vertices within s steps of the starting user. For each of these
vertices, if they corresponded to movies, we recorded the
number of times they were visited by the walk at a specific
step. All movies were evaluated based on properties such
as Truncated hitting times, number of Hits, number of hits
at step s then ranked accordingly. The ranking obtained
through each method was evaluated using both metrics de-
scribed in Section 3. For most experiments, s = 3, 5, 7, 9.
The values of W varied according to s based on the bud-
get/step allowance of each experiment. For the results in
Tables 3-4 the budget was set to be the number of vertices
in the graph n. Walks of length s = 7, 9 had diminishing
scores and due to space limitations are not included.

The method P̂ 3 has the best performance. The method
based on the number of hits weighted with the vertex degrees
comes second. Among the methods based on the truncated
hitting times, the penalties r̂ and 2r̂/degree, combined with
s equal to 3 or 5, led to reasonably good performance. The
scores of these two methods are very close to the scores of
the hitting time method Hit→ given in Table 1.

5.4 Convergence of 3-step random walks to P 3

We experimented with method P̂ 3 for varying budget b =
cn of the short random walks. We compared results with
the matrix multiplication method P 3 (as seen in Table 1).
The comparison is done using the formula:

Relative difference =
|Score of P̂ 3 − Score of P 3|

Score of P 3
(2)

The results for the small dataset can be seen in Figure 2, and
for the large dataset in Figure 3. We note that the budget
required to get a low relative difference in the large dataset
is less than in the size of the graph. Additionally, we confirm
that the short random walk estimations of p̂3(u,m) (where
u ∈ U and m ∈ I) indeed converge to the real p3(u,m)
entry of P 3. This is done using the total variation distance
V (P 3) = ||P 3− P̂ 3||∞ and then applied to the small dataset
as can be seen in Figure 4.

815

Small size dataset

Length Evaluation Truncated hitting times #Hits #Hits P̂s

of Walk Method penalty: penalty: penalty: * degree
(s) Edges r̂ 2r̂/degree Walk length

3 Metric I 78.98% 79.64% 79.08% 79.17% 80.45% 79.02%
MetricII@1% 0.1642 0.1592 0.1621 0.1607 0.1760 0.1617
MetricII@3% 0.3034 0.2962 0.3056 0.3029 0.3300 0.3028
MetricII@5% 0.3903 0.3896 0.3885 0.3887 0.4286 0.3905
MetricII@10% 0.5382 0.5545 0.5376 0.5389 0.5812 0.5356

5 Metric I 79.44% 80.12% 79.31% 79.33% 80.47% 70.88%
MetricII@1% 0.1501 0.1602 0.1472 0.1474 0.1657 0.0905
MetricII@3% 0.2906 0.2948 0.2916 0.2877 0.3123 0.1947
MetricII@5% 0.3830 0.3819 0.3780 0.3766 0.4113 0.2755
MetricII@10% 0.5319 0.5410 0.5253 0.5232 0.5723 0.3959

Table 3: Short Random Walks On the Small Dataset

Large size dataset

Length Evaluation Truncated hitting times #Hits #Hits P̂s

of Walk Method penalty: penalty: penalty: * degree
(s) Edges r̂ 2r̂/degree Walk length

3 Metric I 91.83% 93.65% 91.84% 94.90% 94.52% 94.90%
MetricII@1.0% 0.1769 0.3507 0.1769 0.4681 0.4210 0.4681
MetricII@3.0% 0.4074 0.5681 0.4074 0.6645 0.6206 0.6644
MetricII@5.0% 0.5471 0.6766 0.5471 0.7590 0.7281 0.7585
MetricII@10.0% 0.7461 0.8117 0.7461 0.8657 0.8471 0.8655

5 Metric I 91.04% 93.55% 91.06% 94.37% 94.15% 92.30%
MetricII@1.0% 0.1495 0.3496 0.1495 0.4347 0.3985 0.3823
MetricII@3.0% 0.3693 0.5675 0.3693 0.6333 0.6022 0.5821
MetricII@5.0% 0.5122 0.6751 0.5122 0.7315 0.7103 0.6813
MetricII@10.0% 0.7157 0.8109 0.7157 0.8474 0.8349 0.8032

Table 4: Short random walks on the large dataset

6. REFERENCES
[1] Anonymous ratings data from the Jester.

http://goldberg.berkeley.edu/jester-data.

[2] Last.fm. http://www.last.fm/.

[3] Lg u+ oz store. http://ozstore.uplus.co.kr/.

[4] Movielens data sets. GroupLens Research Lab, Dept.
Computer Science and Engineering, University of
Minnesota. http://www.grouplens.org/node/73.

[5] D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In ICML, pp. 46–54, 1998.

[6] N. Craswell and M. Szummer Random walks on the
click graph. In SIGIR, pp. 239–246, 2007.

[7] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens.
Random-walk computation of similarities between
nodes of a graph with application to collaborative
recommendation. IEEE Trans. Knowl. Data Eng.,
19(3):355–369, 2007.

[8] F. Fouss, A. Pirotte, and M. Saerens. A novel way of
computing similarities between nodes of a graph, with
application to collaborative recommendation. In Web
Intelligence, pp. 550–556, 2005.

[9] M. Gori and A. Pucci. Research paper recommender
systems: A random-walk based approach. In Web
Intelligence, pp. 778–781, 2006.

[10] M. Gori and A. Pucci. Itemrank: A random-walk
based scoring algorithm for recommender engines. In
IJCAI, pp. 2766–2771, 2007.

[11] J. L. Herlocker, J. A. Konstan, L. G. Terveen, John,
and T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22:5–53, 2004.

[12] J. Kunegis and S. Schmidt. Collaborative filtering
using electrical resistance network models. In
Industrial Conf. on Data Mining, pp. 269–282, 2007.

[13] S. Lee, S. Song, M. Kahng, D. Lee, and S. Lee. Random
walk based entity ranking on graph for
multidimensional recommendation.
In RecSys, pp. 93–100, 2011.

[14] S. Lee, S. Park, M. Kahng, and S. Lee. Pathrank: a
novel node ranking measure on a heterogeneous graph
for recommender systems.
In CIKM, pp. 1637–1641, 2012.

[15] S. Lee, S. Park, M. Kahng, and S. goo Lee. Pathrank:
Ranking nodes on a heterogeneous graph for flexible
hybrid recommender systems. Expert Syst. Appl.,
40(2):684–697, 2013.

[16] L. Lovász. Random walks on graphs: A survey. Bolyai
Society Mathematical Studies, 2:353–397, 1996.

[17] P. Sarkar and A. W. Moore. A tractable approach to
finding closest truncated-commute-time neighbors in
large graphs. In UAI, pp. 335–343. AUAI, 2007.

[18] A. P. Singh, A. Gunawardana, C. Meek, and A. C.
Surendran. Recommendations using absorbing random
walks. In NESCAI, 2007.

[19] L. Zhang, J. Xu, and C. Li. A random-walk based
recommendation algorithm considering item
categories. Neurocomputing, 120(0):391 – 396, 2013.

[20] L. Zhang, K. Zhang, and C. Li. A topical pagerank
based algorithm for recommender systems. In SIGIR,
pp. 713–714, 2008.

816

