Complex Network Comparison Using Random Walks

Shan Lu
Department of Electrical and
Computer Engineering
University of Massachusetts
Amherst
slu@ecs.umass.edu

Jieqgi Kang
Department of Electrical and
Computer Engineering
University of Massachusetts

. Amherst
jkang@ecs.umass.edu

*

Weibo Gong
Department of Electrical and
Computer Engineering
University of Massachusetts
Amherst
gong@ecs.umass.edu

Don Towsley
School of Computer Science
University of Massachusetts

Ambherst
towsley@cs.umass.edu

ABSTRACT

In this paper, we proposed a network comparison method
based on the mathematical theory of diffusion over mani-
folds using random walks over graphs. We show that our
method not only distinguishes between graphs with differ-
ent degree distributions, but also different graphs with the
same degree distributions. We compare the undirected pow-
er law graphs generated by Barabasi-Albert model and di-
rected power law graphs generated by Krapivsky’s model to
the random graphs generated by Erdos-Renyi model. We
also compare power law graphs generated by four different
generative models with the same degree distribution.
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1. INTRODUCTION

The asymptotic behavior of the heat content has been
used as a tool to understand the geometry of a manifold
domain [1, 15] or the connectivity structure of a graph [11,
12]. Heat content, as the solution of the heat equation as-
sociated with the Laplacian operator, summarizes the heat
diffusion in the manifold domain or on the graph as a func-
tion of time. One property of the heat content method is
that its asymptotic behavior as ¢ — 0 separates the heat
content curves of different structures. This enables one to
develop fast algorithms for comparing complex graphs. In
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[5, 6] it was pointed out that Monte-Carlo simulations of
diffusions on graphs are effective in testing the similarity of
complex graphs and that such simulations provide plausible
mechanisms for many brain activities.

Graph comparison is a challenging task since graph sizes
increase extremely fast in diverse areas. Many graph com-
parison methods have been proposed to quantitatively define
the similarity between graphs. In [9] the authors summarize
the existing methods into three categories: graph isomor-
phism, iterative methods, and feature extraction. The graph
isomorphism and iterative methods are not scalable and thus
not effective for large networks. Feature extraction meth-
ods extract features like degree distribution, eigenvalues to
compare. These methods are closer in spirit to our method.
However previously proposed features may not reflect the
network connectivity structure very well. For example, in
[12], the authors give an example where two isospectral non-
isometric planar graphs can be distinguished by the heat
content, despite the fact they share the same set of eigenval-
ues. In [7], the authors analysed the structural properties of
graphs with the same degree distribution and found that dif-
ferent networks with the same degree distribution may have
distinct structural properties. Using random walks to com-
pare graphs is not a new idea. In [13], graphs are compared
based on their mixing time, which measures the time needed
for a random walk on the graph to approach the stationary
distribution. This method may expect long walk length for
the computation. Our method, on the other hand, focuses
on the first few steps to compare and concerns the entire
transient behavior of the random walk.

Our algorithm exhibits the following features. First, our
method summarizes graph structure into a single time func-
tion so as to facilitate similarity testing. Second, the behav-
ior of this function around time ¢t = 0 forms the basis for the
comparison, so that we can greatly reduce the computation
time. Third, we use a lazy random walk to estimate the heat
content function, thereby avoid computing the eigenvalues
and eigenvectors of the graph Laplacian while retaining the
spectral information. Finally we note that our method is
robust to minor changes in large graphs according to the in-
terlacing theorem in [2]. With these features, our algorithm
is capable of handling very large complex networks.

The rest of the paper is organized as follows. In Section 2,
we give the notations and review the concept of heat equa-



tion and heat content for graphs. In Section 3, we use the
lazy random walk simulation method to estimate the heat
content. In Section 4, the graph generative models used in
experiment part are introduced. Experiment settings and
results are presented in Section 5. Section 6 summarizes the
main results and discusses future work.

2. HEAT EQUATION AND HEAT CONTENT

2.1 Notations

Let G = (V, E)) denote a graph with vertex set V' and edge
set E C V x V with adjacency matrix A = [auv]. Gus = 1
if there is an edge from wu to v; otherwise ay, = 0. The
out-degree matrix D = diag[d.] with du = > au». The
graph Laplacian of a graph is defined as L = D — A and
the normalized Laplacian is defined as £ = D~Y/2LD~1/?
[3]. With the random walk Laplacian L, = D™'L, we have
L, =D"'Y2LDY2

Without loss of generality, we assume that the Laplacian
L is diagonalizable and hence £ is diagonalizable. Let A1 <
A2 < --- < A\, the eigenvalues of £ and ¢;,i = 1,--- ,n the
corresponding eigenvectors. With A = diag[\;] and ® =
[¢1, -+ ,¢n] we can diagonalize £ as £L = ®AP ' where
o = [r1;72; -+« ;7n]. Meanwhile

L. = (D Y20)A(D~20) . (1)
L, and L share the same set of eigenvalues. £ is the normal-
ized graph Laplacian used in the heat equation on a graph.
We use the relationship between £ and L, to develop a ran-
dom walk simulation method in the later section.

2.2 Heat equation and heat content

Vertex set V' is partitioned into two subsets, the set of all
interior nodes ¢D and the set of all boundary nodes 0D; V =
iDUOD. The heat equation associated with the normalized
graph Laplacian is

{

with initial condition Ho(u,u) =1 if u € ¢D.

Let N denote the total number of vertices and n the num-
ber of interior vertices; then H is an N x N matrix. H¢(u,v)
measures the amount of heat that flows from vertex u to ver-
tex v at time ¢. All heat that flows to the boundary vertices
is absorbed. We label the interior vertices 1,--- ,n and the
boundary vertices n+1,--- , N. The normalized Laplacian £
can be partitioned into four parts. The part related to the in-
terior domain is denoted as Lip ;p. Since we are only inter-
ested in the heat remaining in the interior domain, we define
the n X n matrix hy with h¢(u,v) = He¢(u,v) (for u,v € iD).
The solution to the heat equation is h; = e Lipint  For
convenience, we slightly abuse notation and use A and ¢ as
the eigenvalue matrix and eigenvector matrix of L;p ip:

GEE: = —EHt

ot
Hi(u,v) =0 for u € 0D,

(2)

hi(u, v) = Z e i (w)mi(v). ®3)

The heat content Q(t) is defined as:

Q) =)

n

> OS e M pi(uymi(v).

v =1
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Letting «;

> w2, di(u)mi(v) yields

Q) = Y ae )

We can also use the derivatives of the heat content Q(t) =
- aihie it for comparison to emphasize larger eigen-
values.

3. RANDOM WALK METHODS FOR HEAT
CONTENT ESTIMATION

Computing eigenvalues and eigenvectors of the Laplacian
matrix needed for evaluating the heat content is very time
consuming for large complex networks. We consider a ran-
dom walk where the walker moves from vertex u to a neigh-
boring vertex v with probability av./dw. Define the transi-
tion matrix M = D~ ' A and the lazy random walk transition
matrix as My = (1 — )] + 0M. For any given time t = k0,
we have

(6)

Here the arrow (—) implies taking the limit as k& — oo (at
the same time § — 0 while keeping k§ = ¢). Py is the initial
distribution of a random walker. We have Mf — e~ L7t
From equations (1), (3), and (4), we obtain the approxima-
tion for Q(t):

Pr= MEPy = [T — %LT]’“PO S el

A=Y Y Mo /% ®

ueiD veiD

With the lazy random walk approximation, our algorithm
avoids the computation of the eigenvalues and the eigenvec-
tors. Instead of computing MJ (u,v) with matrix multipli-
cations, we can use the Monte Carlo method to estimate
MF (u,v). The variance of the estimated value is inversely
proportional to the amount of random walkers. Therefore,
our method provides a trade off between precision and com-
putation time.

4. GENERATIVE MODELS

We consider the following generative models for complex
graphs.

Erdos-Renyi (E-R) model

The graph is constructed by connecting nodes randomly and
independently. An edge is added to each pair of vertices
with a given probability. Directed E-R graphs can also be
generated using a similar mechanism.

Barabasi-Albert (B-A) model

Start with myo initial nodes. Each new node is connected to
m(m < mo) existing nodes with a probability proportional
to the number of links that the existing nodes already have.
The degree distribution follows P(D = d) ~ d 2.

Krapivsky’s model for directed graphs

In [10], a graph generative model is proposed to describe
growing processes in the Web Graphs (WG). With proba-
bility p, a new node is introduced and immediately attach-
es to an existing node u with probability proportional to
d® + Ain, where d' is the in-degree of node u. With proba-
bility ¢, a new edge from existing node v to node u is created



with probability proportional to (dL“—&—)\in)(dfj“t—i—)\out). This
model produces directed graphs with marginal in-degree and
out-degree distributions that are both heavy tailed. Let
P(d™ = i) ~ i7" and P(d°" = j) ~ jUmt. We have
Vin = 24 pAin and voue = 1 4+ ¢~ 1 + pAout/q-

In [7], the authors used the following four models to gen-
erate graphs with the same degree distribution. The first
assigns a degree to each vertex. The Molloy-Reed Model
(M-R Model)[14] randomly connects a pair of vertices with
probability proportional to the number of open connections.
The Kalisky Model [8] starts from the vertex with the max-
imal degree and exhausts its open connections by randomly
connecting it to other vertices. These vertices are the first
layer vertices. The second layer vertices are selected by ran-
domly connecting the remaining open connections in the first
layer. Repeat this until there is no open connection. Model
A and model B are new methods proposed in [7]. Model
A randomly connects the open connections of the maximal
degree node in each step to the available vertices until there
is no open connections. Model B is the same as model A,
except that the vertices connecting to the maximal degree
node are selected in sequence according to a given vertices
list.

5. EXPERIMENTAL RESULTS
5.1 Graphs with different degree distribution-
s

Two groups of graphs are generated using the B-A and E-
R models respectively. The total number of nodes is 2000.
Each group includes four graphs with average degree varying
from 20 to 50. Boundary vertices are defined to be the 40
vertices with the smallest degrees. As shown in Fig. 1(a),
the heat contents of the two groups of graphs follow different
patterns. When t is close to zero, the heat contents for power
law graphs drops faster than for E-R random graphs, but
the decrease speed slows down once ¢t > 5. The difference
between the heat contents of these two types of graphs is
illustrated more clearly if we focus on the time derivative of
the heat content (Fig. 1(b)). When we compare the heat
content derivatives for the power law graphs, the derivatives
at the beginning part are in the order of the average degrees
(as shown in Figure 2(b)).
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(a) Heat Content (b) Heat Content Derivatives

Figure 1: Undirected graph comparison (red: power
law graphs; blue: E-R random graphs)

For the spectra of these two kinds of graphs, Chung et.al.[4]
proved that eigenvalues of the normalized Laplacian for both
E-R random graphs and power law graphs satisfy the semi-
circle law. The circle radius is almost the same for graphs
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Figure 2: Degree distributions and heat content
derivatives for power law graphs

with the same mean degree (as shown in Fig. 3(a)). Using
only the Laplacian spectrum we can hardly distinguish the
two types of graphs. However, according to equation (5), the
values of «; also play an important role in the heat contents.
As shown in Fig. 3(b), the strengths («) for the power law
graph are much larger than those for the E-R random graph,
which explains the different heat content behaviors for the
two kinds of graphs.

B-A model
E-R model
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Figure 3: The Laplacian spectrum of one power law
graph and one random graph with mean degree 20

For directed graphs comparison, two groups of graphs are
generated using ‘WG’ model and the E-R model respective-
ly. Each group contains four graphs with different average
degrees by setting p to be 0.1, 0.15, 0.2 and 0.25, respective-
ly. Boundary vertices are defined to be the 200 vertices with
the smallest in-degree out-degree products (vertices with ze-
ro in-degrees are not candidates for boundaries). As shown
in Fig. 4, the directed power law graphs and E-R random
graphs exhibit similar behavior to undirected graphs.

5.2 Graphs with the same degree distribution

We first generate a 2000 nodes power law graph using B-A
model with m = 2. Then using each one of the 4 generative
models, we independently generate 3 graphs with the same
degree distribution. The heat contents and derivatives of all
13 graphs are shown in Figures 5(a) and 5(b).
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Figure 4: Directed graph comparison (red line: pow-
er law graphs; black line: E-R random graphs)
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Figure 5: Comparing graphs with the same degree
distribution (Black: B-A; Blue: M-R; Red:Kalisky;
Green: model Aj; : model B)

We observe from the results that graphs with the same
degree distribution can be distinguished according to their
heat content behaviors. The heat contents for graphs gener-
ated by the same model are clustered. And at the same time,
although with the same degree distributions, the differences
of the heat contents between the 5 generative models are also
noticeable. We also notice that the heat contents for model
B (the yellow curves) perform differently from the other four
models (Molloy-Reed model, Kalisky model, model A and
the B-A model). This result is consistent with the conclu-
sion in [7] that, although with the same degree distribution,
model B gives decentralized network with a larger number
of components and a smaller giant component comparing to
the other four models.

6. CONCLUSION

In this paper, we proposed a random walk method to es-
timate the heat content on graphs for the purpose of deter-
mining if two graphs are similar or not. We first apply the
method to compare graphs with different degree distribu-
tions. Graphs with heavy tailed degree distribution have d-
ifferent heat content curves comparing to the random graphs
generated by the E-R model: the decrease rate for the pre-
vious is much larger than that for the later at the very be-
ginning part. Our method can also distinguish graphs with
the same degree distribution but different structural prop-
erties. Experiments show that, our algorithm is better in
graph comparison than some other feature extraction meth-
ods like eigenvalues and degree distributions. In our future
work, we will apply our method to more general problems in
graph comparison. We will also consider real world network
datasets.
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