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ABSTRACT
In this work, we develop techniques to identify the latent
infected nodes in the presence of missing infection time-and-
state data. Based on the likely epidemic paths predicted by
the simple susceptible-infected epidemic model, we propose
a measure (Infection Betweenness Centrality) for uncovering
unknown infection states. Our experimental results using
machine learning algorithms show that Infection Between-
ness Centrality is the most effective feature for identifying
latent infected nodes.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems, Graph algo-
rithms

Keywords
Epidemics, Information cascades, Information diffusion

1. INTRODUCTION
Networks are underlying mediums for the spread of epi-

demics such as diseases, rumors, and computer viruses. De-
termining the infection state of network nodes is the first
step to taking corrective or preventive action to stop or slow
the spread of an epidemic. Unfortunately, the infection state
of network nodes is often unknown; for example: in the
spread of computer malware (say, a contaminated email at-
tachment) over a large organization, IT specialist will likely
only inspect the computers of users that open trouble tick-
ets; a similar problem occurs with the spread of rumors over
online social networks. Hence, the problem of effectively
identifying the infection state of unobserved nodes given a
set of observed nodes is of central importance in the study
of infection cascades.

Our research question is: Given a set of nodes with known
infection states and the network topology can we correctly
uncover the unknown infection state of the remaining nodes?
In this work, we consider a network where an epidemic starts
from a single source. Each node appears in one of two
states:(i) susceptible, capable of being infected, (ii) infected,
able to spread the epidemic further. We also assume that
the infection state of a subset of nodes is known and the full
network structure (adjacency matrix) is available.

Let G(V,E) be an undirected graph where V is a set of
nodes and E ⊆ V 2 is a set of edges. Suppose that an epi-
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demic starts at a single node (denoted “source”) and prop-
agates to neighbors in G(V,E). Let Xi ∈ {0, 1} denote the
state of node i ∈ V where Xi = 0 means node i is suscepti-
ble and Xi = 1 that it is infected. Assume that an infected
node contaminates neighbors at rate λ. Then,

Xi : 0 → 1 at rate λ
∑

j∈n(i)

Xj ,

where n(i) is the set of neighborhood of i.
Assume that there are l nodes with observed infection

state L = {(1, X1), ..., (l, Xl))}. There are also u = |V | − l
nodes with unknown infection state, U = {xl+1 ..., xl+u}; l
is typically much smaller than u. Given the set of observed
nodes L and the adjacency matrix A of the network, our
goal is to correctly assign an infection state Xi to node i =
l + 1, . . . , l + u.

2. MEASURING INFECTION STATE

2.1 Propagation Properties
Under the assumption that an epidemic propagates from a

single source to neighboring nodes following the Susceptible-
Infected (SI) model [5], we identify the following properties.

Let So denote the set of observed susceptible nodes and
Io the set of observed infected nodes.
Property 1: If removing all nodes in So from the network
disconnects the network, then one of the disconnected com-
ponents contains all of the infected nodes
Property 2: Let S ∈ V be a cut set that divides Io into
multiple components, then at least one node in S is infected

Figure 1: Red nodes and white nodes represent in-
fected and susceptible nodes, respectively. Dotted
circles (nodes 2, 3, 6, and 7) show nodes with un-
known infection state and full circles (nodes 1, 4,
and 5) show nodes with known infection state.

Consider the topology shown in Figure 1. Removal of node
5, which is observed and susceptible divides the graph into
two components, {1, 2, 3, 4} and {6, 7}. Only the compo-
nent {1, 2, 3, 4} contains infected nodes (Property 1). Since
there is no propagation path from infected nodes without
node 5, we can determine that nodes 6 and 7 are susceptible
(deterministic susceptible nodes). Observed infected nodes
{1, 4} divide into two components by removing nodes 2 and
3, which are not observed. Because the removal of nodes 2
and 3 places infected nodes 1 and 4 in distinct components,
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Table 1: Topologies

Topology Type n m c σ s d 2 Description

Yeast Biological 1870 2277 0.0672 3.1374 6.5044 19 Yeast Protein Interaction Network [2]

GrQc Collaboration 5242 28980 0.5296 7.9179 3.8317 17
Collaboration networks from ArXiv General Relativity
and Quantum Cosmology [4]

HepTh Collaboration 9877 51971 0.4714 6.1864 3.0213 18
Collaboration networks from ArXiv High Energy
Physics [4]

Power Device 4941 6594 0.0801 1.7913 2.1898 46
Topology of the Western States Power Grid of the
United States [8]

Oregon Device 11174 23409 0.2964 33.0948 46.4017 10
Topology of Autonomous Systems (AS) peering in-
formation inferred from Oregon route-views between
March 31 2001 and May 26 2001 [3]

1 n, m, c, σ, s, and d are the number of nodes, the number of edges, clustering coefficient, standard deviation of degree distribution,
skewness of degree distribution [9], and diameter of network, respectively

2 d is calculated with the largest connected component if a network has multiple connected components

node 2 and/or 3 must be infected (Property 2). Using Prop-
erty 1, we can reduce the number of nodes whose state is
unknown by ignoring nodes in components that can be iso-
lated by healthy nodes. In the rest of this paper, we focus
on the reduced graph in which observed and determinis-
tic susceptible nodes are excluded from the original graph.
Even though Property 2 does not provide a direct way for
determining the unknown infection state, it points to the
importance of a particular node in possibly infecting known
infected nodes.

2.2 Infection Betweenness Centrality
Let G′ be a subgraph constructed by removing all nodes

that must be healthy according to Property 1. The number
of paths of length r ≥ 0 between a pair of nodes (i, j) in G′,
Nij , is

N
(r)
ij = (Ar)ij ,

where A is the adjacency matrix of G′.
Suppose that each path of length r is given a weight α > 0;

then

Nij =
∞∑

r=0

αN
(r)
ij =

∞∑

r=0

(αrAr)ij .

is the weighted sum of paths from i to j. We can write this
expression in matrix notation

N =

∞∑

r=0

αrAr = (I− αA)−1.

Let Nu(i, j) denote the weighted sum of paths from node
i to j through node u. Given G′′ = G′ − {u}, we can cal-
culate Nu(i, j) by subtracting the weighted sum of paths
from i to j in G′′ from the sum in G′; however, construct-
ing G′′ and performing the inverse operation for N of each
G′′ requires additional computation. Therefore, we resort to
simple approximation Nu(i, j) ≈ Niu ×Nuj . Summing over
all possible nodes u ∈ V yields

Mij =
∑

u∈V

Nu(i, j) =
∑

u∈V

NiuNuj = (N2)ij .

We define the Infection Betweenness of node u between
two infected nodes i and j as:

Bu(i, j) =
Nu(i, j)

Mij
,

which is the fraction of the weighted sum of path from i
to j through u over the total weighted sum of paths from

i to j; thus, node u is more likely to be infected by node
i or j as Bu(i, j) increases. Assuming that Bu(i, j) is the
probability that node u is contaminated by node i or j, we
define Infection Betweenness Centrality of node u given the
set of observed infected nodes, which is the measure that a
node u is infected, as:

P (u) = 1−
∏

i,j∈Io, i�=j

(1−Bu(i, j)) , (1)

where Io is the set of observed infected nodes.

3. RESULTS
To test our approach, we use datasets from several real

world networks. We classify the datasets into three cate-
gories - biological, collaboration, and device networks: Yeast
(biological), GrQc, HepTh (collaboration), Power and
Oregon (device) as described in Table 1. We run batches
of simulations for each network while varying the fraction
of observed nodes from 5% to 25%. In each run, we simu-
late an SI cascade starting at a randomly selected seed node
with infection rate λ = 0.5 until 10% of nodes are infected.
The parameter weight α of Infection Betweenness Centrality
is set to 0.01 to guarantee to be less than the reciprocal of
largest eigenvalue of adjacency matrix of the reduced graph
(the condition that α must satisfy for the sum N in the equa-
tion of infection betweenness to converge). If a network has
multiple connected components as does Yeast, we assume
that an epidemic starts at a node in the largest connected
component. In order to evaluate accuracy, we use three met-
rics: precision, recall, and F-measure [11].

3.1 Incorporating Infection Betweenness Cen-
trality into Machine Learning Algorithms

Now, we introduce a classification method using Infec-
tion Betweenness Centrality and other node features based
on machine learning (ML) algorithms such as Naive Bayes
(NB), Naive Bayes with kernel density estimation (NBK),
and C4.5 Decision Tree (C4.5). To apply these ML algo-
rithms to experiments, we use the WEKA machine learning
software suite [11].

3.1.1 Node features
We consider six node characteristics that are available

using information regarding network topology and the ob-
served nodes, as features for building ML-based classifiers.
The first five features are: degree normalized by the max-
imum degree in the network D, observed infected neigh-
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bor ratio R, betweenness centrality C(b), closeness central-
ity C(c), and eigenvector centrality C(e). We also include
Infection Betweenness Centrality P as a feature, defined as
the measure that a node is infected shown in Eq. (1).

3.1.2 Predictive Features
To examine which features provide meaningful informa-

tion for identifying latent infected nodes, we investigate the
performance of ML-based classifiers with each feature when
we create cascades that infect approximately 10% of the
nodes in the network and then reveal the infection state of
15% of the nodes (randomly selected). Figure 2 shows the
average F-measure of NB and C4.5 with each feature for
all the networks. The best feature will have an F-measure
close to one (darker squares). We observe that the Infec-
tion Betweenness Centrality produces the darkest column
showing it to be the best predictive feature in both NB and
C4.5 algorithms over nearly all networks. In the case of
C4.5, R yields similar performance to P . We also see that
D and C(c) are also meaningful features in several networks
although not as good as P . However, except for P , the ef-
fectiveness of other features differs significantly depending
on the network and the ML algorithm.
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Figure 2: Predictive power of each feature.

3.2 ML-based Infection State Prediction

3.2.1 Effect of Infection Betweenness Centrality
Figure 3(a) shows the F-measure of each classifier using

all features except for P . In all the considered networks,
the classifiers yield F-measure of less than 0.5. We observe
that the best classifier differs according to the network, but
there is no significant difference between the classifiers for
each network. Note the significant low performance of the
classifiers in Oregon: the F-measure of even the best clas-
sifier, NBK, is around 0.2. This is because the predictive
power of each feature is quite weaker in Oregon than in
the other networks as shown in Figure 2. Next, we compare
the ML-based classifiers using all of the features to those
excluding P in order to check whether P can improve the
performance of the classifiers.
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Figure 3: Performance of ML algorithms

Figure 3(b) shows the F-measure of each classifier using
all six features minus the F-measure of the same classifiers
using five features (which excludes P ). All classifiers using
all features see performance improvements in all the net-
works except for C4.5 in Oregon compared to excluding
P . This shows that we can improve the performance of a
particular classifier by combining the infection betweenness
centrality P with the other node features. In particular, the
classifiers with all features including P yield comparatively
large performance enhancement of the classifiers in Yeast
and Power, e.g., using all features increases the F-measure
of C4.5 applied to in Yeast and Power by around 0.15
and 0.3, respectively. In the case of NB, adding P en-
hances performance by almost the same amount (around
0.3) regardless of the network. This is because the predic-
tive power of P for NB does not significantly differs across
the networks as shown in Figure 2(a). Note that C4.5 with
all features exhibits the F-measure enhancement except for
Oregon. Even in Oregon, the performance degradation
of C4.5 by using all features is not noteworthy. We observe
then that for C4.5, Infection Betweenness Centrality is by
far the most important feature as adding P to the feature
set in most cases increases classification accuracy.

3.2.2 Prediction v.s. fraction of observed nodes
Figure 4 compares the average precision and recall of each

classifier according to the fraction of observed nodes. Again,
the epidemic infects 10% of nodes. Here, we also compare
our classifiers against random-guessing (Random), which tosses
a biased coin and with probability 0.1 (0.1 is the fraction of
infected nodes) declares the node to be infected. As shown
in Figure 4, our classifiers outperform random-guessing both
in precision and recall. Also, the precision and recall of our
classifiers increases with the fraction of observed nodes; as
expected, increasing the fraction of observed nodes provides
more information about the infection state of the unobserved
nodes. In a closer look C4.5 exhibits the best precision over
all classifiers on almost of all the networks: the only excep-
tion is Power, where NBK yields slightly better precision
performance than C4.5. Comparing the precisions of each
network, we observe that our classifiers show the best pre-
cision in Power followed by GrQc, HepTh, Yeast, and
Oregon; Power is almost planar, likely making the clas-
sification task easier. In the next section, we also explore
how network characteristics affect the performance of our
classifiers.

Figure 4 shows that NBK yields the best recall perfor-
mance over all the networks except Power. Note that the
precision of NBK is lower than that of C4.5 except for
Power. It means that NBK is more likely to classify un-
known node states to infected, resulting in the higher recall,
but those classifications are not as accurate as C4.5. All
classifiers yield better recall performance when applied to
Power than the other networks. Also, Oregon remains
the most difficult network within which to correctly find the
infected nodes. Even though all classifiers yield relatively
high precisions (greater than 0.5) in Oregon, their recall
performance in Oregon is less than 0.2, which is similar to
that of random-guessing. That is, in Oregon, our classifiers
make correct decisions when they classify unknown states to
infected, but many infected nodes are classified as healthy.
In future work, we will explore a method to improve the
recall performance of these classifiers.
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Figure 4: Accuracy for varying fraction of nodes with observed state (Bar: Precision, Dot: Recall)

3.2.3 Impact of Network Characteristics
We now investigate the impact of network characteristics

on the performance of our classifiers (using all six features).
To this end, we investigate the correlation coefficient be-
tween the F-measure performance ranks and ranks of net-
work characteristics for each network; for instance, NBK
yields the worst performance in Oregon (the fifth rank in
terms of NBK’s F-measure performance among the five net-
works) and Oregon has the largest degree skewness (the
first rank in terms of degree skewness). Table 2 presents
the Pearson’s correlation coefficient [10] between the ranks
of network characteristics and F-measure performance.

Table 2: Correlation Coefficient between Ranks ac-
cording to F-measure and Network Characteristics

Characteristic
Correlation

NB NBK & C4.5

Clustering Coefficient 0.1 0.2
Standard Deviation of Degree -0.7 -0.6

Degree Skewness -1.0 -0.9

As shown in Table 2, the performance of the classifiers is
strongly negatively correlated with degree skewness and the
degree standard deviation. As the degree skewness and the
degree standard deviation decrease, the classifiers become
more accurate. Interestingly, there is a little correlation be-
tween clustering coefficient and classification performance
even though an epidemic is more likely to propagate to nodes
in a same cluster. A validation with extensive experiment
using more networks is a part of our future work.

4. RELATED WORK
Shah and Zaman [7] studied the problem of finding the

source of a computer virus in a network. They focused on
how to find the source among the set of infected nodes that
are observed, which is different from our goal. Based on their
metric called rumor centrality, they constructed a machine-
learning estimator that finds the source exactly or within a
few hops in networks. They also analyzed the asymptotic
behavior of their virus source estimator for regular trees
and geometric trees. Sadikov et al. [6] present an estima-
tion method of network properties, such as the number of
weakly connected components, given a sampled network. By
formulating a simple k-tree model and approximating it to
the original network, their method can estimate the prop-
erties of original networks; they showed that their method
can accurately estimate properties of the original network
even when 90% of nodes are not sampled. Closely related
to our work is that of Gomez et al. [1], who develop an
algorithm for inferring the network over which a diffusion
propagates. Given the observed times when nodes become
infected, they determine paths through which the diffusion

most likely took, i.e., a directed graph where a contagion
passed through. In contrast, our work tries to identify the
infection state of each unobserved node given a limited num-
ber of nodes with known infection state and no infection
timestamps.

5. CONCLUSION
In this paper, we studied how to identify the infected

nodes without individually inspecting all nodes in the net-
work. Based on the well known SI model, we defined the
Infection Betweenness Centrality for identifying the latent
infection status of nodes. Our empirical results show that
the machine learning classifiers using the Infection Between-
ness Centrality along with other network-wide features out-
perform random-guessing and the same classifiers without
it. We also analyzed the impact of the amount of missing
data as well as the impact of network characteristics on the
effectiveness of the algorithms.
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