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ABSTRACT
Crucial courses have a high impact on students progress at
universities and ultimately on graduation rates. Detecting
such courses should therefore be a major focus of decision
makers at universities. Based on complex network analysis
and graph theory, this paper proposes a new framework to
not only detect such courses, but also quantify their cru-
ciality. The experimental results conducted using data from
the University of New Mexico (UNM) show that the distri-
bution of course cruciality follows a power law distribution.
The results also show that the ten most crucial courses at
UNM are all in mathematics. Applications of the proposed
framework are extended to study the complexity of curric-
ula within colleges, which leads to a consideration of the
creation of optimal curricula. Optimal curricula along with
the earned letter grades of the courses are further exploited
to analyze the student progress. This work is important as
it presents a robust framework to ensure the ease of flow
of students through curricula with the goal of improving a
university’s graduation rate.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network flows

General Terms
Algorithms, Experimentation

Keywords
Complex networks; longest path; curriculium complexity;
cruciality; student progress

1. INTRODUCTION
Many definitions of student success exist in the litera-

ture. While these vary from grades and persistence to self-
improvement, most studies consider graduation the ultimate
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measure of student success [7]. For a college student, having
a bachelor’s degree has become a necessity with attainment
rates topping 30% for adults over the age of 25 according the
latest census numbers [1]. From the university’s perspective,
and especially for public universities, the definition of stu-
dent success broadens from graduation into student reten-
tion rates and time-to-degree. These factors are important
because many states have tied a percentage of the univer-
sity’s funding directly to such student success metrics [2].
This so-called ”performance funding” has become a popular
way to incentive universities to help students graduate in
a timely fashion. Whether a causal relationship exists be-
tween performance funding and graduation rates remains to
be seen, but studies have clearly shown a rise in graduation
rates as state appropriations per student increase [8].

There are many factors that correlate to a student grad-
uating. These factors may be broken down into two cate-
gories, pre-institutional and institutional factors. Some pre-
institutional factors include high school GPA and socioeco-
nomic data, whereas institutional factors include the spe-
cific institutional processes and policies that help students
graduate while minimizing or even excluding the student’s
actions [5]. Institutional factors contributing to success in-
clude any quantifiable actions that occur during the stu-
dent’s time at an institution. Studies have identified the
degree to which factors such as learning centers, freshman
year programs, dorms, study rooms, etc. contribute to stu-
dent success [6].

There is one institutional factor that is often overlooked;
however, which is the curriculum associated with a partic-
ular degree program. Accordingly, in this paper we inves-
tigate the structure of university course networks at three
different levels: department, college and university. Due to
the nature of course networks, we use graph theory and com-
plex network analysis to provide a mathematical foundation
for detecting crucial courses and hence analyzing the impor-
tant features of course networks which may help administra-
tors to make decisions on when to offer certain classes, who
should teach them, and what is truly necessary for a degree
in a certain field.

The remainder of this paper is organized as follows. We
introduce a network model in Section 2, and factors and pa-
rameters used to study and quantify the cruciality of courses
in the network are described in Section 3. Section 4 presents
a case study that includes numerical results for the Univer-
sity of New Mexico (UNM) course network. Applications
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utilizing the course cruciality framework are described in
Section 5. Finally, Section 6 presents some concluding re-
marks.

2. CONSTRUCTION OF THE COURSES’ NET-
WORK MODEL

Using graph theory as the basic method to study curricu-
lum graphs, we first build a model for the curriculum graph
structure, and then generate the graph model by abstract-
ing the courses into nodes and connecting two nodes with a
directed edge if there is a pre-requisite relationship between
the courses associated with the nodes. The course network
is therefore represented as an N × N adjacency matrix M ,
where N is the number of nodes in the network. If there
is an edge from node j to node i, then Mij = 1, otherwise
Mij = 0.

3. ANALYSIS FRAMEWORK FOR THE
COURSES’ NETWORK

The cruciality of a course within a network is related to
two main features, its delay factor and its blocking factor,
and these two factors are characterized by two additional pa-
rameters, the longest path and the connectivity. The longest
path Li of node i is defined as the length of the longest path
passing through node i. The connectivity, Vi, of a node i is
defined as the total number of nodes connected to i. That
is, nij is 1 if there is a path from i to j and 0 if no such a
path exists. Then the connectivity Vi is given by

Vi =
∑
j

nij (1)

Examples illustrating the significance of these parameters in
quantifying the cruciality of courses are provided below.

3.1 Delay Factor
Some courses have a critical impact on the academic progress

of a student in the sense that any failure in these courses (or
delays in taking them at the appropriate time) subjects the
student to the risk of not finishing on time. It is therefore
essential to detect these courses. The following example il-
lustrates a process for detecting them using longest path
length parameter.
Given four nodes A, B, C and D representing four dif-

ferent courses, possible relationships between are shown in
two different scenarios in Fig. 1. In Fig. 1(a) course A is
the pre-requisite of B, C and D, while Fig. 1(b) shows the
same courses, but with different prerequisite relationships
between them. In the latter, A is the prerequisite of B and
D whereas B is the prerequisite of C. Comparing these two
figures, it is clear that A in Fig. 1(b) is more crucial than it
is in Fig. 1(a). This may be explained as follows. Assuming
a three-term curriculum, a student who fails A in Fig. 1(a)
still has the chance of finishing on time, whereas one who
fails A in Fig. 1(b) ends up with more than three terms and
thus is delayed. This phenomenon is reflected by the length
of the longest path,Li. In Fig. 1(a), the longest path value
of A is one whereas in Fig. 1(b) it is two. However, the value
of the connectivity for A is three in both scenarios.

3.2 Blocking Factor
In addition to the delay factor, it is natural to conclude

that a course that is a prerequisite to a large number of other

(a) Node A is pre-requisite
to nodes B, C and D

(b) Node A is prerequisite
to nodes B and C whereas
B is prerequisite to C

Figure 1: Graphs illustrating course cruciality using the
longest path length factor.

(a) Node A is pre-requisite
to node B

(b) Node A is pre-requisite
to nodes B and C

Figure 2: The two graphs illustrate the cruciality of node A
using connectivity factor.

courses is more crucial. If a student fails such a course or
does not attempt and pass it at the right time, the student
may be blocked from attempting follow-on courses, leading
to a negative impact on progress. This is illustrated by the
following example. Nodes in Fig. 2 represent three different
courses. Nodes in Fig. 2(a) are linked differently than those
in Fig. 2(b). Node A in Fig. 2(a) is a prerequisite to node
B whereas in Fig. 2(b) it is a prerequisite to nodes B and
C. Comparing these two figures, it would be reasonable
to consider node A in Fig. 2(b) more crucial than it is in
Fig. 2(a). In the case of failure or delay, node A in Fig. 2(b)
will block more courses. This result is reflected by the value
of the connectivity, Vi. In Fig. 2(a), the connectivity of A
is one whereas in Fig. 2(b) it is two. However, the value of
the longest path length for A is one in both scenarios.

Note that other parameters such as in-degree and out-
degree measures are not as suitable as the longest path and
connectivity parameters. For example, if we consider the
in-degree and out-degree parameters instead of the longest
path length parameter to compute the crucaility of node C
in Fig. 1(a) and Fig. 1(b), both scenarios would lead to the
same crucaility value which does not differentiate between
the two scenarios despite the fact that node C in Fig. 1(b) is
more crucial than that in Fig. 1(a) taking into consideration
the delay factor discussed previously.

Based on the foregoing discussion, the cruciality of course
i, denoted Ci, is defined as follows:

Ci = Vi + Li (2)

Note that Eq. (2) does not take into consideration any
prior knowledge of the difficulty of a course which might
be reflected by the failure rate of the course. Though such
knowledge may be a critical factor to include in measuring
cruciality Eq. (2), it is not taken into consideration in this
work.
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4. NUMERICAL RESULTS
In order to empirically validate our proposed cruciality

metric, we analyzed actual university data provided by UNM.1

4.1 Cruciality Analysis of UNM Courses
In determining the most crucial courses at UNM, all UNM

courses with their respective pre-requisite links were math-
ematically represented by an adjacency matrix M .

4.1.1 Data Pre-processing
It is well known that building relationships between courses

based on pre-requisite links is not trivial. For example a
course i may be a co- or pre-requisite to another course j
and/or vise-versa. In order to deal with such relationships,
some assumptions were made:

1. If course i is a co- or pre-requisite to course j, we
assume that i is a pre-requisite to j. In other words,
we assume the worst case scenario where course i and
j cannot be taken in the same academic term.

2. If course i is a co- or pre-requisite to j and vice-versa
or in other words if courses i and j are co-requisites,
we consider the worst case scenario in which one of
the courses is considered to be the pre-requisite of the
other. In this case we eliminate cycles from our graph.

Besides the assumptions made for co- and pre-requisite
relationships, it is also important to consider the transitivity
relationship links between courses. These types of links must
be deleted. For example if course A is a pre-requisite to
both courses B and C, while C itself is a pre-requisite to B,
then there is no need to show that A is pre-requisite to B.
Otherwise, A assumes extra cruciality that is not deserved.
We use a Transitive Reduction algorithm to filter out the
transitive edges within M [3]. Note that the cruciality value
is set to 1 as initial value for all the nodes.

4.1.2 Basic Analysis
Next, we show the cruciality distribution for all 7593 courses

at UNM, along with the 10 most crucial courses. We evalu-
ated the cruciality for each course based on Eq. (2). Figure 3
shows the cumulative distribution function for the cruciality
of UNM courses created using the method described in [4].
Based on the evidence of Fig. 3, it is shown that the crucial-
ity distribution follows a power law with an alpha value of
2.1. In other words, Fig. 3 shows that the number of courses
with high cruciality is much smaller than those with low cru-
ciality. In addition, Table 1 shows that the 10 most crucial
courses at UNM are mathematics courses. These courses
are labeled as highly crucial courses by UNM. Based on
some basic statistical results, UNM’s analysts have already
concluded that the graduation rate is negatively influenced
by these particular courses. This analysis and conclusions
match our predicted results using the cruciality method.

4.2 Comparison of Curricula Complexity within
a College and Across Colleges

In this section we study the complexity of a particular
curriculum and compare it to another curriculum within a
college or across other colleges. For example, the electrical

1All the UNM data used in this work are found
at s3.amazonaws.com/network-analysis-for-universty-
courses/unm-data.zip
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Figure 3: Cumulative distribution function Pc for the cru-
ciality of UNM courses distributed according to power law
with alpha value of 2.1.

Course Ci

ISM 100: Algebraic Problem Solving 596
MATH 101: Intermediate Algebra Part 1 590
MATH 102: Intermediate Algebra Part 2 589
MATH 120: Intermediate Algebra 589
MATH 103: Intermediate Algebra Part 3 588
MATH 121: College Algebra 587
MATH 118: Algebra 586
MATH 150: Pre-Calculus Mathematics 570
MATH 123: Trigonometry 557
MATH 162: Calculus I 547

Table 1: Top 10 crucial courses at UNM.

engineering curriculum’s complexity is compared to that of
the computer engineering curriculum. It may be also bene-
ficial to examine if the engineering school’s curricula, on av-
erage, are more or less complex than the business school’s.
We thus examined the complexity of curricula within two
colleges at UNM, the School of Engineering (SOE) and the
Anderson School of Management (ASM). For each program
within these colleges, we created a network to represent its
curriculum. This network has nodes to represent courses
within the program’s curriculum, and edges to model pre-
requisite relationships among courses. We thus created 9
different networks for the SOE representing 9 different pro-
grams and 11 different networks for those representing ASM.
For each program’s curriculum we calculated its complexity
defined as the cruciality sum of all the courses within the
curriculum:

S =

n∑
i

Ci (3)

where n is the total number of courses within the curriculum.
The complexity of the curricula for the SOE and the ASM

are shown in Tables 2 and 3 respectively.

The results show that the most complex program in the
SOE at UNM is mechanical engineering with a complexity
score of 461, whereas the most complex program in the ASM
is interdisciplinary film and digital media program (IFDM)
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Program Complexity S
Mechanical Engineering 461
Chemical Engineering 440
Electrical Engineering 368
Computer Engineering 349
Nuclear Engineering 318
Civil Engineering 294
Construction Engineering 271
Construction Management 215
Computer Science 197

Table 2: Complexity of SOE curricula at UNM.

Program Complexity S
IFDM 247
Finance 208
Marketing Management 189
Operations Management 186
Organizational Leadership 177
Human Resource Management 173
Accounting 172
Entrepreneurship 171
General Management 169
International Management 165
MIS 146

Table 3: Complexity of ASM curricula at UNM.

with a complexity score of 247. On the other hand, the
least complex program in the SOE is computer science, and
management information systems (MIS) is the least complex
program in the ASM. Based on these results we were able to
compare the average complexity of the curricula in the SOE
with that of the ASM. Table 4 shows that curricula in the
SOE are, on average, more complex than those in the ASM.
This result might be predictable especially for the fact that
analyses done on UNM students data for the years 2006 and
2007 show that the percentage of engineering students who
finished their programs within the specified eight semesters
is much lower than UNM business students. This is shown
in Table 4. Note again that the difficulty level of the courses
is not taken into consideration in this work.

College Average Complexity ≤ 8 semesters (2006-07)
SOE 324 8.3 %
ASM 182 28.7 %

Table 4: Average complexity of the curricula in the SOE
and the ASM at UNM

Our framework may also be used to detect the most crucial
courses in a given college. Hence, this would allow academic
and faculty leaders to provide more resources and efforts
to such courses, which may positively impact the academic
progress of students within these colleges. We applied this
detection algorithm to the courses in SOE and ASM pro-
grams at UNM. For the SOE, we merged all the curricula
into one graph. As previously mentioned, cycles are elimi-
nated and transitive edges are deleted. We applied the same
procedure to curricula in the ASM. The resulting top 10 cru-
cial courses in the SOE and the ASM are shown in Table 5.

Algorithm 1 Degree Program Algorithm.

Define Cr to be the list of courses within a curriculum
Define M to be the adjacency matrix representation of
the curriculum
Define T to be the number of terms in the curriculum
Define N to be the initial number of courses in each term:
N = ⌊Length of Cr

T
⌋

Initialize t =1
while Cr not empty and t ≤ T do

Calculate Ci for all the courses in Cr
Choose N course (or less in case the remaining courses
for the last term are less than N) from Cr with the
highest Ci and that do not have any pre-requisite(s)
The chosen courses will fill in term t
Remove the chosen courses from Cr and M
t = t+ 1

end while
Initialize t′ =1
while Cr is not empty do

Calculate Ci for all the remaining courses in Cr
Choose the course with the highest Ci

The chosen course will be added to courses in term t′

Remove the chosen course from Cr and M
t′ = t′ + 1

end while

5. APPLICATIONS

5.1 Creating Optimal Curriculum
Based on the previous analyses, the cruciality framework

may also be used to construct a optimal curricula for de-
gree programs. In other words, given specific courses, the
number of terms (semesters) for a degree program, and the
pre-requisite dependency relationships, it is easy to build a
curriculum that provides optimal choices for the courses to
be taken in each term. Thus the risk of delay for a student is
lowered by following the suggested curriculum. The Degree
Program algorithm is detailed in Algorithm 1.

Besides generating an optimal curriculum, the Degree Pro-
gram algorithm may also be expanded to generate differ-
ent curriculum versions based on students’ adjustments. In
other words, a student might want, for various reasons, to
take different courses than those suggested by the optimal
curriculum in term 1 for example. Then, based on the stu-
dent choices for courses in term 1, the algorithm would sug-
gest courses to be taken for the remaining terms. In this
case, the algorithm might alert students that they might
end up heavyly loaded for the remaining terms, or that their
graduation may even be delayed.

5.2 Student Progress
As mentioned in previous sections, time-to-degree is a crit-

ical factor in the academic life of both students and universi-
ties. Students normally want to obtain their degrees as soon
as possible (subject to financial and work-life constraints)
while universities want their graduation rate to be as high
as possible. Usually grades (e.g., GPA) are the main criteria
to measure the students’ progress throughout a curriculum.
Grades do not however take the time factor into considera-
tion. Theoretically, a student may have a high GPA while
progressing slowly through the curriculum. Engineering stu-
dent A who took crucial courses in the first semester earning
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SOE ASM

Course Ci Course Ci

MATH 162: Calculus I 115 ENGL 101: Composition I: Exposition 35
MATH 163: Calculus II 79 ENGL 102: Composition II: Analysis 33
MATH 121: College Algebra 73 MATH 121: College Algebra 23
ECE 131: Programming Fundamentals 73 ECON 106: Introductory Microeconomics 23
PHYC 160: General Physics 61 STAT 145: Introduction to Statistics 18
CS 151L: Computer Programming Fundamentals 60 MGMT 202: Principles of Financial Accounting 17
MATH 316: Ordinary Differential Equations 55 MGMT 322: Marketing Management 14
CHEM 121: General Chemistry I 49 MATH 180: Elements of Calculus I 13
CHEM 123L: General Chemistry I Lab 48 IFDM 105L: Inter and New Media Studies I 13
CHEM 122: General Chemistry II 39 MGMT 306: Organizational Behavior and Diversity 12

Table 5: Top 10 crucial courses in the SOE and ASM programs at UNM.

a GPA of 4.0 is therefore in better shape than student B who
took non-crucial courses while earning the same GPA of 4.0.
Obviously, the probability that student B may be delayed in
a program is higher than that of student A based on the defi-
nition of crucial courses. Hence and based on the time factor
mentioned, crucial courses must be included in studying the
progress of students through out their respective academic
life.

5.2.1 Student Progress Framework
To achieve this, we propose a framework that makes use

of the Degree Program algorithm, the cruciality parame-
ter, and the earned letter grade. We thus create an opti-
mal curriculum for every department within the university
and accordingly monitor a student’s progress every semester
based upon the type of the courses (i.e., crucial or noncru-
cial) taken, along with respective letter grades. Students
having more courses matching the cruciality values of the
optimal curriculum courses per term are in a better shape
assuming all students have the same GPA. Figure 4 shows
a 3-term optimal curriculum. Next to each course there are
two numbers. The number on top represents the crucial-
ity value whereas the one below represents the earned letter
grade. Note that in this work the highest grade value of a
course is 4.0. Assuming students X and Y have the same
letter grades for all the courses as shown in Fig. 4, student
X is less likely to get delayed throughout her academic pro-
gram. Numerically, this may be quantified by summing the
product of both cruciality value and letter grade of all the
courses taken up to that term, that is:

Pj =

∑
ij C

′
ijGi∑

in C′
in

(4)

where Pj is the student progress score (SPS) at term j, C′
ij

is the cruciality value of course i taken in term j, Gi is the
letter grade of course i and n is the total number of terms
in a curriculum. Note that a course must match one of the
optimal curriculum courses otherwise the cruciality value is
zero, that is

C′
ij = max {Ci, 0} (5)

The denominator in Eq. (4) normalizes the SPS so that Pj is
always less than or equal to 4.0. In fact the value of SPS in
the last semester is equivalent to the GPA value. However,
the advantage of SPS over GPA is its ability to quantify

student progress, taking into consideration the time factor
mentioned previously. Its criticality is even more evident
in the first couple of semesters where students at this time
need more advisement than at other points in their academic
careers. Examples shown in the next section illustrate how
to analyze SPS in order to provide advisement when needed.

Figure 4: Progress of students X and Y with respect to the
optimal curriculum. SPS of X is 48

18
whereas that of Y is 12

18
.

As a first step, the student progress framework discussed
above is to an extent idealistic. Normally, curricula are not
as simple as it appears in Fig. 4. For example, degree re-
quirements for many curricula are technical elective courses,
social science courses, humanity courses, etc. It may there-
fore be hard to create one optimal curriculum for a particular
program. Some technical elective or social science courses
might have different cruciality value. Thus SPS would not
reflect the true progress value unless some further assump-
tions are made. First it should be clear that there must be
one curriculum for each program. Accordingly, this means
there must be one reference to which students can refer to
and hence student progress framework would be feasible
then to apply. To achieve this, it is assumed that all de-
gree requirements that are unspecified within a curriculum
(e.g. technical elective courses and social science courses)
do not have pre-requisites. This will provide a curriculum
with a minimum bound above which the SPS wouldn’t ex-
ceed. So all the unnamed courses taken by a student in
which they match her respective department curriculum are
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assumed to have no pre-requisites and thus the cruciality
values for such courses are 1. Note that the cruciality values
of the courses in each term in the optimal curriculum are
computed excluding the pre-requisite edges emerging from
courses of previous terms. Hence, for example, the cruciality
values of the courses D, E and F in Fig. 4 are 1 instead of
2. Thus, once students pass courses A, B and C, it makes
no difference if they take D, E and F before G, H and I or
vice-versa the next term. The example shown in Fig. 5 illus-
trates the main idea of the student progress framework. The
optimal SPS P o

1 , P
o
2 and P o

3 are 48
17
, 60

17
and 68

17
respectively.

5.2.2 Student Progress Ratio
Analyzing student progress is attained by considering the

ratio of P s
j from the student curriculum over that of P o

j from
the optimal one each term, that is:

Ij =
P s
j

P o
j

(6)

where Ij is the student progress ratio (SPR) at term j. If
the value of SPR is greater than or equal to 1, then the
student is on track. Otherwise, special attention must be
taken depending on far below 1 the SPR is. For example,
in Fig. 5, I1 = 24

48
which is 0.5. This might be a sign that

student X is at risk of being delayed, because she did not
take crucial courses in her second term or because she earned
bad grades. Note that SPR must be less than or equal to
1 in the last term meaning that the student has finished all
the curriculum requirements.

Figure 5: SPR of student X. I1 = 24
48
; I2 = 56

60
; I3 = 68

68
.

6. CONCLUSION
Using complex network analysis and graph theory, we

proposed a framework to study the structure of university
course networks. We introduced a measure of the cruciality
of courses at three different levels: the university, a college
and a department. Based on real data, our results show that
the courses at UNM follow a power law distribution. The
results also show that our proposed framework is suitable
to study the complexity of a curriculum within a college.
Based on longest path and connectivity, it was shown that
the curriculum in the SOE at UNM is, on average, more
complex than that in the ASM. The framework is extended
further to create an optimal curriculum for a department
where optimality is characterized by lessening the risk of
delayed graduation. We also introduced the SPR metric to
study the progress of a student in a curriculum, and hence
predict progress based on the grades of the courses taken,
the number of courses, as well as their respective cruciality
values. This application is therefore very useful in tracking
the progress of students and to intervene (via advisement,
academic support, etc.) in order to have a positive impact
on graduation rates.
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