
Measuring and Maximizing Group Closeness Centrality
over Disk-Resident Graphs

Junzhou Zhao1 John C.S. Lui2 Don Towsley3 Xiaohong Guan1

1MOEKLINNS Lab, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

3School of Computer Science, University of Massachusetts Amherst, MA 01003, USA
{jzzhao,xhguan}@sei.xjtu.edu.cn cslui@cse.cuhk.edu.hk towsley@cs.umass.edu

ABSTRACT
As an important metric in graphs, group closeness centrality
measures how close a group of vertices is to all other vertices
in a graph, and it is used in numerous graph applications
such as measuring the dominance and influence of a node
group over the graph. However, when a large-scale graph
contains hundreds of millions of nodes/edges which cannot
reside entirely in computer’s main memory, measuring and
maximizing group closeness become challenging tasks. In
this paper, we present a systematic solution for efficiently
calculating and maximizing the group closeness for disk-
resident graphs. Our solution first leverages a “probabilistic
counting method” to efficiently estimate the group closeness
with high accuracy, rather than exhaustively computing it
in an exact fashion. In addition, we design an I/O-efficient
greedy algorithm to find a node group that maximizes group
closeness. Our proposed algorithm significantly reduces the
number of random accesses to disk, thereby dramatically im-
proving computational efficiency. Experiments on real-world
big graphs demonstrate the efficacy of our approach.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Performance

Keywords
Group centrality, Greedy algorithm

1. INTRODUCTION
Node centrality[10] is an important measure in the anal-

ysis of networks. Many centrality measures such as degree,
closeness, and betweenness, have been proposed to measure
the importance of individual nodes in a network. While
these measures are useful in finding the top-k most impor-
tant individual nodes within a network, they are not suit-
able to address the question of finding a set of nodes of size

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579356.

k, such that these k nodes as a group, is the most impor-
tant group in the network. Such a problem widely exists
in scores of application domains. For instance, in online so-
cial networks, product retailers may want to locate k people
to promote their products so as to maximize the number
of potentially influenced customers. Due to the overlap of
people’s friend circles, simply returning the top k most in-
fluential people in the network is unlikely to be optimal.

Everett and Borgatti, in their seminal work [7], extended
the idea of individual centrality to group centrality, which
defines the importance of a node group in a graph. They il-
lustrated the concepts of group degree, group closeness and
so on for two graphs containing 20 and 14 nodes, respec-
tively. Despite its conceptual novelty, group centrality lacks
efficient calculation algorithms that can scale to large graphs
containing hundreds of millions of nodes/edges such as the
Facebook and Twitter networks. Such graphs call for effi-
cient group centrality calculation methods.

In this work, we study how to efficiently measure and
maximize group degree and group closeness of disk-resident
graphs. We introduce these two metrics, and show that they
are special cases of a generalized group closeness (which we
call group closeness for short), in Section 2. When a graph
cannot entirely fit in the computer’s main memory, measur-
ing and maximizing group closeness become challenging.
Challenge of Calculating Group Closeness in Big
Graphs: Group closeness centrality measures how close a
group of nodes is to all other nodes in a graph. Calculat-
ing group closeness requires calculating the shortest path
length from each node in the group to all other nodes in the
graph, i.e., solving the single-source shortest path (SSSP)
problem for each group member. Dijkstra’s SSSP algorithm
can be efficiently implemented in O(m+ n logn) time using
state-of-the-art methods [9, 11], where n is the number of
nodes and m is the number of edges of a given graph. How-
ever, for contemporary online social networks (OSNs), which
include hundreds of millions of nodes/edges, this computa-
tional complexity is too large. If we want to find a node
group to maximize the group closeness, we need to solve
the all-pairwise shortest path (APSP) problem, where the
time complexity becomes O(nm + n2 logn). Furthermore,
the above algorithms are all in-memory algorithms requiring
data to fit in the main memory, which are not suitable for
processing disk-resident graphs.
Our Solution: Instead of exactly calculating the shortest
path length for each node, we propose a computationally effi-
cient method to estimate group closeness centrality. Palmer
et al.[19] use a probabilistic counting method [8] to approx-

689

imate the neighborhood function for each node in a graph,
and the neighborhood function can be used to estimate the
shortest path length. We leverage this method as a prepro-
cessing step to efficiently estimate group closeness with time
complexity O(m) and O(n logn) extra space.
Challenge of Greedily Choosing Nodes from Disk: If
we want to choose a subset of items from a population to
maximize some given objective function, a widely used ap-
proach is the greedy method: choosing an item at each step
to maximize the increase to the objective function. Unfor-
tunately, for large-scale graphs residing on disk, the greedy
method will cause too many random accesses on disk, which
will induce frequent page faults and thereby increase the
computational cost.
Our Solution: To address the disk random access problem,
we design a novel I/O-efficient greedy algorithm for process-
ing disk-resident graphs. Our method relies on the submod-
ularity of the objective function (see Subsection 3.3) and
its two important properties in order to reduce the number
of disk random accesses, and so improve on computational
efficiency.
The remainder of this paper is organized as follows. In

Section 2, we generalize the definitions of group degree and
group closeness and formulate the group closeness maximiz-
ing problem. Then we describe the algorithms for process-
ing disk-resident graphs in Section 3. Experiments are con-
ducted in Section 4. We summarize some related work in
Section 5, and conclude with Section 6.

2. GROUP CENTRALITY MEASURES
In this section, we first review Everett and Borgatti’s origi-

nal definitions of group degree/closeness. Then we introduce
a new notion of generalized group closeness. Lastly, we for-
mulate the group closeness maximization problem and state
its complexity.

2.1 Group Degree and Group Closeness
Everett and Borgatti define the group degree centrality of

a node group as the number of non-group members that are
connected to group members, namely

Cdeg(S) = |{v : (u, v) ∈ E ∧ u ∈ S ∧ v /∈ S}|, S ⊆ V, (1)

where Cdeg(S) denotes the group degree of a group S, while
V and E are the sets of nodes and edges of a graph1 G
respectively.
Group degree centrality only considers one-hop neighbors,

but group closeness centrality considers all nodes in the
graph, and gives higher score to a group of nodes with
smaller average distances to all other nodes. Everett and
Borgatti define group closeness centrality as follows

Cclose(S) =
|V \S|∑

v∈V \S dS,v
, S ⊆ V, (2)

where dS,v is the distance between group S and a node v and
defined as dS,v ≜ minu∈S distuv where distuv is the shortest
distance between u and v. Therefore, group closeness cen-
trality measures how close group members in S are to other
non-members in a graph.

1We only consider undirected unweighted graphs in this
work, although these metrics can be easily extended to di-
rected graphs.

2.2 Generalized Group Closeness Centrality
Group degree in Eq. (1) and group closeness in Eq. (2) can

be considered as distance scores measuring how close group
S is to other nodes in the graph. The closer the group
is to other nodes, the larger is the score. In general, let
g : R≥0 7→ R≥0 be a monotonically decreasing non-negative
function. We define the distance score from group S to other
nodes that are within H hops to S in the graph as

CH(S) =
∑
v∈V

g(dS,v)1 {dS,v ≤ H} (3)

=

H∑
h=0

g(h) [Nh(S)−Nh−1(S)] . (4)

Here 1 {·} is the indicator function, 1 ≤ H ≤ ∆ is a given
constant, and ∆ is the diameter of G. Nh(S) is the number
of nodes within h hops to S in the graph, i.e.,

Nh(S) =


0, h < 0,

|S|, h = 0,

|{v : dS,v ≤ h}|, h ≥ 1.

(5)

Thus, C1(S) = [g(0) − g(1)]|S| + g(1)N1(S) measures the
closeness of S to nodes within one hop of S. Therefore C1(S)
can be used to approximate the group degree in Eq. (1).
Similarly, C∆(S) measures the closeness to all the nodes
in G, therefore it can be used to approximate the group
closeness in Eq. (2).

2.3 Group Closeness Maximization
Given the above metric, an important problem is to find a

node group S in the graph that maximizes the group close-
ness CH(S). This problem can be formally stated as follows.

Definition 1. (Group Closeness Maximization Prob-
lem). Given graph G(V,E), H and g(·), find a set S ⊆ V
of at most K nodes that maximizes CH(S).

For the group closeness CH(·) we defined above, we have the
following results (Proofs are included in [1]):

Theorem 1. The group closeness maximization problem
is NP-complete.

Theorem 2. Group closeness CH(·) is a non-decreasing
submodular function.

Based on Theorem 1, finding an optimal solution is compu-
tationally difficult. But based on Theorem 2, we can exploit
the submodular property of CH(·) to find an approximation
solution that has good performance guarantees. In partic-
ular, we have a polynomial time greedy algorithm (GA) to
find an approximate solution which is within at least 1−1/e
of the optimal solution [16], and the approximation is nearly
optimal as no known polynomial time algorithm can achieve
a better approximation factor. GA can be briefly stated
as follows: The node, which maximizes the group closeness
increment is chosen and put into the node group at each
iteration; this produces a node group of size K after K iter-
ations.

Although GA has polynomial time complexity, it requires
that all of the data fit entirely in a computer’s main memory.
This condition is too stringent for large graphs containing
hundreds of millions of nodes/edges, which are very com-
mon for today’s popular OSNs. In this work, we develop a

690

novel algorithm that enables one to use a common PC with
small memory capacity (1∼4GB) to efficiently find quality
guaranteed solutions on a million-scale graph. This will be
described in detail in the next section.

3. HANDLING DISK-RESIDENT GRAPHS
Before we describe our methods in detail, it is necessary

to explain why the problem becomes challenging when the
graph cannot fit in the computer’s main memory.

3.1 Challenges of Handling Disk-Resident
Graphs

In general, GA has polynomial time complexity. How-
ever, when we apply GA to compute the group closeness
centrality, we have the additional complexity of calculat-
ing group closeness during each round of GA. In each GA
round, we calculate the reward gain for each node s ∈ V \S,
i.e., δs(S) ≜ CH(S ∪ {s}) − CH(S). However, calculating
δs(S) is computationally intensive. To see this, simply let
S = ∅; then δs(S) = CH({s}) =

∑
v∈V g(distsv). That

is, we are required to solve SSSP for node s. As a result,
we need to solve APSP in GA, which has time complexity
O(nm + n2 logn). This is obviously expensive (both com-
putation and memory requirements) for a large graph with
large n and m.
Another more serious challenge is that GA generates many

random disk accesses, which in turns create frequent page
faults and further increasing computational time[4]. To il-
lustrate this issue, let us consider that we already use an
efficient implementation of GA where nodes are maintained
in a priority queue ordered in decreasing reward gain. Each
time when a node s is added to S, we need to update the
reward gains of affected nodes in the queue, and use an in-
verted index to quickly look up these affected nodes. An
inverted index is a hash map that maps a node u to a list
Lu = {v1, v2, · · · } and u is within H hops to v ∈ Lu. When
s is selected, for each node u within H hops of s, we look up
Lu and update δv(S) for v ∈ Lu in the queue. If the index
mapping is small, it can fit in main memory. Unfortunately,
the inverted lists {Lu}u∈V are usually very large and have
to be stored on disk. Since u is unlikely to be visited locally
during the iterations in GA, this will cause many random
disk accesses.

3.2 Efficiently Estimating the Group Closeness
We address the first challenge of calculating CH(·) in this

subsection. Since an efficient method to calculate CH(·) can
improve the efficiency of GA, we leverage a probabilistic
counting method to efficiently estimate CH(·) with high ac-
curacy rather than exhaustively and exactly calculating it.
The basic idea is to estimate Nh(S) in Eq. (5) and use

Eq. (4) to obtain CH(S). In [19], Palmer et al. use the

Flajolet-Martin (FM) sketch method[8] to estimate Nh(u) ≜
Nh({u}) for a node u in a graph. We extend this approach
to estimate Nh(S) for a group S. FM-sketch is a probabilistic
counting method that encodes the counting information in a
bit-string. The method is efficient and requires little extra
space.
We first describe how to estimate Nh(u) using the method

in [19]. First, a bit-string Mh(u) of logn length is generated
to encode Nh(u) for each node u ∈ V , and Mh(u) is obtained

by iteratively doing the following bitwise-OR operation

Mh+1(u) = Mh(u)⊕Mh(v1)⊕ · · · ⊕Mh(vdu)︸ ︷︷ ︸
vi:(u,vi)∈E, i=1,...,du

,

where⊕ denotes the bitwise-OR operation of two bit-strings,
du is the degree of node u, and M0(u) is initialized as the bi-
nary representation of a uniformly distributed random num-
ber. Nh(u) is decoded from Mh(u) by Nh(u) = 2r/0.77351,
where r is the position of the lowest ‘0’ bit in Mh(u).

We can leverage this method to estimate Nh(S). Suppose
we have obtained Mh(u), ∀u, ∀h, then a bit-string Mh(S)
encoding of NH(S) can be calculated as follows

Mh(S) =
⊕
u∈S

Mh(u).

Nh(S) is then decoded in the same way as Nh(u). To in-
crease estimation accuracy, we can store N bit-strings per
node per hop and decode Nh(S) by

Nh(S) =
1

0.77351
2

1
N

∑N
i=1 ri .

CH(S) is obtained using Eq. (4). Notice that δs(S) is also
easy to calculate using such a method. Because Mh(S ∪
{s}) = Mh(S)⊕Mh(s), CH(S ∪{s}) is easily obtained after
decoding and hence δs(S). Obtaining all bit-strings requires
time O(m) and extra space O(n logn).

3.3 An I/O-Efficient Greedy Algorithm
Next, we present an I/O-efficient greedy algorithm to over-

come the disk random access problem. The new algorithm
leverages two properties of submodular functions to reduce
I/O costs.

The first property of submodularity comes from one of its
equivalent definitions, which we state as follows.

Property 1 ([16, Proposition 2.1]). For a submod-

ular function F (·), let δs(S) ≜ F (S∪{s})−F (S). If S ⊆ T ,
then δs(S) ≥ δs(T), for all s ∈ V \T .

This property tells us that as GA proceeds, the reward
gain of each node cannot increase. It can be used to reduce
the number of reward gain calculations in each round and
thereby reduce the I/O cost. For example, if the recently
updated node already has the largest gain in the queue,
then there is no need to calculate gains for the other nodes.
Because their gains will only become smaller according to
Property 1.

To further reduce I/O costs, we leverage the following
second property of submodularity.

Property 2. Suppose at each step t of GA, we can choose
a node st whose gain δst is at least a fraction λ of the maxi-
mum gain δs∗t , i.e., δst ≥ λδs∗t . Then we can guarantee that
the final solution SK = {s1, . . . , sK} satisfies

F (SK) ≥ (1− 1

eλ
)F (OPT),

where OPT is the optimal solution maximizing F .

Proof. Please refer to [1]

The second property uses λ as a parameter to trade off
the solution quality and computational efficiency. There-
fore, instead of exhaustively searching a node that has the

691

maximum gain at each GA step, we can search for a node
for which the gain is at least a fraction λ of the maximum
gain, and the solution quality is still bounded. Since this
property can reduce the search scope during each GA step,
I/O cost decreases.
Based on above two properties, we now design an I/O-

efficient greedy algorithm.
Preprocessing: In the preprocessing step, we use the method
of the previous subsection to generate N ×H bit-strings for
each node, which allows us to calculate the reward gain ef-
ficiently. Then we use external sorting methods to sort the
nodes in decreasing order of reward gain. Next, the sorted
data is split into blocks where each block is of size at most
B. B is selected as large as possible while allowing the
block to reside in main memory. We only load one block at
a time into memory. A block maintains bit-strings for a set
of nodes, as shown in Fig. 1(a) and includes the following
fields:

• NID represents the node ID;

• δ denotes the reward gain of the node;

• # is the round number in which round δ is updated;

• BS represents the bit-strings of the node;

• δmin and δmax are two pointers pointing to the nodes
having the minimum and maximum gain in the block.

A block is stored as a single file on a disk and it is named
after its block ID. Different blocks are not necessarily con-
tiguous on disk. In addition, we maintain a block-meta
list in main memory, which records the meta information
⟨Block ID, δmin, δmax, Nodes⟩ for each block, as shown in
Fig. 1(b).

δ BS

δ
max

δ
min

NID

(a) A block.

δ
min

, δ
max

Block ID

Nodes

δ
min

, δ
max

Block ID

Nodes

δ
min

, δ
max

Block ID

Nodes

B1 B2 BL

(b) Block-meta list.

Figure 1: Block structure of the data.
Iterations: The algorithm, as depicted in Alg. 1, uses the
“Read-Compute-Write” framework.
• Read: Load the first block into memory (Lines 2, 18).
• Compute: To search a node s such that δs ≥ λδs∗ , check
the head node in the queue and update its gain if necessary
(Lines 5-8). Note that δs∗ is unknown, however, the max-
imum gain δmax in the current block is an upper bound of
δs∗ according to Property 1. Hence, if a node c such that
δs ≥ λδmax, it is placed into S (Lines 9-11); otherwise it is
placed back into the queue (Line 13).
• Write: If the maximum gain in the current block is smaller
than in the next block (Line 16), the current block is written
back to disk (Line 17), and a new block is read from disk
(Line 18). During the WriteToDisk operation, each node v
in the queue is appended to a block i such that δmin

i ≤ δv ≤
δmax
i .
Our I/O-efficient greedy algorithm leverages Properties 1

and 2 to load blocks on demand from the disk, thus reducing
I/O cost.

4. EXPERIMENTS
In this section, we conduct experiments on typical real-

world graphs to demonstrate the efficacy of our method.

Algorithm 1: I/O-Efficient Greedy Algorithm.

Input: Approximate ratio λ and group size K.

Output: Node group S.
1 C = ∅, t = 1;
2 Load the first block into priority queue Q;

3 while |S| < K, do
4 v = Q.Pop();

5 if #v < t, then /* Update */

6 δv = CH(S ∪ {v})− CH(S);
7 #v = t;
8 end
9 if δv ≥ λδmax, then /* If succeed */

10 S = S ∪ {v};
11 t = t+ 1;
12 else /* If failed */

13 Q.Insert(v);
14 end
15 Update δmax

and δmin
;

16 if δmax < δmax
2 , then /* Write and reload */

17 WriteToDisk(Q);

18 Load the first block into priority queue Q;

19 end

20 end

Function WriteToDisk(Q):

1 Delete the first block from block-meta list and disk;

2 foreach element v in Q do
3 Find the block i s.t. δv ∈ [δmin

i , δmax
i];

4 Write v to the end of block i on disk;

5 end

4.1 Datasets and Experimental Environment
The datasets are four real-world graphs of different sizes,

an ArXiv High Energy Physics citation network (HEPTH),
a Youtube social network, a LiveJournal social network and
a Twitter follower network. Table 1 summarizes the basic
information of these four graphs.

Network n m ∆ B Blocks Preproc.

HEPTH 27K 352K 10 5K 6 < 1min
Youtube 1M 3M 14 5K 228 < 1min
LiveJournal 5M 49M 16 5K 1038 8min
Twitter[13] 40M 258M 18 10K 2296 55min

Table 1: Dataset summary

We perform the experiments on a Linux Ubuntu 12.04
desktop with a dual-core 2.13GHz Intel Processor, 2GB of
main memory and a standard 180GB, 7200rpm SATA HDD.

When calculating group closeness, we set g(0) = 1 and
g(h) = 1/h for h ≥ 1.

4.2 Validation of the Group Closeness Approx-
imation

First, we show that the proposed method in Section 3.2
can well approximate group closeness in the HEPTH net-
work. We generate 3×100 node groups with size |S| = 5, 10,
and 20, respectively. Nodes in each group are randomly cho-
sen from the network. Because the network is small, we can
calculate the exact values of group closeness for these node
groups.

Figure 2 shows the scatter plots of the exact group close-
ness values and the approximate group closeness values. Both

692

metrics are normalized to the range [0, 1]. These two met-
rics show strong correlations, and if we increase the number
of bit-strings per node per hop from N = 16 to N = 32,
the Pearson Correlation Coefficient (PCC) increases from
0.962 to 0.975. This indicates that our proposed method in
Section 3.2 can well approximate true group closeness.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

A
p
p
ro

x
im

a
te

 G
C

Real GC

|S|=5
|S|=10
|S|=20

(a) N = 16 (PCC=0.962)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

A
p
p
ro

x
im

a
te

 G
C

Real GC

|S|=5
|S|=10
|S|=20

(b) N = 32 (PCC=0.975)

Figure 2: Approximate validation (GC denotes
group closeness and H = 7).

4.3 Performance and Scalability
Next, we compare the performance and efficiency with

existing methods. In order to let the existing greedy algo-
rithm handle big disk-resident graphs with small memory,
the greedy algorithm is designed to scan the disk multiply
times, and a node maximizing the reward gain is selected af-
ter each scan. We use this approach as the baseline method.
Figures 3(a) and 3(e) show group closeness values for dif-

ferent group sizes using the baseline method and the pro-
posed method. In the proposed method, we set λ = 1.0 and
0.5 respectively. When λ = 1.0, the proposed method per-
forms exactly the same as the baseline method, and when
λ = 0.5, the proposed method performs worse than the base-
line method, which is expected due to Property 2.
Figures 3(b) and 3(f) show the computation times to find

node groups of different sizes using the two methods. We
see that the baseline method is more time consuming than
our method. Fig. 3(b) also reveals that our method requires
longer times for λ = 1.0 than for λ = 0.5, but in Fig. 3(f),
their performance are comparable.
To clearly see the effect of λ on performance, Figs. 3(c) and

3(d) show how λ impacts page faults (# new block loads into
memory). We observe that increasing λ results in more page
faults. Figs. 3(d) and 3(g) also show the trade-off effects of
λ for selecting a group of 20 nodes. When λ increases, we
obtain better solutions, but at the cost of longer execution
times.

4.4 Observations on Big Graphs
In this section, we present patterns of node groups maxi-

mizing the group closeness on Livejournal and Twitter. We
calculate group closeness using λ = 0.5, and H = 1, 2, 3
respectively. The preprocessing step for Livejournal costs
eight minutes and for Twitter is 55 minutes (for H = 3).
Applying the I/O-efficient greedy algorithm on Livejournal
takes three minutes for H = 3, λ = 0.5, and for Twitter 30
minutes (for a group size 1000).
Several researchers[15, 21] have suggested using degree as

an alias for other node centrality metrics. Hence, we ask
the following question: Are the top k largest degree nodes
good aliases for group of size k maximizing CH? To answer
the question, we choose node groups of various sizes and
compare their overlaps with the top k largest degree nodes

in the same network. Fig. 4 shows the results on the two
networks respectively. Surprisingly, the overlap is low and
becomes even lower as k and H increase. For example, for
H = 1, the node group of size 200 contains only about 10%
of the top-200 largest degree nodes.

In conclusion, group closeness is a useful metric that can-
not be simply represented by the existing degree metric.

0

5

10

15

20

25

30

 200 400 600 800 1000

O
v
e
rl
a
p
 (

%
)

#nodes

H=1
H=2
H=3

(a) Livejournal

0

5

10

15

20

 200 400 600 800 1000

O
v
e
rl
a
p
 (

%
)

#nodes

H=1
H=2
H=3

(b) Twitter

Figure 4: Overlap between group of nodes and top
degree nodes (λ = 0.5).

5. RELATED WORK
There is a vast literature on scaling up the single node

centrality calculation over large graphs, but little work on
scaling up group centrality calculation.
Scaling up the Single Node Centrality Calculation:
Many single node centralities such as closeness and between-
ness require solving SSSP first. For closeness centrality, Epp-
stein and Wang[6] only calculate the distances to a number
of sampled nodes, where the time complexity is reduced to
O(logn

ϵ2
(m+ n logn)) and an error bound is given by apply-

ing Hoeffding’s inequality. Okamoto et al. [17] leverage the
above result and present a similar algorithm. However these
are in-memory methods for single node closeness centrality
and not suitable for our setting.

Recently, there are increasingly many works scaling cen-
trality calculations by distributing the computation using
MapReduce [5]. For example, Kang et al. [12] develop a
parallel graph mining tool to estimate single node centrality
on Hadoop. Oktay et al. [18] present a method to esti-
mate pair-wise nodes shortest distance using MapReduce.
Sariyüce et al. [20] present a distributed framework for
calculating closeness centrality incrementally over dynamic
graphs. However, developing distributed graph algorithms
remains a challenging task, and there is still a need for op-
timizing graph algorithms on a single machine [14].
Scaling up the Greedy Algorithm: The greedy algo-
rithm is a heuristic approach used to solve many NP-hard
problems such as the travelling salesman problem and the
set cover problem. Despite its importance, relatively little
effort has focused on scaling it up for large datasets. Re-
cently, Cormode et al. [4] present a variation of the greedy
algorithm for the set cover problem on large datasets. How-
ever, our problem cannot be easily converted to a set cover
problem and hence we cannot apply their method.

Another approach to scale up the algorithm is paralleliza-
tion. The greedy algorithm is inherently sequential in na-
ture. To relax this constraint, Berger et al. [2] conduct a
study of the set cover problem, in which multiple processors
can randomly cover sets and avoid covering the same ele-
ments redundantly. Inspired by Berger’s work, Chierichetti
et al. [3] develop an algorithm for the max-cover problem
in combining with the MapReduce framework. These two

693

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 10 15 20 25 30 35 40 45 50

G
C

|S|

x10
4

Greedy (baseline)
λ=1.0
λ=0.5

(a) Group closeness

0

5

10

15

20

25

30

35

40

 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
e

c
o

n
d

s
)

|S|

Greedy (baseline)
λ=1.0
λ=0.5

(b) Time cost

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

10 20 30 40 50

P
a

g
e

 F
a

u
lt
s

|S|

λ=1.0
λ=0.5
λ=0.2

(c) Page faults

1.85

1.90

1.95

2.00

2.05

2.10

2.50 2.55 2.60 2.65 2.70 2.75

G
C

Time (seconds)

x10
4

λ=0.2

λ=0.4

λ=0.6

λ=0.8
λ=1.0

(d) Effects of λ (|S| = 20)

4.5

5.0

5.5

6.0

6.5

7.0

 10 20 30 40 50 60 70 80 90 100

G
C

|S|

x10
5

Greedy (baseline)
λ=1.0
λ=0.5

(e) Group closeness

0

500

1000

1500

2000

2500

3000

3500

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
e

c
o

n
d

s
)

|S|

Greedy (baseline)
λ=1.0
λ=0.5

(f) Time cost

 220

 222

 224

 226

 228

 230

 232

 234

10 20 30 40 50

P
a

g
e

 F
a

u
lt
s

|S|

λ=1.0
λ=0.5
λ=0.2

(g) Page faults

5.75

5.80

5.85

5.90

64 66 68 70 72 74 76

G
C

Time (seconds)

x10
5

λ=0.2

λ=1.0

(h) Effects of λ (|S| = 20)

Figure 3: Scalability and performance. Top row is on HEPTH network and bottom row is on Youtube
network. For both networks, we set H = 7, N = 32.

methods require data fitting in main memory so that multi-
ple processors can randomly access data; if data residents on
disk, random access on disk will cause I/O costs. Therefore
they are not suitable in our setting.

6. CONCLUSION
Group closeness centrality is an important metric in mea-

suring how close a group of nodes to other nodes in a graph.
However, it is not easy to calculate/maximize when graphs
contain hundreds of millions of nodes/edges which cannot
entirely fit in the computer’s main memory. We present a
systematic solution for efficiently calculating group closeness
centrality over disk-resident graphs. Our solution leverages
the FM-sketch method to efficiently approximate the group
closeness and exploits two properties of submodular func-
tions to maximize the group closeness measure. The exper-
iments demonstrate the efficacy of this approach.

Acknowledgement
This work was partly supported by the NSF grant CNS-
1065133 and ARL Cooperative Agreement W911NF-09-2-
0053.

7. REFERENCES
[1] ————. Technique report. http://nskeylab.xjtu.edu.

cn/dataset/jzzhao/NodeGroup_TR.pdf, 2013.

[2] B. Berger, J. Rompel, and P. W. Shor. Efficient NC
algorithms for set cover with applications to learning and
geometry. JCSS, 49(3), 1994.

[3] F. Chierichetti, R. Kumar, and A. Tomkins. Max-Cover in
Map-Reduce. In WWW, 2010.

[4] G. Cormode, H. Karloff, and A. Wirth. Set cover
algorithms for very large datasets. In CIKM, 2010.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[6] D. Eppstein and J. Wang. Fast approximation of centrality.
Journal of Graph Algorithms and Applications, 2004.

[7] M. G. Everett and S. P. Borgatti. The centrality of groups
and classes. Journal of Mathematical Sociology,
23(3):181–201, 1999.

[8] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. JCSS, 31(2), 1985.

[9] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms.
JACM, 34:596–615, 1987.

[10] L. C. Freeman. Centrality in social networks: Conceptual
clarification. Social Networks, 1:215–239, 1978.

[11] D. B. Johnson. Efficient algorithms for shortest paths in
sparse networks. Journal of the ACM, 24(1):1–13, 1977.

[12] U. Kang, S. Papadimitriou, J. Sun, and H. Tong.
Centralities in large networks: Algorithms and
observations. In SDM, 2011.

[13] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In WWW, 2010.

[14] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In OSDI,
2012.

[15] A. S. Maiya and T. Y. Berger-Wolf. Online sampling of
high centrality individuals in social networks. In PAKDD,
2010.

[16] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of
approximations for maximizing submodular set functions.
Math. Prog., 14, 1978.

[17] K. Okamoto, W. Chen, and X.-Y. Li. Ranking of closeness
centrality for large-scale social networks. Frontiers in
Algorithmics, 5059, 2008.

[18] H. Oktay, A. S. Balkir, I. Foster, and D. D. Jensen.
Distance estimation for very large networks using
mapreduce and network structure indices. In Workshop on
Information Networks, 2011.

[19] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A
fast and scalable tool for data mining in massive graphs. In
KDD, 2002.

[20] A. E. Sariyüce, E. Saule, K. kaya, and U. V. Catalyürek.
Streamer : A distributed framework for incremental
closeness centrality computation. In IEEE Cluster 13
Conference, 2013.

[21] Y. sup Lim, B. Ribeiro, D. S. Menasche, P. Basu, and
D. Towsley. Online estimating the top k nodes of a
network. In IEEE NSW, 2011.

694

