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ABSTRACT 
Traditional public health surveillance systems would benefit from 
integration with knowledge created by new situation-aware realtime 
signals from social media, online searches, mobile/sensor networks and 
citizens’ participatory surveillance systems. However, the challenge of 
threat validation, cross-verification and information integration for risk 
assessment has so far been largely untackled.  

In this paper, we propose a new system, medi+board, monitoring 
epidemic intelligence sources and traditional case-based surveillance to 
better automate early warning, cross-validation of signals for outbreak 
detection and visualization of results on an interactive dashboard. This 
enables public health professionals to see all essential information at a 
glance. Modular and configurable to any ‘event’ defined by public 
health experts, medi+board scans multiple data sources, detects 
changing patterns and uses a configurable analysis module for signal 
detection to identify a threat. These can be validated by an analysis 
module and correlated with other sources to assess the reliability of the 
event classified as the reliability coefficient which is a real number 
between zero and one.  Events are reported and visualized on the 
medi+board dashboard which integrates all information sources and can 
be navigated by a timescale widget.   

Simulation with three datasets from the swine flu 2009 pandemic (HPA 
surveillance, Google news, Twitter) demonstrates the potential of 
medi+board to automate data processing and visualization to assist 
public health experts in decision making on control and response 
measures. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences - Medical 
information systems. 

General Terms 
Experimentation, Algorithms. 

Keywords 
Epidemic Intelligence, Outbreak Detection, Cross-validation, real-time 
data scanning, Dashboard.  

 

1. INTRODUCTION 
Prevention, management and control of infectious diseases remain on 
the forefront of public health activities. The importance of this role for 

citizens worldwide has been recently highlighted by outbreaks 
such as SARS in 2003 and swine flu in 2009. However, the 
potential of an increasingly growing amount of information on 
the Internet for digital epidemiology has been substantially 
increased with the arrival of social media and Web 2.0 platforms 
enabling near real-time event tracking. For example, this applies 
to large population movements which can be monitored by 
exploiting geographic and spatiotemporal tags. 

Digital epidemiology harvesting digital data sources for public 
health purposes brings great potentials and new challenges [1], 
and creates new possibilities for the use of Big Data [2]. 
Complementing traditional case-based microbiological 
laboratory reports and syndromic surveillance, event-based 
surveillance is monitoring unstructured events, such as news, 
and has been a significant component of public health early 
warning and response over the last decade (GPHIN, MedISys).  

Further, the roadmap for digital epidemiology incorporating new 
data sources was recently outlined [3] discussing a set of  data 
streams ranging from traditional surveillance datasets, lab-
confirmation reports and citizens participatory surveillance 
systems (such as Influenzanet) to real-time situation-aware geo-
located information. 

In this paper, we first turn to an examination of the background 
in section 2. In section three, we present the medi+board public 
health dashboard vision and elaborate on the design of its 
infrastructure in section 4. Section 5 brings implementation 
details, followed by a demo conducted with data from the swine 
flu outbreak of 2009 in section 6. Future work is presented in 
section 7 while section 8 concludes.  

2. BACKGROUND 
Recently, the role of public health and the importance of 
utilizing digital information significantly increased due to global 
travel and the emergence of new diseases (such as SARS). 
Traditionally, case-based and syndromic surveillance relies on 
national surveillance systems with established bottom-up 
reporting processes from local through regional to national and 
international levels. However, the process of reporting, collating 
and analyzing data normally takes several weeks which hinders 
a targeted response in the early stages of a pandemic. The 
emerging discipline of Epidemic Intelligence (EI) is made 
possible by geographic and spatiotemporal tags found in digital 
communication and could help to overcome this limitation. 
However, current EI systems typically focus on one particular 
source which makes their application somewhat limited 
(BioCaster, Argus, GPIHN, HealthMap, MedISys, ProMED-
mail, Puls). This was identified by a comparative study on the 
detection of A/H5N1 Influenza Events [4] which also 
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highlighted the need for “more efficient synergies and cross-fertilization 
of knowledge and information”, which is what we are concerned with.   

The roadmap for a digital disease surveillance dashboard incorporating 
new data sources was recently outlined [3] highlighting six types of data 
sources for EI: news/online media, digital traces, Pro-Med, labs/clinical 
reports, participatory systems and social media. 

For over a decade, online media has been the prime source for epidemic 
intelligence. Tools such as Global Public Health Intelligence Network 
(GPHIN) [5], developed by Health Canada and in use by the WHO, and 
Medisys1 gather news from global media to identify disease outbreaks 
threats using multi-lingual natural language processing and 
appropriately weighted set of keywords, categories and taxonomies 
[6,7]. An unstructured event-based reports from GPHIN [5], HealthMap 
[8] and EpiSPIDER2, were analyzed for global infection disease 
surveillance and future development outlined in Keller et al [9]. News 
are however not suitable for early warning systems as it usually takes 
several days for an event to be reported. Secondly, not all countries 
exhibit free-press coverage, making official news unreliable and causing 
significant delays. This increases the importance to rely on other sources 
such as social media in these cases.  

Recently, digital traces have become essential signal sources including 
search keywords, loyalty cards, sensor networks, drugs purchases and 
mobile phone data. Regrettably, these systems typically rely on non-
publicly available, company internal datasets and are thus are not easily 
available for research. Google’s Flu Trends [10] is an example of this 
kind of proprietary work which provides no means for verification or 
direct comparison. Ginsberg et al [11] illustrated an automated method 
for defining ILI-related keywords without prior knowledge of influenza. 
A similar study, investigating search keywords and online behaviour by 
infection experts was conducted by Wiseman et al identifying 
information needs during major outbreaks from weblog searches [12, 
13].  

Thirdly, the email-based system ProMED-mail3 has been a long-
established informal source of emergencies discussed by infectious 
disease professionals. It’s ‘informality’ stems from the fact that as 
human moderated data source it is subject to bias and has a 
comparatively low coverage.   

Labs and clinical reports are traditionally regarded as the backbone of 
surveillance systems. Microbiological laboratories contribute to 
surveillance by confirmation of unusual disease patterns and specimen 
(albeit at the expense of timeliness).  

Participatory systems (web-based or mobile) require pro-active 
participation in terms of regularly sharing disease symptoms collected in 
a structured format (examples are the above mentioned multilingual 
EpiWorks project Influenzanet4). Unlike the popular social media 
platforms, participatory systems typically limit submissions to a set of 
symptoms, thus sacrificing coverage at the expense of making user 
contributions easier.   

Social media sources have revolutionized the speed and timeliness of EI. 
Information posted on twitter describes real time activity unlike queries 
collected by search engines. Twitter can be used to both track [14, 15] 
and even predict [16] the spread of infectious diseases as we 
demonstrated in our previous study. Lampos [17] used their technique of 
supervised learning for ‘nowcasting’ events by exploring geo-located 

                                                                 
1 http://medusa.jrc.it/medisys/homeedition/en/home.html 
2 http://www.epispider.org/    
3 http://www.promedmail.org/ 
4 http://www.influenzanet.eu/  

Twitter signal. ILI were tracked and correlated with CDC 
surveillance data also by Culotta [18] and a dengue fever was 
tracked using Twitter in Brazil by Gomide et al [19]. Recently, 
Salathe et al illustrated the role of digital epidemiology and 
Twitter for understanding the new strain of Influenza A (H7N9) 
and the coronavirus (MERS-CoV) [20]. Signorini et al evaluated 
user sentiment during the swine flu outbreak in the US and 
influenza like illness (ILI) reported disease levels [21].  

3. medi+board  PUBLIC HEALTH 
DASHBOARD 
In this section, we present the overview of the integrated digital 
public health dashboard and the infrastructure required for data-
mining, threat detection, verification, correlation of threats to 
create  ‘events’ and subsequent reporting.  

The framework illustrated in Figure 1 which was defined in [3] 
depicts processes and components required for automated 
monitoring across multiple realtime data channels.  
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Figure 1. Integrated Digital Public Health 

 

The infrastructure of our new medi+board system is illustrated 
in Figure 2.  

This diagram shows the basic workflow of tracking data sources 
(as examples, Twitter, Medisys, HPA), scanning for signals, 
correlating with signals from other streams and generating 
events that are reported to the dashboard. As the framework is 
fully generic, the public health expert configures the system for 
use by defining the components using event templates that 
describe the logic of the components for tracking a particular 
disease according to available datasets and the ordering of pre-
determined steps for risk assessment. These can include further 
investigation of data as well as organizing an emergency 
response or publicity. These event templates can be shared with 
users of equivalent permission once created, thus enabling the 
standardization of response procedure. 
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Figure 2. medi+board system architecture 

3.1 Signal Detection, Analysis and Correlation 
Monitoring and detection of multiple channels requires different 
computational methods according to their structure and reliability – 
these are modularly provided (data mining, NLP, ML, data science, 
complex systems, social networks, etc). Newly identified signals in each 
data stream are validated by the system during which their reliability 
coefficient is adjusted. Once this source-specific processing has 
completed, results are cross-correlated with other data signals. During 
this process, reliability is adjusted again and events are formed that 
reflect situation awareness. This may even include cross-border 
detection as GPS-enabled streams could identify clusters of threats that 
would not traditionally trigger alerts in either region/country. 

Our algorithm is expressed in the form of a directed acyclic graph 
which can be programmed by the analyst in a visual designer to prevent 
the need of writing code (Figure 3). We believe this approach makes 

understanding an algorithm provided by another analyst much 
easier as the graph itself directly visualizes the computational 
process. Apart from the resulting increase in productivity, every 
node encapsulates a specific step in the algorithm with its own 
distinct set of properties such as the reliability coefficient that 
can be manipulated directly in the designer. This makes 
tweaking settings more intuitive and illustrates how generic and 
customizable the algorithm is to aid in the solution to similar 
problems. Furthermore, we believe our graphs can be exploited 
to allow for novel approaches to debugging in future. 

 
 

Figure 3. A simple example of an algorithm defined as a 
directed acyclic graph 

3.2 Dashboard Visualization 
Events verified by the processing system are forwarded to the 
dashboard and, according to the event template, presented in the 
appropriate visual format. Depending on the needs of the public 
health expert using the system, requests for further data or 
processing can be initialized as required. 

Further dashboard segments include maps and other appropriate 
spatiotemporal visualization components, discussion forums for 
experts, reports and press releases which are all easy to navigate 
using an interactive timeline that forms the central 
organizational unit for data display. Figure 4 illustrates our 
design of the dashboard. 
 

 
Figure 4. The medi+board dashboard screen 
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4. medi+board INFRACTRUCTURE 
The overall infrastructure is illustrated below. It is designed to be fault-
tolerant as all messaging is performed via scalable queues. 

 
Figure 5. medi+board system architecture 

 

As illustrated in Figure 5 the medi+board system is designed as a 
Windows Azure application. This enables it to scale relative to the 
amount of incoming data. Moreover, this scaling is dynamic and 
happens automatically, allowing us to leverage the full power of cloud 
computing. 

We use the MapReduce paradigm to divide computation across nodes in 
order to achieve scalability while simultaneously improving reliability 
and fault-tolerance. Results are then aggregated in the dashboard. 
Mapping is achieved by having each individual node run an instance of 
our processing core that is responsible for detecting patterns such as 
potential correlations and formulating events accordingly. Flexibility 
and extensibility to add new diseases and monitor new trends is one of 
the key features of medi+board enabled by MapReduce and nodes can 
be programmed by the user by defining directed acyclic graphs. Each of 
these graphs can be evaluated independently as they are not allowed to 
reference each other. There can however be as many different instances 
as required, e.g. each looking for patterns pointing to a different kind of 

disease or symptom. Furthermore, other individual components 
of the system which are to be added in future (e.g., natural 
language processing) could simultaneously and independently 
work on incoming data items. The actual real-time processing 
and the dashboard represent the reduction step. 

The dashboard itself is realized as an html5/JavaScript web 
application, meaning that it runs across different operating 
systems and does not require installation or local storage. One of 
the advantages of this model is that the public health 
professional is freed from the constraints of working in one 
fixed location.  

Though the current iteration of the system is in the alpha-stages 
of its development, running simulations on data from the 2009 
swine flu outbreak presented no computational problems for us. 
 

5. SWINE FLU 2009 SIMULATION DEMO 
In this section we present a demonstration of medi+board 
functionality on a simulation of the swine flu pandemics in 2009 
made by running the system in desktop mode.  We used three 
datasets: the HPA surveillance data from the Royal College of 
General Practice (RCGP), Google News API, and Twitter 
dataset collected during the pandemics in 2009 [12, 16, 22, 23].  

During the simulation, potential threats are identified by 
scanning data from external files (rather than real-time sources), 
analyzing threats by a daily comparison of the number of cases 
against a threshold coefficient defined for each data source 
according to its reliability and a cross-correlation coefficient for 
each combination of sources to decrease the chance of false 
positives. Finally, analyzed and cross-correlated threats produce 
events that are updated on a daily basis as more information 
becomes available.  The dashboard shows the three data streams 
in a dynamic way while statically illustrating other important 
segments of data, as if these were available, at two key points of 
the pandemics (containment phase in the UK when the 
demographics study of initial cases ‘FF100’ was conducted; and 
control phase in the autumn monitoring the distribution of the 
anti-virals as well as calls to the dedicated “fluline”).  

We show the dashboard displaying the results of this analysis in 
the “containment phase” in Figure 6. As explained in the 
previous section, the dashboard itself is dynamic, i.e. it is 
constantly updated as new data becomes available. 

 

 
Figure 6. medi+board dashboard for the 2009 data set 
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6. FUTURE CHALLENGES 
In future we plan to explore using additional data sources, surveillance 
datasets and signals identified by other public health agencies, as well as 
data from the Department of Health and the WHO. Furthermore, cross-
validation of signals remains a challenge to which we hope our graph-
based algorithms can make a significant contribution. The integration of 
accurate disease models and the spread of infection due to human travel 
into the validation algorithm is another key area of our future research. 

Finally, it is worth noting that a large amount of data is not publicly 
available. There are two general reasons for this. Social media networks 
usually require explicit consent for making information visible to 
generic data mining algorithms (e.g. Facebook), thus, only public pages, 
such as brands, venues, agencies etc. could be tracked for EI purposes. 
Secondly, surveillance databases are legally ‘country-owned’ and 
require permissions for sharing even with the ECDC and the WHO (e.g. 
TESSY dataset). While the former problem is a fundamental issue of 
personal freedom and there are good reasons for keeping data private, 
the latter is predominantly political. We hope to make a strong case for 
collective epidemiological intelligence in order to combat diseases that 
pose a very real threat to the survival of the human race. 

This means that sharing data in a machine readable format, in line with 
the Linked Data initiative in the UK (in the form of non-identifiable 
epidemiological datasets) at a national and international level is 
desirable. Furthermore, we strongly believe that given appropriate 
mechanism for the protection of privacy and personality, even company-
internal datasets (such as mobile and pharmaceutics industry) could be 
exploited for research purposes. 

 

7. CONCLUSION 
Public health informatics is the driving force behind a paradigm shift in 
public health services. Realtime big data sources, citizen participatory 
systems and mobile digital traces generate a stream of location- and 
time-specific data to enhance traditional medical surveillance systems. 

In this paper we introduced medi+board – a public health dashboard 
screening real-time data sources for early warning of infectious disease 
threats, cross-validating sources by correlating data streams and 
displaying results in an integrated format presented by means of an 
interactive dashboard. The system aims to significantly simplify the task 
of investigation and control of infectious diseases by public health 
experts.  

Demonstrated on three data streams from the swine flu 2009 pandemic 
(RCGP surveillance in the UK, Google News and Twitter streams), the 
medi+board integrated public health dashboard provides a simulation 
illustrating how such system could substantially enhance future public 
health operations.  
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