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ABSTRACT
Social media has been considered as a data source for track-
ing disease. However, most analyses are based on models
that prioritize strong correlation with population-level dis-
ease rates over determining whether or not specific individ-
ual users are actually sick. Taking a different approach, we
develop a novel system for social-media based disease detec-
tion at the individual level using a sample of professionally
diagnosed individuals. Specifically, we develop a system for
making an accurate influenza diagnosis based on an individ-
ual’s publicly available Twitter data. We find that about
half (17/35 = 48.57%) of the users in our sample that were
sick explicitly discuss their disease on Twitter. By develop-
ing a meta classifier that combines text analysis, anomaly
detection, and social network analysis, we are able to diag-
nose an individual with greater than 99% accuracy even if
she does not discuss her health.
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1. INTRODUCTION
Disease surveillance systems – which traditionally rely on

reports from medical practitioners – are an important part of
disease control. However, these traditional surveillance sys-
tems are often costly and slow to respond [3, 8, 13]. The
widespread adoption of the Internet by the general pub-
lic has provided opportunities for the development of novel
disease surveillance methods. Compared to traditional sys-
tems, where data is provided by medical diagnosis, these
new systems provide either semi-automatic – through long
term self reporting systems [10, 16] – or fully automatic –
through data mining search queries or social media [1, 2, 4, 5,
11] – disease surveillance. While these methods are cheaper,
faster and cover a larger number of individuals than tradi-
tional systems, one can be less confident about their results
than the results from a system based on professional diag-
nosis. In this paper, we develop a system that performs long
term surveillance on Twitter users with classifiers trained on
professionally diagnosed data that combines the advantages
of all three of these systems.

Previous work with data mining social media has focused
on methods to replicate the patterns found in traditional
surveillance networks [1, 4, 5]. However, these methods have
several limitations. First, they generally do not differentiate
between an individual with an illness and an individual that
is worried about an illness; which may have resulted in a
predicted influenza rate that was much higher then the ac-
tual 2013 influenza rate [1, 2, 9, 11]. Second, these methods
cannot be extended to areas without a previous surveillance
network to train the model. Finally, these methods are fun-
damentally incapable of detecting diseases that do not show
strong spatial-temporal patterns such as mental illness, obe-
sity or Parkinson’s disease. Instead of top-down methods to
measure levels of disease in a population, we approach this
problem from the bottom-up. This addresses all three of
these issues: we only diagnose individuals that are likely to
have the disease, and not just interested in the disease; we
do not require previous data when applying these methods
to new problems or locations; and these methods can eas-
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ily generalize to diseases that do not show strong spatial or
temporal patterns because we focus on an individual level.

Participatory systems, such as InfluenzaNet or Flu Near
You, use self-reported symptoms to diagnose an individual
and also work from a bottom-up approach [10, 16]. These
systems have the potential to be better than traditional
surveillance systems because they update in near-real-time
and can detect cases even when the user has not gone to their
doctor. These systems require the user to sign up which al-
lows for long term studies which are not normally able to be
done with Tweets or search queries. However this reduces
the number of users studied compared to data mining ap-
proaches. For example, Flu Near You had a total of 9,456
users report during the week ending on 29 December 2013.
Marquet et al. [10] have shown a large drop out rate with
only 53% of users participating for five or more weeks. While
this amount of data is sufficient for many purposes, a system
based on Twitter’s millions of active users would open the
door to more applications.

We develop such a system as follows. In section 2 we de-
scribe the collection of an individual’s professional diagnoses
of influenza and the collection of their Twitter information.
In section 3 we consider extracting textual information from
Tweets as a method for diagnosing influenza. Previous work
has focused on this area. Additionally, we consider other
methods for detection. In section 4 we consider anomalies
in a user’s Tweeting behavior as a signal for diagnosing in-
fluenza. In section 5 we extend these methods to other users
on a person’s social network to diagnose the original person.
In section 6 we aggregate the results of the previous classi-
fiers to develop a more accurate meta-classifier.
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Figure 1: The professionally diagnosed Influenza cases dur-
ing the 2012-2013 season in our sample.

2. DATA COLLECTION

2.1 Medical Records
We received information from the Pennsylvania State Uni-

versity’s Health Services about 104 individuals that were di-
agnosed with influenza by a medical professional during the
2012-2013 Influenza season. Due to privacy concerns, we
were limited to knowing which month an individual was di-
agnosed (see figure 1). For comparison, we also obtained in-
formation from 122 individuals that were not diagnosed with
influenza during this time. The participants were mostly
students (72% were between the ages of 18 and 22) and

slightly more female than expected (133/226 ≈ 58.8%.) Data
collection was approved through the Pennsylvania State Uni-
versity’s IRB (approval #41345.) Twitter handles were avail-
able for 119 of these individuals.

2.2 Twitter Records
While we received a total of 119 Twitter accounts, 15 were

discarded because the associated accounts were either non-
existent, banned or private. For each of the remaining 104
accounts, we pulled their profile information, their friends
and followers information, their most recent 3000 tweets,
and their friends’ and followers’ profiles and tweets. Some
users did not tweet during the month that they were sick;
we kept those accounts as part of the control group. We
were limited to the most recent 3000 tweets by Twitter’s
time line query, but this only effected two accounts – both
of which posted multiple times per hour and were thrown
out because we could only look back a few days.

We collected data through the Twitter API. Tweets, pro-
file and follower information queries have separate rate lim-
its and were collected in parallel. Since users continued to
Tweet during data collection, each account was queried no
more than once every three days for new Tweets. When
all accounts could not be queried due to rate limiting, the
accounts that had been queried the least recently were up-
dated. Additionally, the 104 seed accounts collected above
were given higher priority over their friends and followers.
In total, we collected 37,599 tweets from the seed accounts
and 30,950,958 tweets from 913,082 accounts that they ei-
ther followed or were followed by.

3. TEXT BASED SIGNALS
In this section, we consider diagnosis based on the content

of a user’s tweets. Such analysis can be approached by key-
word analysis, where the presence of absence of a keyword
predicts disease, or through text classification, where the
tweets are classified as being about disease or not about dis-
ease. We begin by dividing the tweets into two sets: tweets
that were posted the same month that a user was sick and
tweets that were posted other times. We find a total of 1609
tweets from 35 users in the first category.

Word Total Odds Ratio Significance
flu 25 40.14 <0.0001

influenza 1 0.00 0.8325
sick 128 5.22 <0.0001

cough 18 4.48 0.0094
cold 82 1.45 0.4154

medicin 9 11.20 <0.0001
fever 13 26.20 <0.0001

Table 1: Probability of keywords being Tweeted by a user
during the month that he or she was diagnosed with in-
fluenza.

First, we use the occurrence or absence of keywords as fea-
tures for classification. A set of keywords are defined that are
possibly signals of influenza. We chose {flu, influenza, sick,
cough, cold, medicine, fever} as our set of keywords. These
keywords include the names and symptoms of the illness in
addition to “medicine” and serve as a set of keywords that
may have been chosen by a domain expert. We use Fisher’s
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exact test to compare keyword occurrence in months when
the user is sick or not sick and find a significant effect for
six of the seven keywords (See table 1). Additionally, we
try algorithmically selecting keywords by first finding the
12,393 most common keywords in the data set. We then
rank them based off of information gain on predicting in-
fluenza and choose the top 10, 100 or 1000 keywords from
the list. In all of these cases, we pre-process the data by
tokenizing the text on spaces, tabs and line breaks and the
characters “.,;’:”()?!/\”, remove stop words1, perform Porter
stemming [12] and convert the text to lower case. We use
Naive Bayes, random forest, J48 (a Java implementation of
C4.5), logistic regression and support vector machines to
classify a user as being sick in a given month or not (see
figure 2).
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Figure 2: The ROC of classifiers that use hand chosen key-
words (a) and algorithmically chosen keywords (b) to de-
termine if an individual is ill. The top 10 (solid line), 100
(dashed line) and 1000 (dotted line) were selected as the
features.

Second, we consider analysing the content of a tweet’s text
for messages giving hints about being sick such as “another
doctor’s appointment Wednesday ... have to #treatmyflu”
or “I didn’t realize how bad it feels to have the flu, should
have gotten a flu shot2” that would not be detected through
simple bag-of-words techniques. Computational approaches
for natural language processing are available. However, be-
cause our dataset is relatively small, we use a ‘human’ clas-
sifier by hand rating all 1609 tweets that were posted by
individuals during the time of their illness. We also sam-
ple a randomly selected set of 1609 tweets from times when
the users did not have influenza as a control. We find 58
tweets from 17 (17/35 = 48.57%) individuals in our study
that are about the user being sick. We also find zero tweets
about the user having influenza during times when they did
not have influenza. Because humans are very good at ex-
tracting information from text, hand rating tweets allows for
an approximately 100.0% accurate classification, although it
clearly does not scale well. Extracting information from text
using machine learning is a complex problem where finding
solutions that perform as well as humans is rare. Thus, the
human classifier gives us an upper limit to the accuracy of
a health monitoring system based off of tweet classification
(see table 2.)

4. FREQUENCY BASED SIGNALS
1Stop words were taken from Weka’s stop list version 3.7.10.
2These examples are based off of real tweets, but changed
to keep our participants anonymous.

Sick Not Sick
17 18 Sick
0 66 Not Sick

Table 2: Confusion matrix of a Tweet-Classification based
diagnosis system. Rows are of true values, columns are of
predicted values.

In addition to illness affecting the content of individuals’
tweets, it is likely that illness also affects the rate at which in-
dividuals tweet. To detect this, we perform one-dimensional
anomaly detection on each user’s monthly tweeting rate as
follows. First, we calculate the number of tweets in each
month in the study period and discard any months where
the user tweets less than ten times. This avoids issues caused
by the user starting or stopping their use of Twitter. We
then calculate the z-score of the tweeting rate of the month
that the user is ill by

z =
|x− x̄|

ŝ
(1)

Where x̄ and ŝ are the estimated mean and standard de-
viation of the user’s tweeting rate for each month during the
study [6]. We repeat this process for months when the user
is not sick. We then classify the user as sick if z > 1.411
where 1.411 was chosen through leave one out cross valida-
tion. We find a significant difference between the z-scores
for months when a user had influenza and months when the
user did not (p = 0.01303, two-sample Kolmogorov-Smirnov
test). Most of the time individuals are not sick (219 / 258 =
84.88% of the months), resulting in a highly biased sample.
Thus we optimize based on the F1 score instead of accuracy.
The optimal z-score cutoff results in an area under the ROC
curve of .6218 and F1 = 35.0%. (See table 3.)

Sick Not Sick
14 25 Sick
27 192 Not Sick

Table 3: Confusion matrix of the classifier based on anoma-
lous tweeting rates. Rows are of true values, columns are of
predicted values.

5. NETWORK BASED SIGNALS
Even if a user is not currently active on Twitter, users on

her social network may give clues to her health status. Twit-
ter’s social network is one directional, allowing for users to
follow other users without the other users having to follow
them back. Accounts that follow a user are referred to as her
‘followers,’ and accounts that a user follow are referred to as
her ‘friends.’ We consider all text that a user’s friends or fol-
lowers tweeted and perform keyword analysis. The analysis
was performed the same way as we analyzed the user’s tweets
in section 3, except we normalize the counts here by the to-
tal number of characters her followers or friends tweeted.
This controls for the number and activity of a users friends
or followers, which should not have an effect on her health
status. We find that most of the tested classifiers are able
to detect a signal in both the user’s followers’ and friends’
streams (see figure 3.)
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Figure 3: The ROC of classifiers based off Tweets from (a)
accounts that follow a user and (b) accounts that a user
follows. Line coloring and style are equivalent to figure 2.

We further analyse the strength of these classifiers by
building each classifier using 10 fold cross validation and cal-
culate their performance by measuring area under the ROC
curve. We repeat this 100 times to generate a distribution
of each classifier’s performance. We then perform an anal-
ysis of variance test to examine the differences between the
sources of data (followers or friends), the number of key-
words used and the classifier’s algorithm (see table 4.) We
find that the choice in classifier and the length of the fea-
ture vector have a significant effect on performance. We find
that classifiers that use tweets from accounts that follow the
user are significantly better at diagnosing the user than clas-
sifiers that use tweets from accounts that the user follows.
This may be because Twitter users often follow celebrities
and news organizations – and celebrities and news organiza-
tions rarely follow personal Twitter accounts – which could
introduce excess noise.

Df Sum Sq F value Pr(>F)

Source 1 107.16 1290.82 <2−16

Keyword Size 1 72.19 869.66 <2−16

Classifier 3 752.55 3021.61 <2−16

Residuals 109194 9602

Table 4: Results from an analysis of variance of the area
under the ROC curve for classifiers based on tweets from an
individual’s social network. Factors are whether the data is
from the user’s friends or followers, the number of keywords
chosen and the classifier.

6. META CLASSIFIER
So far we have considered five separate methods for de-

tecting illness based off of a user’s Twitter activity: hand-
chosen keyword analysis, datamined keyword analysis, hand
classified tweets, anomaly detection and network analysis.
However, there is no reason that we cannot combine these
methods to get a stronger signal. For example, while min-
ing the user’s text is the best of the five methods, she may
stop tweeting while sick, which would be detected by the
frequency-based anomaly classifier. Aggregating multiple
classifiers by a ‘meta-classifier’ has been shown to be an
effective method for increasing classification accuracy [14,
15].

We start by selecting the classifier from each of the pre-
vious five approaches that has the largest area under the

Classifier Area under ROC Accuracy
AdaBoost .9961 99.53
Bayesian .9078 92.08

Decision Tree .9877 99.22
Logit Boost .9986 99.22

Weighted Voting .9783 93.17
Baseline .8544 89.72

Table 5: Performance of the meta classifiers. The presented
baseline is the classifier based on datamined keywords – the
highest preforming individual classifier.

ROC curve (see figure 4.a.) We then use the predicted dis-
tributions from these classifiers as the feature vector for the
meta classifier. We use Ada Boost, Bayesian classification,
J48 decision trees, logit boost, and weighted voting to evalu-
ate the meta-dataset. We then evaluate these methods with
leave-one-out cross validation and see an increase in area
under ROC and accuracy compared to the best individual
classifier (see figure 4.b.) We find that AdaBoost has the
highest accuracy (99.53%) and logit boost has the highest
area under it’s ROC curve with .9986 (see table 5.)
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Figure 4: The accuracy of the previous classifiers (a) and
the accuracy of various classifiers that use the previous clas-
sifier’s results as features (b).

7. CONCLUSIONS
In this paper, we have shown that it is possible to diagnose

an individual from her social media data with high accuracy.
Computational approaches to aid in disease diagnosis has
been approached before, however they have been developed
with a medical setting in mind. That is, the question ad-
dressed was “can we diagnose an individual based off data
gathered from medical tests run on her?” instead of “can we
diagnose an individual solely based off of publicly available
social media data?” While we focus on the relatively benign
case of remotely reconstructing a confidential diagnosis of
influenza, these methods could also be applied to stigma-
tized diseases, such as HIV, where being able to determine
if an individual is HIV positive without her knowledge and
with only her Twitter handle could result in serious social
or economic effects. Half of the users explicitly stated that
they were sick, and we were able to confidently determine
illness in the other half of the cases through their data. It
would seem that simply avoiding discussing an illness is not
enough to hide one’s health in the age of big data.
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Keyword Ratio
flu 34.424

health 11.360
sick 5.019

track 10.952
stud 3.508

asshol 9.090
ton 9.090

particip 20.667
salt 20.667

recov 40.118
fuck 2.963
sham 13.64
row 10.180
win 2.947
rt 3.077

cont.
walk 3.077
childr 6.820
incred 6.820
meal 6.820

longer 6.820
succes 26.765
accis 26.765

holida 26.765
luv 26.765

oblig 26.765
path 26.764
pract 26.764
prayer 26.765
reserv 26.765
riot 26.765

Table 6: The thirty keyword stems with the highest positive
predictive power ranked by significance. The Twitter API
limits searches to at most thirty keywords. Ratio is calcu-
lated as the rate of occurrence when a user is sick over the
rate when a user is not sick.
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disease detection using twitter. In Proceedings of the
22nd International Conference on World Wide Web
Companion, WWW ’13 Companion, pages 699–702,
Republic and Canton of Geneva, Switzerland, 2013.
International World Wide Web Conferences Steering
Committee.

[2] D. Butler. When Google got flu wrong. Nature,
494(7436):155–156, Feb. 2013.

[3] E. H. Chan, T. F. Brewer, L. C. Madoff, M. P.
Pollack, A. L. Sonricker, M. Keller, C. C. Freifeld,
M. Blench, A. Mawudeku, and J. S. Brownstein.
Global capacity for emerging infectious disease
detection. Proceedings of the National Academy of
Sciences, 107(50):21701–21706, 2010.

[4] A. Culotta. Towards detecting influenza epidemics by
analyzing Twitter messages . In the First Workshop,
pages 115–122, New York, New York, USA, 2010.
ACM Press.

[5] S. Goel, J. M. Hofman, S. Lahaie, D. M. Pennock, and
D. J. Watts. Predicting consumer behavior with Web
search. Proceedings of the National Academy of
Sciences of the United States of America,
107(41):17486–17490, Oct. 2010.

[6] F. E. Grubbs. Procedures for Detecting Outlying
Observations in Samples. Technometrics, 11(1):1–21,
1969.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[8] D. L. Heymann and G. R. Rodier. Hot spots in a
wired world: {WHO} surveillance of emerging and
re-emerging infectious diseases. The Lancet Infectious
Diseases, 1(5):345 – 353, 2001.

[9] A. Lamb, M. J. Paul, and M. Dredze. Separating fact
from fear: Tracking flu infections on twitter. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 789–795, Atlanta, Georgia, June
2013. Association for Computational Linguistics.

[10] R. L. Marquet, A. I. Bartelds, S. P. van Noort, C. E.
Koppeschaar, J. Paget, F. G. Schellevis, and
J. van der Zee. Internet-based monitoring of
influenza-like illness (ILI) in the general population of
the Netherlands during the 2003-2004 influenza
season. BMC public health, 6(1):242, 2006.

[11] D. R. Olson, K. J. Konty, M. Paladini, C. Viboud, and
L. Simonsen. Reassessing Google Flu Trends Data for
Detection of Seasonal and Pandemic Influenza: A
Comparative Epidemiological Study at Three
Geographic Scales. PLoS computational biology,
9(10):e1003256, Oct. 2013.

[12] M. F. Porter. An algorithm for suffix stripping.
Program: electronic library and information systems,
14(3):130–137, 1980.
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APPENDIX
A. KEYWORD RECOMMENDATIONS

While our system should be trusted more than one based
simply off of aggregated tweets, it is more computationally
intensive than simply pulling data from a keyword stream.
These systems require the user to select a specific set of
keywords before data collection can begin. Keywords repre-
senting symptoms such as “flu”, “cough”, “sore throat”, and
“headache”are often chosen. We suggest the thirty keywords
with the highest positive predictive value (see table 6) be
chosen as the parameters for a keyword stream. In addition
to keywords related to symptoms (e.g. “flu”or“sick”) we also
find keywords related to treatments (e.g. “health,”“prayer”
or “recovery”) and keywords related to negative mood (e.g.
vulgarities) to be more commonly tweeted when a user is ill.
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