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ABSTRACT

Geographic locations of users form an important axis in
public polls and localized advertising, but are not available
by default. The number of users who make their locations
public or use GPS tagging is relatively small, compared to
the huge number of users in online social networking ser-
vices and social media platforms. In this work we propose
a new framework to infer a user’s main location of activi-
ties in Twitter using their textual contents. Our approach
is based on a probabilistic generative model that filters lo-
cal words, employs data binning for scalability, and applies
a map projection technique for performance. For Korean
Twitter users, we report that 60% of users are identified
within 10 km of their locations, a significant improvement
over existing approaches.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications;
J.4 [Computer Applications|: Social and Behavioral Sci-
ences

Keywords

Microblog, location estimation, text mining

1. INTRODUCTION

In the past few years online social media have risen as a
key venue for communicating with the public and monitor-
ing public opinions. In order to weigh in the public opinions
expressed on such social media as much as traditional poll
results, the representativeness of the opinions has to be ac-
counted for. Geographic location is one of the key factors
in the representativeness. Yet, most users of online social
media do not make their geographic location information
public. For example, only 34% of Twitter users have mean-
ingful location information in their profiles, and less than
1% of Twitter users tag their tweets with GPS locations [7,
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8]. Frank et al. show that a large portion of tweets were gen-
erated near a user’s home or workplace [5]. As most users
in the US commute less than 20 miles a day and in Korea
12.5 km [10]', we can interpret the main point of activities
on Twitter as the representative locale of the user.

In this work we propose a new approach to infer a Twit-
ter user’s main point of activities. Previous work has inves-
tigated spatial correlation between web resources and geo-
graphic locations [3, 7]. From GPS-tagged tweets we extract
the spatial correlation between words and GPS locations and
refine the city-level granularity of previous work to 500 m
distance bins. We use data binning to reduce computational
cost. Also, computing the Euclidian distance from the lon-
gitudes and latitudes will cause distortion and we use map
projection to convert bewteen coordinates of longitudes and
latitudes and of the 3D Euclidian space. We verify the accu-
racy of our approach with large-scale data of Korean Twit-
ter users. Our method estimates 74.9% of user locations
correctly within 10 km of their main locations.

The rest of the paper is organized as follows. In Sec-
tion 2 we review related work, and data collection method-
ology is in Section 3. Section 4 and Section 5 demonstrate
the background of probabilistic model and inferencing ge-
ographic distribution of words, respectively. In Section 6
we present method of inferring user location. In Section 7,
our algorithm is introduced. In Section 8, we present an-
other method inferring user location using friends’ words.
We conclude in Section 9 with a brief discussion for future
work.

2. RELATED WORK

Geographic locations of users on online social networking
services are of paramount importance in marketing, adver-
tising, and public opinion polling. Yet most users do not
specify their towns of residence or use the GPS tagging fea-
ture. From the few users with annotated locations and GPS
tagged status updates, inference techniques mine location
information of unknown users [2, 3, 8, 11].

One set of location inference techniques relies on the so-
cial network of users. Sadilek et al examine the location
information and the social network of users with annotated
locales and predict the location of their friends using a dy-
namic Bayesian network [12]. Jurgens et al utilize reciprocal
relationships on Twitter and estimate user locations. They
report a success ratio of 74% on inferring users’ locations
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on Twitter even without the textual contents in social me-
dia [8]. The authors argue that a user’s network in social
media is a pertinent source of information for inferring user
location. They also demonstrate that mixing multiple social
media datasets have the potential to improve the accuracy
and infer locations on another social network.

Another approach is to take advantage of user-generated
contents. Location inference of search engine queries and
web pages has produced the idea of power and spread [4,
13], and Backstrom et al. refine it to build a probablistic
model for spatial variation [1]. Hecht et al. produce a de-
scriptive report on Twitter users’ behavior. According to
their paper, a low ratio of 34% Twitter users did not enter
their actual geographic information on their profiles. They
use a term-frequency-based Multinomial Naive Bayes model
on textual contents and estimate state-level user locations
in the US [7]. Cheng et al. propose a probablistic frame-
work similar to Backstrom et al.’s and refine the noisiness
in tweet words by a local word classifier. They demonstrate
that by filtering out non-local words, the estimation error
is reduced from 1,773 miles to 539 miles. Also they employ
smoothing to address the data sparseness and places "51%
of users within 100 miles of their actual locations.”

3. KOREAN TWITTER DATASET

We have chosen Korean as the target langauge for this
work. Most social media analyses have focused on English
contents, and other languages have received relatively less
coverage. As demographics, geography, and NLP (Natural
Language Processing) tools all differ by the country and the
language, we believe this work is interesting in its own right
for designing and evaluating a location inference technique.

In order to find Korean users on Twitter, we used snow-
ball sampling. Starting from two Korean celebrities with
more than 100,000 followers, we crawled those celebrities’
followers, but limited to those who have at least one tweet
written in Korean among their 200 most recent tweets. Us-
ing the Twitter API from June 2010 to April 2011, our crawl
resulted in 615 million tweets and 3.3 million Korean user
profiles. Our dataset consists of tweets, user profiles, and
following-follower relationships.

Twitter provides two types of location information: the
location field in the user profile and GPS tags of tweets.
According to Hecht et al. most users leave the location
field blank or do not write the formal location name [7].
Fewer users turn on the GPS tagging feature on their smart-
phones [8]. In our dataset of 614 million tweets, only 0.4%
or 2.8 million tweets from 140, 275 users have the GPS tags.
These users with GPS-tagged tweets form the ground truth
in evaluating our tweet-based location inference.

With the GPS tagging on, a user is associated with mul-
tiple locations but a large portion of tweets come from the
user’s home or workplace [5]. In order to identify the single
location of most representativeness to a user, we take the
geometric median m, of all the GPS positions calculated as
below and label it as the user’s location. It can be the home,
workplace, or some other location of frequent visits by the
user.

m = argmin 26; distance(x,y)
y
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(a) “story”

(b) “Busan”

Figure 1: Two words “story” and “Buson” to demonstrate
spatial locality of words. The area of the bar is 500x500 m?
and the height represents the tweet frequency.

where L is a set of GPS locations of a particular user and
distance is the physical distance between the two points.

In order to filter out those who often have travelled far
or who have too few tweets with GPS tags from the cen-
ter location, we limit to those who have at least 5 tweets
within 15 km of their center location as Jurgens has done in
[8]. Also, we sort out 826 social spammers using features as
Lee et al. has done in [9]. The final tally is 22,525 users.
Of these users’ tweets we apply the Korean Morpheme An-
alyzer (KKMA) [6] and extract 801,505 words.

4. BACKGROUND

In this section, we present the basic idea of how we select
local words in tweets. We examine the word’s spatial local-
ity in order to determine whether the word can be labeled
as local. Words such as “time”, “story”, or “politics” do not
show clear spatial locality because their use is not limited
to a confined area, but is spread widely. On the other hand,
words such as city names, names of local soccer teams, and
regional dialects show spatial locality. Figure 1 shows the
tweet frequencies of the terms “story” and “Busan” in bars of
500x500 m? grids over the map of Korea. The term “story”
appears with similar frequencies at many locations, while
the term “Busan” which is the second largest city at a di-
agonal opposite corner from Seoul has the peak frequency
coinciding with the actual location of the city.

4.1 Probabilistic Model

Recently, Backstrom et al. have proposed a generative
probabilistic model that estimates a search query’s physical
location [1]. Their work is based on Yahoo!’s search query
log. When a user issues a query, the search engine logs the
query along with the user’s IP address. If a query is local in
nature, the query is likely to map to a single location near
the IP’s geolocation. If the query bears no strong relevance
to a specific geographic location, then the query is not easy
to be pinned down to a location. Backstrom et al. param-
eterize the query’s geographic distribution with a focus and
a dispersion and estimate them using a maximum likelihood
approach.

Cheng et al. uses Twitter text contents to infer user lo-
cations at the city-level granularity [3]. A tweet is often a
sentence or more with multiple words and just as in Back-
strom’s case not all queries or words have geographic rele-
vance. Cheng et al. augments Backstrom’s approach with
classifiers in local word selection and smoothing.



Below we present a quick sketch of the probabilistic model
that underline both approaches. The model posits that ev-
ery word has a center, away from which the frequency decays
fast. Let S; and S; be the set of tweets that contain the word
j (or of queries indexed by j) and its complementary set, re-
spectively. The distance d;; is between the GPS tag of the
tweet ¢ and the center of the word j. Then, the likelihood
function f is defined as:

F(Cjra5) = log(Cy x di;") + Y log(l — C; x di;™).

i€S; i€S;

where a constant C; represents the frequency of the word j
at the center, and an exponent value a; determines the dis-
persion of word j from the center. Backstrom et al. prove
that f(C, ) is concave for both C and «, which guarantees
f(C, a) to have exactly one local maximum over its parame-
ter space. A large value of a determines a quick decay away
from the center and thus represents high locality near the
center.

5. GEOGRAPHIC DISTRIBUTION
INFERENCE OF WORDS

At the end of Section 3 we are left with 801,505 words
from 22,525 users’ tweets for ground-truth building. First,
as the center of a word, we use the center of mass of all the
GPS locations of the word’s tweets. Then we use the proba-
bilistic model presented in Section 4.1 and compute the foci
and dispersions of the words. When computing the focis
and dispersions, we bin the distance between the GPS coor-
dinates and the word’s center by 500 m for computational
scalability. In Table 1 we list the top 10 most frequently
used words and their « values, latitudes and longitudes. Of
the 10 listed words in Table 1 only one word, Gangnam, has
« greater than 0.1. It refers to a a district in Seoul of about
40 sq km with half a million residents. Yet its geographic
locality of use on Twitter is not confined.

Word « Latitude Longitude
today 0.022 37.09506 127.24336
footprint  0.023  36.92209 127.38050
here 0.022 36.91559 127.38603
human 0.027 37.12846 127.22830
time 0.026 37.08744 127.23731
child 0.030 37.12474 127.21842
think 0.030 37.11521 127.22400
Gangnam 0.110 37.49431 127.03721
coffee 0.042 37.17903 127.20952
we 0.030 37.09761 127.24190

Table 1: Top 10 most used words, their o values, latitudes
and longitudes

In Figure 2 we plot « versus words in decreasing order of o
values. About 450 words have a > 0.4. Once « drops below
0.3 beyond 1, 000 ranked words, the decline is moderate until
the very end. From the figure we conclude that using the
top 1,000 words should provide enough information about
spatial locality of textual contents.

We list the top 10 words with the highest « values and
show them in Table 2. A quick look gives us the sense that
the words are likely to be very local, as they all refer to
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Figure 2: « versus words
Word « Latitude Longitude
Resource 0.64 36.82286 127.18446
Seoul University Station 0.64 37.48034 126.95345

SKK University

Seoul Bus Terminal
Central-city

(name of building)
Gimpo airport
Samsung C&T

Coex

Gangnam branch office

0.54
0.52

37.33564 126.97723
37.50529 127.00784

0.42
0.42
0.38
0.37
0.35

37.50442 127.00385
37.56154 126.80487
37.45751 127.03466
37.51170 127.05890
37.50370 127.01677

Table 2: words with high « values

cities, station names, and universities, except for one word
“Resource”. The word happens to map to a Korean city by
the name of Cheon-an. It has many companies that deal
with scrap metal and recycling and thus the high « is justi-
fied. In [1] queries with a high value of a have shown great
locality, while the contribution of C' is less pronounced in
comparison. In [3] they have chosen Bayesian classifiers and
identify 3,183 words as local.

In order to evaluate how local they are in our case, we
manually inspect the top 1,000 words and pick 712 words
easily identifiable to be local. Those words refer to mostly
cities, station names, and universities. For those words, we
obtain their GPS coordinates from the Google Map API
and compute the difference between the center from our ap-
proach and the Google Map coordinates. Figure 3 is the
cumulative distribution of the differences. Among those 712
words, over 70% of the estimated centers fall within 10 km of
their actual locations according to the Google Map. As most
Korean cities are larger than 20 km in width, the accuracy
lies at a finer granularity than the city level.

6. USER LOCATION INFERENCE

So far, we have used data from all of the 22,525 users in
order to evaluate the accuracy of the geographic distribu-
tion inference of words. In this section we use the five-fold
approach to build the geographic distributions of words and
evaluate the quality of our user location inference method.

First we begin with the evaluation of our own method,
in particular, decisions made at each step. There are two
factors that contribute to the quality of the probabilistic
model of local words: the vocabulary and coordinate trans-
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Figure 3: Cumulative distribution of the difference between
words’ centers and GPS locations from the Google Map

Method oo foor | 10km (%) | 30km (%)
Baseline #1 73.0 0.002 0.10
Baseline#2 31.7 0.44 0.71
user’s own words 26.9 0.57 0.82
friends’ words 58.1 0.40 0.62
Cheng 57.6 0.35 0.73
Jurgens 57.4 0.33 0.66

Table 3: word location estimator results

formation. How much accuracy degradation do we see if we
use less selective vocabulary of local words? How important
is to compute the distance and the center of mass between
coordinates in latitudes and longitudes?

In order to evaluate the importance of local vocabulary,
we use the word distributions of all the words from a user in
inferring the user location and call the method Baseline #1.
It means we include not only the top 1,000 words with high
«a values but all 801,505 words. We state that it is the
worst-case scenario for the case. Next, we use the top 1,000
words for user location inference, but do not employ map
project when computing the user location as the weighted
center of mass of words. We label this method Baseline #2.
When computing distance between two pairs of latitudes
and longitudes, we use the haversine transformation. When
computing the center of mass among sets of latitudes and
longitudes, we have a choice among a straightforward nu-
merical median (called Manhattan transformation) and the
popular Transverse Mercator transformation, just to name a
few. Not including the latter transformation in both baseline
methods, we can evaluate the contribution from the trans-
formation in our method’s accuracy.

In order to compare the performance of our method to
that of others, we select two studies. we select studies of
Jurgens et al. and Cheng et al. because they are the lat-
est study of a location estimator in Twitter and the most
analogous study to ours, respectively. We apply all of the
methods to the same data (Korean Twitter data that we
crawled) and compare our method’s performance to that of
the others. Table 4 shows average error distance and the
performance of word location estimators. “baselinel” is an
estimator calculating each user’s center of mass using all
words and not implementing map projection; Also, “base-
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line2” is an estimator using only local words and not im-
plementing map projection. The baselinel estimator placed
only 0.002% of users within 10km and 0.10% of users within
30km. The results inevitably show a low performance be-
cause not all the words are location-related. On the other
hand, estimators “user’s own words” and “friends’ words”
show higher performance compare to the baseline estima-
tor. The two estimators use only local words and calculate
the center of mass with map projection. Performance gain
was about 57% within 10km compared to baselinel method.
This means filtering local words and implementing map pro-
jection apparently improve performance.

OurMethod | GVerEe 408 | 10k (%) | 30km (%)
baselinel 73.0 0.2 10
baseline2 31.7 44 71
user’s own words 26.9 0.57 0.82
friends’ words 58.1 40 62
Other Methods | 4Ver8¢ €40° | 1ok (%) | 30km (%)
Cheng 57.6 35 73
Jurgens 57.4 33 66

Table 4: word location estimator results

Also, average error distance of “user’s own words” esti-
mator is about a half comparing to that of other studies.
Figure 4 shows the performance of our methods (“user’s
own words”) and other studies. As shown in Figure 4, our
methods outperform the others in all distance sections. The
method proposed by Jurgens et al. placed 33.3% of users
within 10 km, while the method of Cheng et al. and ours
placed 34.6 and 56.7% of users at the same distance section,
respectively. Within 30 km, the rates were 65.8, 73.1, and
81.9%, respectively. These gaps were maintained until the
distance section reached 100 km. Also, our method scored
over 90% within 70 km.
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Figure 4: Performance of methods. Our method outper-
forms the others in all distance sections

Comparing to the work of Cheng et al., our work shows
smaller granularity. As their work used per-city word distri-
butions for calculating probability, ours considers each tweet
as a calculating point of the probability. U.S. has tens of
thousands of cities and method of Cheng et al. has less
then one hundred thousand points, while ours have 2,783,271



points. In addition, although performance of Cheng et al.
is higher than that of Jurgens et al. in all distance section,
the average error distance of these two methods are simi-
lar. This tells us error distances using method of Jurgens et
al. are relatively smaller than that of Cheng et al. in large
distance section.

7. SUMMARY OF OUR ALGORITHM

At the end of Section 3 we are left with 801,505 words
from 22,525 users’ tweets for ground-truth building. First,
as the center of a word, we use the center of mass of all the
GPS locations of the word’s tweets. Then we use the proba-
bilistic model presented in Section 4.1 and compute the foci
and dispersions of the words. When computing the focis
and dispersions, we bin the distance between the GPS coor-
dinates and the word’s center by 500 m for computational
scalability.

Then we pick the top 1,000 words with the highest o
values. In [1] queries with a high value of « have shown
great locality, while the contribution of C' is less pronounced
in comparison. In [3] they have chosen Bayesian classifiers
and identify 3,183 words as local.

In order to evaluate how local they are in our case, we
manually inspect the top 1000 words and pick 712 words
easily identifiable to be local. Those words refer to mostly
cities, station names, and universities.

Next, we take the probablistic generative model from [?]
for the spatial variation of queries, and compute the focii
and dispersions for each word [3].

for identifying local words. We filter the top 1000 local
words among 2,783,271 Korean tweets. Our method con-
sider all GPS-tagged tweets as a point for calculating prob-
ability C; x d;aj in likelihood function. We multiply the
probability C; x d;aj to the likelihood function f; if a tweet

i have a word j and 1—C; xd; */ otherwise. Since millions of
GPS-tagged tweets are used to optim ize likelihood function,
summing all the log transformed probability up to likelihood
function would be computationally expensive. Instead, we
put the calculated distances into 500-meter intervals, called
bins. In this way, we can reduce computational cost with-
out losing granularity. Computational cost of our method
will be depend on the size of bins. We next calculate the
center of mass for finding the center of each word. All geo-
tagged tweets containing a particular word act as a part of
the weight.

To sum up, user location in Twitter is determined as de-
scribed in Algorithm 1. Line 1~8 describe calculating the
center of each word; line 9~16 describe calculating C' and «
of each word; line 17~24 describe calculating the center of
each user.

With algorithm 1, we infer location of a user who has at
least one local word. However, since not all the users in
Twitter use local words in their tweets, our method cannot
be applied to users who do not use any local words. Thus,
we consider another method by taking into account users’
friends to alleviate our limitation. We infer location of users
who do not have any local words with their friends’ local
words (only friends follow the user back). In this case, the
accuracy of the estimator may decrease because the locations
of particular user’s friends are not the same as those of the
users. Also, Twitter users often follow people who are not

Algorithm 1 Find location of users

INPUT: U,WW and S; : set of users, words, tweets contain-
ing the word j

OUTPUT: Location of users

Require: tweet i contains g; and at least one word
1: g; : GPS formatted location

2: for j € W do

3: forieS; do

4 ¢i < m(gs) // m(g:) : map projection function
5:  end for

. Zq‘,esj ciX freg;
6: G = Eiesj freaij
7. g; < m'(c;) // m'(c;) : reverse of function m
8: g, : the center of the word j
9

: forieS; do
10: fi(Cj,a;) = fi(Cj, ;) + log (ps)
11:  end for_
12: forie S; do
13: [i(Cj,a5) = fi(Cy, a;) +log (1 — p;)
14: end for

15:  Find C; and o that maximize f;(C}, o )

16: end for

17: L < the top 1000 words which have high « value
Require: user k has at least one local word

18: for k € U do

19:  for j € Li do

20: ¢;  m(g;)

21:  end for

29: ¢ jer, ¢iXfreq;x
’ k ZjekaTE‘Ijk

23: gk < m'(ck) // gk : center of the user k
24: end for

physically nearby. The results are demonstrated in section
5.

8. FRIENDSHIP-BASED LOCATION INFER-
ENCE

In order to infer the location of users who have none of
the top 1,000 local words, we resort to their social network.
In this work we define a friend of a user with whom the
follow-following relationship reciprocally.

o
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distance (km)

Figure 5: Performance of inference using friend’s local

words. This method uses friendship information in twitter.



Additionally, in order to estimate the location of users who
do not have any local words, we apply our method to them
with only their friends’ local words(“friends’ words in Table 4
and Figure 5). Inferring locations with friends’ local words
also enables acceptable performance, although the perfor-
mance is lower than that of inferring with user’s own words,
as we surmised. In comparison with the method of Jurgens
et al., which also used users’ relationship with friends for
estimating user location, the performance of the estimator
using friends’ local words falls behind only within the range
of 15 km to 50 km. However, we note that the method of
Jurgens et al. covers almost all users in the network, while
ours only predicts users who use at least one local word in
their tweets including their friends’ tweets. Future work will
consider a fusion method that reflects the topology of users
on a social network graph to select local words for estima-
tors.

To compare spatial distributions of words in different lin-
guistic culture, We are also interested in investigating lan-
guage dependency of our method. In addition, the size of
a country can significantly influence the performance of our
method since the distortion of map projection depends on
the size of the total area. Thus, future work will consider
applying our method to other countries which have different
language, culture, and territory size.

9. CONCLUSIONS

A large proportion of Twitter users deliberately leave out
their location information, incorrectly fill their location in-
formation on the profile, or disable the GPS function on
their devices. Yet people tweet about movies they watch,
restaurants they visit, and views they enjoy, insinuating
their whereabouts. In this paper we propose a user loca-
tion inference method for Korean Twitter users. Based on
GPS-tagged tweets, we first build geographic distributions
of words, and then compute the user location as a weighted
center of mass from the user’s words. Binning the distance
in 500 m unit makes our approach computationally scalable.
Converting latitudes and longitudes to 3D Euclidean-space
coordinates also saves much time in computing the center
of mass among GPS tags of words. In comparison with two
other approaches, our method show improved accuracy and
places 56.7% of users within 10 km of their main locations.

According to Frank et al. People move about but mostly
“spend the vast majority of their time near two locations” [?].
In order to take multiple centers of activities into consider-
ation, we should first cluster GPS tags and then for each
cluster investigate the geographic distributions of text con-
tents. We leave this for future work.

It remains to develop a hybrid estimator for higher pre-
cision of predictions including network-wise information of
the social ties of users. Also, we are interested in applying
our method to other countries which have different language,
culture, and territory size from our dataset.
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