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ABSTRACT
The cloud computing paradigm emerged with service ori-
ented principles. In the cloud setting, organizations out-
source their IT equipment and manage their business pro-
cesses through virtual services that are typically exchanged
over HTTP. Service Level Agreements (SLAs) depict the
status of running services. SLAs represent operational con-
tracts that allow providers to estimate their service avail-
ability according to their resource capacity.

The SLA data schema and content are operationally de-
fined by the type, volume and relations of service elements
that organizations operate on their physical resources. Cur-
rent lack of a uniform SLA standardization leads to se-
mantic and operational differences between SLAs, that are
produced and consumed by different organizations. Such
differences prohibit common business SLA practices in the
cloud computing domain. Our research introduces system-
atic SLA data management to describe the formalization,
storage and processing of SLAs over distributed computing
environments. Services in scope are framed within the cloud
computing context.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Online In-
formation Services; H.2 [Database Management]: Data
models

Keywords
service level agreement; property graph; data management;
distributed service management

1. PROBLEM
A basic characteristic of the cloud computing model is

the ”on-demand” exchange of services. Considerably, cloud
SLAs need to be processed also on-demand and over dis-
tributed information pools. SLAs become complex in terms
of content and structure due to the diversity and plethora
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of offered services. A flexible and modular data model that
allows for the automatic SLA formulation and efficient pro-
cessing, is required to address these issues.

Our approach is built upon the Web Service Level Agree-
ment (WSLA) language [13] that has been proposed by IBM
for distributed service management. Namely, we use the
WSLA as the skeleton alphabet of our proposed SLA data
model. The latter enables the systematic treatment of SLA
information and advances their role from unstructured, tem-
porary data to structured ones that can be processed and
analyzed efficiently. In the cloud business setting, efficiency
deals with the reliable and on-demand exchange of end-user
information and of computational resources.

1.1 Service Level Agreement definition
According to Dan et al.[7], SLAs represent contractual

terms and conditions between service providers and cus-
tomers. Their content assures the mutually agreed service
levels between a provider and a consumer. SLAs describe
obligatory service provisioning terms. They encapsulate qual-
ity of service (QoS) characteristics and functional service
properties.

Moreover, SLAs may include a multitude of technical and
business service-level objectives (SLOs) along with metrics
that enable the computation and measurement of service
level targets. Every customer needs to agree with an SLA in
order to lease a new service. Traditionally, providers define
SLAs, in which they guarantee explicit service-level bounds
over a predefined, agreed period.

1.2 SLA data complexity
SLAs consist of semi-structured information and do not

follow a fixed schema for their specification. Their semi-
structured representation is primarily attributed to the lack
of a uniform SLA standard that is abstract enough to ap-
ply for diverse business domains within the cloud computing
setting. The following facts designate the complexity in han-
dling SLA information:
Heterogeneity: A plethora of diverse services are offered
in cloud computing markets. The description of provision-
ing levels is defined by the customized terminology of each
business domain. Additionally, the service and SLA man-
agement literature lacks benchmarks that could contribute
to the standardized definition and evaluation of service met-
rics.
Service dependencies: SLA elements are inter-dependent.
According to Keller et al.[12], service dependencies represent
customer/provider relationships that are reflected to the var-
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ious cooperating components within a distributed service
management system.
Real time measurement/data operations: SLAs are
used for real-time service monitoring and for auditing of
provided service level metrics. Service level values are com-
municated to dependent SLA elements, whose values are in
turn updated. Frequent SLA audits verify the running ser-
vice status with respect to violations of agreed provisioning
levels.

1.3 SLA utility in the cloud
In the cloud computing setting, services are typically ex-

changed between customers and providers over the HTTP
layer. Moreover, computing processes that execute the ser-
vice management, may also represent the signatories. Cloud
business models follow economies of scale, where the long-
term average cost decreases by exploiting scaling-up and -out
techniques. Cloud service markets support the simultaneous
provisioning of multiple, remotely-connected customers and
are subject to the volatility of customer demand and of re-
source availability.

The primary SLA utility engages their role as measure-
ment instruments in the service execution. SLA manage-
ment requires clear and granular information flow such that
SLA data can be retrieved and processed rapidly. However,
current cloud markets provide static SLA documents that do
not allow for any processing. Such contracts typically do not
go into depth with respect to technical service-level details.
Instead, they primarily include terms and conditions that
are peripheral to the service functionality. The SLA utiliza-
tion by public marketplaces would be feasible if SLAs were
formalized automatically, following a modular data model
that permits their efficient processing.

2. STATE OF THE ART

2.1 SLA formalization
The distributed computing community has driven research

and technical advancements on SLA management to cover
immense needs for resource reservation through the moni-
toring of running computational tasks. In contrast to other
forms of contracts for IT services, the values of SLA elements
have to be measured and monitored during workload execu-
tion to audit potential service-level violations or to verify
adherence to the agreed SLOs. In the literature, SLAs are
hardly viewed as end-user documents but merely as auto-
mated processes that assist the monitoring and scheduling
of computational tasks.

The IBM research on utility computing [3] initially ad-
dressed the need for automated SLA formalization with the
specification of the Web Service Level Agreement (WSLA)
[13] language. The Grid Resource Allocation and Agree-
ment Protocol (GRAAP) working group followed with the
Web Services Agreement (WS-Agreement) specification [1]
as a language and a protocol to manage SLAs.

Both specifications use a tree data structure to represent
the SLA information. Tree branches illustrate separate SLA
sections and tree leaves inner section terms. XML has been
used in both schemas as the standard means of exchanging
information among web services. According to the WSLA
language, an SLA consists of the following core elements:
Parties: Signatory parties consist of one service provider
and one service customer. Supporting parties represent third
parties that operate on behalf of either or both signatories.

Service definition: Service objects represent description
terms and include SLA parameters that contain properties
and indicate quantitative as well as qualitative metrics.
Obligations: A provider defines guarantees in the form of
obligations either as SLOs or as action guarantees. SLOs
represent measurable targets that a provider promises to
fulfill during service execution. SLO values can be verified
via measurement through monitoring. Action guarantees
cover tasks that the provider, one or more supporting parties
or, in some cases, the customer will take to establish the
promised service levels for one or more SLA parameters.

The core elements of the language are further divided into
granular sub-elements. In the case of service objects or op-
erations, such information reaches the level of URI sources
that can be monitored and measured. In the case of service
obligations, the information granularity includes the speci-
fication of business level objectives as well as the definition
of evaluation functions and expressions that typically follow
first order logic. In addition, the obligations section includes
the formalization of penalties in case of service-level viola-
tions and of conditions for re-imbursements and rewards that
represent penalty complements.

2.2 Monitoring, auditing and resource man-
agement

The literature highlights numerous research results on the
monitoring [19, 4] of service-level terms and the scheduling
[8, 5, 6] of computational jobs. Upon agreement initiation,
an SLA document is managed by available monitoring and
auditing services until the execution of running tasks is com-
plete.

SLA documents must enclose all necessary parameters for
the measurement and evaluation of active service and re-
source capacity levels. In [10] Ludwig et al. define ’services’
as the processing of computationally intensive tasks that
may involve network operations, the exchange, for example,
of SOAP or REST messages over HTTP or a combination
of computing workloads that may affect several network and
system layers. In [5] Czajkowski et al. define ’resources’
as any capability that can be shared and exploited in a net-
worked environment, including physical computational re-
sources.

The automated SLA processing enables the discovery and
mapping of available resources and therefore requires the
monitoring and auditing of active workloads. Monitoring
data is used for the effective allocation of resources. Pro-
gramming processes differentiate among types of reserva-
tions, conditions and policies that are enforced during the
service runtime. Changes in resource availability, e.g. stor-
age space, are communicated via resource management pro-
cesses.The SLA content helps with the establishment of com-
monly accepted policies [6] that enable the smooth interop-
eration and the successful completion of running tasks.

2.3 SLA negotiation and brokering
The research community has proposed negotiation and

brokering protocols [10] for SLA management. SLA nego-
tiation enables the exchange of counter offers between con-
tracting parties in the process of agreeing on service levels.

According to Czajkowski et al.[6], the need for negotiation
naturally derives from the conflicting interests of contracting
parties. On one hand, customers need to understand provi-
sioning terms and to receive guarantees on requested service
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levels. On the other hand, providers have to maintain con-
trol over resource provisioning and adhere to the promised
service levels. Furthermore, in [8] Foster et al. highlight the
role of resource brokers for the allocation of resources and
for the monitoring of service endpoints.

3. PROPOSED APPROACH
We propose a directed property-graph data model for the

formalization and management of SLA information. Accord-
ing to Rodriguez [15], a property graph represents a multi-
relational graph, where nodes and edges contain arbitrary
attributes in the form of key/value pairs. Property graphs
can prove valuable as they encapsulate all the information
that is required to thoroughly manage an SLA document.
Moreover, the direction of edges is helpful to indicate depen-
dencies among internal SLA components. Finally, the SLA
data modeling through graphs allows for flexible schemas,
e.g. hypergraph representations, alternative index sets and
filtering rules. Such modeling attributes permit the com-
plete representation of resources and of any other element
(metrics, guarantees, conditions, etc.) that is part of service
and SLA management.

The proposed SLA data model is supported by one or
more graph-aware DBMS that enable the graph manage-
ment from the application layer (e.g. through a RESTful
web interface). We assume that the SLA graph manipula-
tion involves asynchronous computational tasks to achieve
the simultaneous handling of HTTP operations with respect
to a given client-server architecture. Moreover, we assume
that an SLA document contains conditions, whose evalua-
tion may provoke additional data operations to chains of
SLA elements.

The structured accommodation of the SLA content into
nodes and edges permits their direct identification and re-
trieval. Graph queries are expressed as regular path queries
or a graph DBMS may support a property-graph domain
specific language (DSL) to interact with underlying graphs.

3.1 SLA graph data model formalization
We define an SLA database as a finite directed graph,

where nodes represent SLA elements and edges represent di-
rected relationships between SLA elements. The SLA graph
data model uses the hierarchical structure and alphabet of
the WSLA specification for the skeleton SLA database.

We denote the SLA graph alphabet as SLAalphabet ⊃
{WSLAalphabet, Acustom}, where Acustom symbolizes a non-
finite alphabet that is bounded by a custom business do-
main.

An SLA can be expressed as a directed graph SLAg =
(N,E), where N represents a set of nodes N ⊃ ni ∈ SLAg

and E a set of ordered node-pairs ei = (ni, ni+1), where E ⊃
ei ∈ SLAg. Given a directed edge ei in SLAg, ni represents
the predecessor node of ni+1,thus denoting a direct path
from ni to ni+1.

The graph database considers service dependencies and in-
ternal relationships between elements. To model the skele-
ton graph of the SLA graph database, we first transform
primary WSLA language components into element sets by
taking into account their cardinalities and relationships. Ta-
ble 1 illustrates identified element sets. We use a subscript
to denote their cardinality in any SLA graph instance.

Table 1: SLA language elements - Set representation

SLA⊃ {Signatory2, Obligations1,
ServiceInfo1,{ServiceDescriptioni}}, where i ∈ [0, n]
Signatory2 ⊃ {SupportPartyi}, where i ∈ [0, n]
Obligations ⊇ {{SLOi}, {ActionGuaranteei}}, where
i ∈ [1, n]
ServiceDefinitioni ⊃ {{ServiceObjecti},
{Operationi}}, where i ∈ [0, n]
ServiceObjecti, Operationi ⊃ {SLAparameteri},
where i ∈ [0, n]
SLAparameteri ⊃ {{ResourceMetrici},
{CompositeMetrici}}, where i ∈ [0, n]
CompositeMetrici ⊇ {{ResourceMetrici},
{CompositeMetricj}, Functionj}, where i ∈ [1, n] and
j ∈ [0, n]
i, j indicate the cardinality of element subsets and
n ∈ N.

3.2 SLA graph analysis
Figure 1 illustrates the skeleton SLA graph that is com-

posed of 19 nodes and 22 directed edges. Every node is
identified by a unique id that is assigned on the node defi-
nition. Similarly, edges in the SLA graph are also identified
by a unique id. Additionally, a vertex and an edge can have
an arbitrary number of attributes associated with them.

The skeleton SLA graph of Figure 1 has an average de-
gree of 1.684 and an average path length of 2.148. Figure
1 highlights each node degree by mapping it to the node
size. The degree represents the sum of incoming and out-
going edges for each node and thus provides an initial view
on node communication patterns in the SLA graph. Still, as
Figure 1 depicts only the skeleton of the SLA data model,
the degree distribution is subject to change in larger SLA
graph databases that represent actual cloud service descrip-
tions.

Figure 1: SLA skeleton graph - Degree representa-
tion

With the term dependency Keller et al. [12] define
the relationship between a dependent service or application
component that requires an operation performed by an an-
tecedent component in order for the former to execute its
function. Keller et al. use the terms antecedent and de-
pendent to express the two counterparts of the relationship.
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In the graph, service dependencies are denoted as edges
that are outgoing for the dependent node and incoming
for the antecedent node, <Dependenttail, Antecedenthead>.
Furthermore, the edge direction <Tailnode, Headnode> in
the SLA graph of Figure 1 also denotes the nesting of SLA
elements according to the set representation of Table 1.

Edge labels in the SLA graph denote operational and busi-
ness relationships among SLA node pairs. Edge labels are
denoted as ”weak” or ”strong” to highlight the relationship
significance in the SLA processing [16]. Additionally, rep-
resentative edge-weights are assigned according to the out-
degree of the head-node in the directed relationship. Both
the classification of edge labels as well as the assignment of
edge-weights are indicative to demonstrate the data model
possibilities. The graph data model can be extended accord-
ing to business domain and application specific needs.

4. METHODOLOGY

4.1 Evaluation objectives
The SLA graph data model is evaluated with respect to

the following objectives:
Modularity expresses the degree to which the graph ele-
ments can be partitioned into sub-graphs that may exist in
the network [2]. The skeleton SLA graph has a modularity
of 0.392 with an initial partition of 2 communities. In a large
SLA graph, we may have service compositions that belong
to different topologies. The modularity metric is important,
because it can be used for the identification of service el-
ement communities that generate more cost or vice versa
more added value for the provider.
Data accuracy and completeness represent data query
metrics with respect to the accuracy and usefulness of a
data query result. In the case of the SLA graph, data accu-
racy measures the correctness of query processing, given a
query and its retrieved output. Data completeness measures
the convenience of query planning, given a set of queries
that need to be answered simultaneously and correctly. The
NetworkX Python programming library [9] provides a set of
basic breadth- and depth-first search algorithms, which can
be used on the graph data model to answer a variety of SLA
management questions.
Efficiency and performance: The directed graph schema
of the SLA data model allows for economic value comparison
and efficient service pricing using an appropriate SLA cost
model in combination with economic efficiency metrics (e.g.
Pareto efficiency1). Graph-based practices, like the max-
flow min-cut theorem [14] can also be used for the evaluation
of resource management efficiency. On the other hand, per-
formance deals with the query processing throughput, when
exercised on distributed data repositories that communicate
over HTTP.
Dynamic SLA data represent information that is subject
to time, resource availability and customer demand. The
values of SLOs as well as those of composite and resource
metrics are examples of temporal data as they are affected
by all previous parameters. The SLA graph model can be
transformed into a dynamic network that inherits the topol-
ogy of the SLA skeleton model and where the property val-
ues of SLA vertices and edges are subject to changes with
respect to defined time-intervals.

1
http://en.wikipedia.org/wiki/Pareto_efficiency

The SLA management orchestration includes SLA and
service elements that are specified by a custom application
domain. The representation of such elements and of their re-
lationships through nodes and edges enables the utilization
of graph-based practices for their management. For exam-
ple, the max-flow min-cut theorem [14] can be applied on
subgraphs of the SLA data model to simulate optimization
problems with respect to the distribution of cloud resources
between tenants. The NetworkX programming library [9]
provides a Python implementation of the max-flow min-cost
algorithm that can be used for the simulation.

4.2 Experimentation design, evaluation tools
To support the experimentation of the SLA graph data

model, we create synthetic SLA data using the Zipfian distri-
bution2. Unfortunately, current lack of a uniform SLA stan-
dard decreases the value of SLAs in cloud markets and ham-
pers the collection of information coming from real SLAs.

For the graph analytics we use the NetworkX program-
ming library [9] and Gephi3, an open source graph visual-
ization and analysis platform. NetworkX provides numerous
graph algorithms (e.g. traversal, clustering, etc), which can
be adapted to the experimentation objectives. Gephi, on the
other hand, supports a full-featured visualization platform
that can be used for testing with dynamic SLA data.

We evaluate the SLA graph with respect to query through-
put performance over HTTP using as our scenario the fil-
tering and matching of SLA templates over cloud service
marketplaces. Therefore we setup a client-server architec-
ture, where client requests represent customer SLA require-
ments that are matched with existing SLA templates. The
Tornado4 web server represents a minimal asynchronous net-
work library, which we use for the exchange of query data
between multi-threaded client instances and defined data
repositories. We run tests using the AllegroGraph RDF-
store5 over virtual resources, where the SLA graph data
schema is adapted to the RDF semantics.

5. RESULTS
In [17] we demonstrated that SLA templates can be treated

as facets of service provisioning. We simulated a service
marketplace, where SLA templates are stored in two differ-
ent DBMS, MongoDB and MySQL. The service marketplace
receives simultaneous HTTP requests in the range of [100,
1’000’000]. The requests content represents customer SLA
requirements that are mapped into data queries and pro-
cessed simultaneously by the respective DBMS backends.
The result-sets are sent back to the web clients.

Our work in [17] evaluated the data processing efficiency
of the two DBMS over HTTP. It moreover demonstrated
the usage of query templates for the handling of incoming
HTTP requests, where we simulated the filtering - matching
process of customer provisioning requirements. The graph
in Figure 2 shows the results for both MySQL and Mongo
databases from running with 2, 10 and 20 requested param-
eters over HTTP. The y-axis represents the average total
time for each performed run and the x-axis indicates the

2
http://docs.scipy.org/doc/numpy/reference/generated/

numpy.random.zipf.html
3
http://gephi.org/

4
http://www.tornadoweb.org/en/stable/

5
http://www.franz.com/agraph/allegrograph/
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Figure 2: Average total filtering processing time
over HTTP: MySQL and MongoDB

gradually increased number of incoming requests that the
web server receives. The average time is close to constant
for both MySQL and MongoDB. Derived curves for all runs
are fitted to highlight the small range of fluctuactions in the
query processing results.

In [16], we elaborated on SLA data management char-
acteristics that need to be considered in the design of data
models for SLA documents. Our SLA data analysis arranged
SLA terms according to data management attributes and
operations during the service execution. In [18] we demon-
strated a realistic scenario of cloud data service provisioning,
where we classified real description attributes of currently
offered data services. We then used the SLA graph model,
where the collected data service attributes were mapped and
formalized an SLA template for a RDBMS service that is
managed as a property graph.

6. CONCLUSIONS AND FUTURE WORK
SLAs for IT services currently consist of semi-structured

information that is subject to volatile processing and fre-
quent updates. Provided SLAs are unbounded in terms of
length and content. A systematic approach to SLA data
management is required for the efficient handling of SLA
information over virtual, distributed resources.

Our SLA graph data model follows the language semantics
and structural element hierarchies that were defined by the
WSLA specification [13]. Our approach advances the SLA
role from measurement instruments to value-added informa-
tion that can be used for on-demand service provisioning as
well as for use-cases of cost predictive modeling and service-
cost behavior analytics.

Current evaluation objectives have been summarized in
Section 4. Our future goal is to integrate the evaluated
SLA graph data model with a pricing cost model [11] that
considers both the service provider revenue objectives as well
as the customer QoS criteria.
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