
A Voice-Controlled Web Browser to Navigate Hierarchical
Hidden Menus of Web Pages in a Smart-TV Environment

Sungjae Han*, Geunseong Jung†, Minsoo Ryu†, Byung-Uk Choi† and Jaehyuk Cha†

*Department of Electronics Computer Engineering

Hanyang University
Seoul, South Korea

sjhans@hanyang.ac.kr

†Department of Computer Science and Engineering

Hanyang University
Seoul, South Korea

{aninteger, msryu, buchoi,
chajh}@hanyang.ac.kr

ABSTRACT
This paper proposes a new voice web browser that can be
operated in smart TV environments. Previous voice web browsers
had the limitation of being run under limited conditions; for
example, a list of the specific contents of a page was outputted by
voice, or the user entered a search term by voice. In our method
proposed in this paper, all the hierarchical menu areas on a web
page are recognized and controlled with voice keywords so that
page navigation according to a menu can be conveniently done in
a voice supported web browser. Although many studies have been
conducted on web page menu recognition, most of them provide
insufficient information to recognize the hierarchical menu
structure. In other words, most web pages in recent browsers
showed submenus only as a result of a specific user interaction,
since these previous studies had no way of recognizing or
controlling the submenus. Therefore, in the web browser proposed
in this study, a hierarchical menu structure, which is inserted
dynamically via user interaction, is recognized and selected by
voice, thus making it possible to maneuver on the web page.
Furthermore, the core code of the browser is implemented in
JavaScript, so it can be flexibly used not only for a web browser
on Smart TVs, but also as functional extensions of existing web
browsers in a PC environment.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information Browsers

General Terms
Design, Experimentation, Human Factors

Keywords
Browser, HTML, Voice, Web

1. INTRODUCTION
Most web navigation on modern smart TVs (e.g., Google TV,
Apple TV, etc.) is controlled through a combination of handheld
remote and voice input. While standard voice commands support
search term entry and hyperlink navigation, they currently offer

no means of navigating the hierarchical menus found in many
modern web pages. Given the importance of these menus to
common website navigation, this deficiency in voice command is
especially acute [1].

Some progress has been made in analyzing the rendered portions
of a webpage for reference by user commands. Notably, the VIPS
(Vision-based Page Segmentation) algorithm can collect content
nodes according to visual associations, DOM (Document Object
Model) structure, HTML (HyperText Markup Language) tag
attributes, etc. [2]. Unfortunately, website sub-menus are not
always fully rendered. In many cases, when a user selects a top-
level menu item, the sub-menu for that item is rendered
dynamically. Furthermore, since nodes in the upper and sub-
menus are not always adjacent or placed in a containment relation
within the DOM, they may not respond to VIPS detection. Clearly,
a more sophisticated means of detection is needed.

2. RELATED WORKS
2.1 WSR
WSR (Windows Speech Recognition) is available for web page
navigation in many versions of Microsoft Windows. Among the
WSR voice commands useful for web browsing are “Show
Number” and “Mousegrid.” “Show Number” displays all
hyperlinks currently on screen and in menus. By speaking the
number (i.e., index) of one of these links, the user moves the
control pointer to the location of that link. “Mousegrid” divides
the screen into 3x3 grid areas. By speaking the number of one of
these areas, the user shifts focus to that area, and can further
refine focus recursively. Note that using this command to achieve
a particular goal on a webpage can be cumbersome [3].

2.2 VIPS
A number of methods have been proposed for splitting up the
contents of a webpage according to topic or purpose. Many of
these methods analyze HTML/DOM tree structure to partition
information hierarchically. For example, VIPS (a Vision-based
Page Segmentation Algorithm) forms information blocks by
collecting nodes that are determined to have similar meaning
visually, based on DOM structure and HTML tag attributes [2].
These blocks are then reconstructed by a separator that splits the
page further into several blocks through repetitive node
navigation and share significantly the gap between each block
visually. In this way, VIPS bridges the gap between DOM
structure and semantic structure on the VIPS page. Unfortunately,

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author's site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.

587

the algorithm has no way to detect nodes that are inserted
dynamically in response to user interaction, since these changes
are not reflected in the static document source.

3. ARCHITECTURE
The structure and behavior of our voice-controlled web browser
for smart TVs are shown in Figure 1.

When a page is loaded into the browser, menus inside the page
are detected using VIPS. Any menu element with a CSS property
of “visibility:hidden” or “display:none” is classified as a sub-
menu candidate group. This candidate group corresponds to a
hyperlink object anchored by text values or an image resource.
The characters displayed for each menu object are extracted using
optical character recognition (OCR). If users enter unique words
that correspond to menu objects, the system will dynamically
trigger a “mouseover” JavaScript event for that menu object, as
would occur when a mouse pointer moved over the object. The
CSS properties of the candidate group for previously classified
sub-menus are used to detect visual object changes, such as when
a hidden object is made visible, and cues a return to the voice
input step.

Figure 1 System architecture of the proposed browser

4. IMPLEMENTATION
4.1 Environment
The voice browser proposed in this paper is primarily for smart
TVs. In order to check whether the proposed method can be used
on other platforms such as PCs, an expanded module for general
web browsers was additionally implemented.
First, a browser app for smart TVs was developed by utilizing the
‘webView’ component in Android. The basic functions of a web
browser were implemented the same as in the other one, whereas
a menu area detection and control module were implemented such
that they could be inserted dynamically. For voice input, the basic

API of Google Android was used, and a menu area detection and
control module were implemented using only JavaScript. In order
to check the operation of the implemented application, we
performed an experiment using the Android 3.2 version for
Google TV 2.0 [4].
Next, implementation of a voice browser in a PC environment
was completed using the Google Chrome extension [5]. The
extension of Google Chrome is a small plug-in program that is
installed for functional expansion of a browser. We added a voice
support function to the existing Chrome browser as an extension.
All the codes for menu detection and control were inserted onto a
web page dynamically via control of Content-Scripts in Chrome.
Therefore, menus on a web page displayed in Google Chrome
could be controlled by the user’s voice.
The functions of menu detection and event binding were
implemented using JavaScript, and the functions of voice
recognition, such as TTS, were implemented using an API that
was produced externally. In the Android-based environment,
Google TTS and Google Voice for Android were used, whereas
an API provided by Google Chrome was used for a browser
running in a general PC environment [6][7].

4.2 User Interface
Figure 2 shows an example of a user interface screen as proposed
in this paper. In the figure, 2-1) shows a basic browser address bar
and page-move buttons. 2-2) indicates a basic main menu area,
and provides a function with which submenus, which are
activated by the user’s voice, can be verified visually, using a box
symbol in the object. In addition, 2-3) shows a button for
performing a detailed environment setup with regard to the
browser and voice control functions. Finally, 2-4) shows a
console area, where a developer can check the contents of the
user’s voice that was inputted, or some other processing
procedure.

Table 1 Scenario example

Step Description

1
Open Favorites: The user opens the Favorites by
voice. In this scenario, the page moves to the e-Bay
site, as shown the first screenshot in Figure 2.

2
Grid menu activation: The main menu area is
detected from the page, and is indicated as a green
box.

Figure 2 Example screenshots of the user scenario

588

3

Visual check 1: When a mouse cursor is placed over
the e-Bay main page, the submenus are displayed
within the main menu. However, as in a PC
environment, without using a mouse, the user cannot
see the submenus.

4

Voice input for main menu selection: When the user
attempts menu navigation via voice input, the
submenus are displayed to the user via control of a
page event if submenus are detected from the
corresponding main menu.

5

Activation of submenus: If the submenus on a page
are detected dynamically, the browser waits for the
user’s command without performing further page
navigation.

6
Voice input for selection from submenus: The
submenu links are activated via a user voice
command.

7 If no more submenus are found on the final selected
menu, one moves to a corresponding hyperlink page.

An example of a scenario in which a page is navigated by a voice
command using the proposed browser, is shown in Table 1 and
Figure 2.

5. EVALUATION
Existing web browsers and voice input can be used to select static
main menu output on screen, but not dynamic sub-menu output.
However, in case of WSR to be supported by Microsoft’s
Windows, sub-menu choice is possible in other browsers as well
as Explorer. Furthermore, WSR has the advantage of universal
availability. Unfortunately, when executing WSR’s “Show
Number” command, invisible content becomes problematic, since
the number of the link object is meant to be displayed as an
overlay of something rendered on screen. Furthermore, when
trying to access sub-menus with “Mousegrid,” the procedures are
very complicated and there is a drawback to ask users for more
than voice commands. The alternative is to select top-level menu
items by entering the corresponding text through voice input, and
then selecting the appropriate submenu item. Even if the text of
the menu is rendered as an image rather than character output,
keywords could be detected through the OCR module. Table 2
shows qualitative comparisons of proposed system and existing
browsers.

Table 2 Qualitative comparison of proposed system and
existing browsers

browser web
search

voice controlled navigation

main
menu

visible
sub-menu

hidden
sub-menu

image
menu

Siri[8] O Ⅹ Ⅹ Ⅹ Ⅹ

Safari[9] Ⅹ Ⅹ Ⅹ Ⅹ Ⅹ

Opera[10] △ Ⅹ Ⅹ Ⅹ Ⅹ

IE&WSR
[3][11] △ △ △ △ △

Proposed
browser[12] △ O O O O

6. CONCLUSION
Hierarchical menus are the most common means of navigation
within a website, and should therefore be supported by voice
navigation. In this paper, we proposed a new kind of web
browsing system in which webpages are first analyzed using the
VIPS algorithm, and then used as a basis for detecting changes to
submenus and other dynamic content, as a result of user input.
This browsing system offers the following advantages:

1. The ability to control the hierarchical menu structures of
websites with relatively simple voice input.

2. Access and navigation for the sub-menu generated dynamically
depending on the user’s input are given.

3. Even if a menu object is rendered using images, it can be
recognized through OCR and made available as keywords.

Note that the system requires a DOM structure for parsing, and
thus will not function with compiled Flash or Silverlight based
content. In the future, we would like to enhance the system to
function with these alternate file types. We would also like to
conduct further quantitative evaluation of voice-based browsing.

7. ACKNOWLEDGMENTS
This research was supported by the MSIP (Ministry of Science,
ICT and Future Planning), Korea and LG Electronics., under
IT/SW Creative research program supervised by the NIPA
(National IT Industry Promotion Agency). (NIPA-2013-(H0504-
13-1003))

8. REFERENCES
[1] Sireesha K., Supriya, A., Haritha, D., Swetha, K. S., and

Sastry, J. 2011. Voice Recognition browser for reduced
vision and vision loss Learners. International Journal of
Scientific & Engineering Research. 2, 12 (Dec. 2011).

[2] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: a vision-
based page segmentation algorithm. Microsoft Technical
Report, MSR-TR-2003-79, 2003.

[3] R. Brown. Exploring new speech recognition and synthesis
APIs in Windows Vista. Talking Windows, MSDN Magazine.
http://msdn.microsoft.com/hi-in/magazine/cc163663.aspx.

[4] GoogleTV Development. https://developers.google.com/tv.
[5] Google Chrome Extensions – Content Scripts.

http://developer.chrome.com/extensions/content_scripts.html
[6] Google Voice Search. http://www.google.com/mobile/voice-

search.
[7] Google Chrome Extensions – SpeechInput.

https://developer.chrome.com/extensions/experimental.speec
hInput.html.

[8] Siri. http://www.apple.com/ios/siri.
[9] Apple Inc., Safari 6. http://www.apple.com/safari/.
[10] Opera Software ASA, Opera 11. http://www.opera.com/.
[11] Microsoft Corporation, Internet Explorer 10.

http://windows.microsoft.com/en-us/windows-8/get-started-
ie-10#1TC=t1.

[12] The demo screencast. http://db.hanyang.ac.kr/voiceweb.

589

