
Testsuite and Harness for Browser Based Editing

Dave Raggett
W3C/ERCIM

2004, route des Lucioles
Sophia Antipolis - France

dsr@w3.org

ABSTRACT

The Web is still awkward when it comes to online editing.
It is time to fix that, and make it easier for developers to
create smarter browser based editing tools. This short pa-
per presents work on a test framework for a cross browser
open source library for browser based editing. The aim is
to encourage a proliferation of different kinds of browser
based editing for a wide range of purposes. The library steps
around the considerable variations in the details of browser
support for designMode and contentEditable, which have
acted as a brake on realizing the full potential for browser
based editing.

Keywords: testing; browser-based editing, collaborative
editing

1. INTRODUCTION
Tim Berners-Lee envisioned the Web as something people

could both read and write. The first step towards browser
based editing came with the introduction of HTML forms
and the TEXTAREA element in the early nineties. This
later formed the basis for wikis, together with conventions
for marking up headings, lists and links etc. The next step
came with the introduction of XMLHTTP and designMode
in Internet Explorer version 5. This allows you to use an
IFRAME element for the document to be edited and to save
the document back to the server via HTTP. The execCom-
mand method allows developers to provide a user interface
for basic editing operations.
Other browser vendors copied Internet Explorer, but did

so in different ways [1] that make life hard for developers
and have held back the full potential of browser based edit-
ing. This paper describes work on a cross browser open
source library for use in editors. To avoid the interoperabil-
ity problems in browsers, the library intercepts keystrokes
and manages its own undo/redo history. There are a surpris-
ing lot of edge cases even for handling Enter, Backspace and
Delete. As a result, a test framework has been developed to
automate the application of a test suite, as a basis for incre-
mental development and testing on a variety of browsers.
The aim is to encourage a proliferation of browser based

editors for different purposes, e.g.:

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2014 Companion, April 7–14, 2014, Seoul, Korea.
ACM 978-1-4503-2038-2/13/05.

• Basic rich text documents

• HTML based slide presentations such as Slidy [2]

• Online meeting management tools

• Next generation wikis and blogs

• Tools for reviewing and annotating documents

2. TEST SUITES
The framework needs to specify for each test:

• The action to be tested, which is either a key such as
Enter, Backspace or Delete, or an action that would
be triggered via a button or menu item, e.g. indent,
outdent or insert heading.

• Secondary keys such as Shift, Control and Alt.

• The document before the action is applied.

• The editing cursor position before the action is applied.

• The document after the action has been applied.

• The editing cursor position after the action has been
applied.

The test harness loads the test suite and applies each test,
one by one, reporting any errors found. The test suite syntax
was chosen for ease of maintenance. Tests are separated by
blank lines. Each test starts with the name of the action
preceded by any applicable secondary keys. The second line
gives the document markup before the action is applied, and
the third line gives the document markup expected after
the action has been applied. Line breaks in the document
markup are represented as \n. The editing cursor position
is denoted by the vertical slash ‘|’. Here is a short example:

shift enter

<p>|</p>

<p>
|
</p>

shift enter

<p>ab|</p>

<p>ab
|
</p>

shift enter

<p>ab|c</p>

<p>ab
|c</p>

backspace

<p>a|</p>

<p>|
</p>

579

The test harness is a web page that uses XHR to load the
test suite and parse it into an array of test objects using
string split operations. Each test has to be applied three
times: first for the edit action, second for the undo action
and third for the redo action. Each test document is loaded
into a test DIV element by setting the innerHTML property
following string operations to restore the line breaks and to
replace the vertical slash denoting the editing position by
.
The span element is located using its id, and removed

from the DOM, after having identified the target node in
the DOM. If the caret is in the middle of a text node, it is
necessary to merge the adjacent text nodes that were split as
a result of the span element. The caret can now be set using
a combination of document selection and range objects. One
wrinkle is that you must not use range.deleteContents since
on some browsers this has a side effect of modifying the
DOM in ways that would mess up the test. A similar process
is used to insert the vertical slash when preparing to match
the document markup after the action with the expected
markup as given in the test suite.
A further complication is dealing with older versions of

Internet Explorer that don’t support the W3C standard for
document selections and ranges. This involves the insertion
and removal of a short random substring as createRange
doesn’t work for text nodes.

Collapsed blocks and unrendered BR elements

Browsers collapse lines unless they contain a BR or visible
content excluding whitespace characters. Browsers derived
from KHTML (e.g. Safari and Chrome) take this a step fur-
ther by preventing scripts from positioning the editing caret
in a collapsed line. For example, attempting to position the
caret in an empty P element results in the caret being placed
before the P. A work around is to detect a difference in the
requested and achieved caret position and to then insert a
BR after the requested position and try again.
A better idea is to detect collapsed lines and insert a BR as

needed. The BR is needed for empty block level elements,
and when you want to insert the caret after a BR that is
either at the end of its parent’s content or is only followed
by whitespace. The corrollary is that when backspacing over
a BR, the BR at the end of the line should be removed if the
resulting line contains visible content other than whitespace.
The same applies when forward deleting a BR. Inserting
required BR’s should be done when loading a document,
and after cut and paste operations. The other cases can
be integrated into the code for Shift-Enter, Backspace and
Delete.

3. UNDO/REDO
This is handled by a separate library module. The his-

tory is an array of transactions, where each transaction is
a sequence of operations. Each operation is an object with
undo and redo methods. The library includes a suite of op-
erations on the document object model. These are invoked
by the editing library’s code for each edit action. The oper-
ations are in turn responsible for maintaining the undo/redo
history. Examples include: move node, copy node, remove
node, insert before, append child, merge text nodes, split
text node, insert character, delete character, and set at-
tribute. The undo library also provides methods for manag-

ing transactions, and for invoking undo and redo, and testing
whether they are currently applicable.

4. DOCUMENT MANAGEMENT
The hypertext transfer protocol (HTTP [3]) provides a set

of methods that can be used together with XHR for editing
documents on the web server:

• GET – to get a document for editing

• PUT – to save a new or updated document

• DELETE – to remove a document from the server

The GET method should be used with the If-Modified-
Since header to avoid loading a stale version of the document
from a local cache. All three methods require server side
configuration to manage access control, to avoid attempts
to put excessively large documents, and to ensure that the
saved documents are HTML and not something completely
different, e.g. a binary file.

Web Distributed Authoring and Versioning (WebDAV [4])
provides an extension of HTTP for a broader set of file op-
erations, e.g. making a copy of a file, moving a file from
one location to another, managing directories, and lock and
unlock operations on files.

When using HTTP GET and PUT there is a risk that
someone else has modified the document whilst you were
editing it, and a consequential risk of losing work. Web-
Dav’s lock and unlock mechanism is a partial solution by
alerting you to the fact that someone else is already editing
the document you want to edit. Another complementary so-
lution is to use a document management solution to identify
and merge changes. This needs to have some knowledge of
document structure to avoid the risk of producing invalid
markup. A document management solution can also offer
the ability to review the sequence of document versions, and
even to branch and merge versions as required.

5. LIVE EDITING
Live editing is where several people can be simultane-

ously viewing and editing the same document, and to see the
changes others are making in pretty much real time. The
most popular example of this approach is Google Docs [5].
Unfortunately, Google Docs requires you to save your doc-
uments on their servers and to limit yourself to the editing
tools they provide. One example of an open source alterna-
tive is Etherpad [6]. Others are listed in wikipedia [7].

The author of this paper is seeking to support live edit-
ing in a clean cross browser open source library and would
like to see this applied to the World Wide Web Consortium
website, e.g. for taking minutes in teleconferences, and for
collaborative editing of draft specifications. The aim is a
modular library that can be applied for different kinds of
editors.

The starting point is the core set of editing operations as
mentioned above for the undo library module. These can be
serialized as messages indicating proposed changes to a spe-
cific version of the document. My experiments used JSON
messages over a Web Sockets connection, but an alternative
is to use some form of HTTP polling, e.g. with long lived
connections and streamed messages.

One approach is to get the server to review proposed
changes and to merge them into sequence of accepted changes.

580

Unfortunately, it seems that server based real-time revision
control is subject to a US patent. This prompted me to
work on client-based revision control as a work around, that
also has the happy benefit of minimizing the load on the
server, and hence allowing for more people to use the server
for collaborative editing at the same time.
The approach involves several browsers editing the doc-

ument at the same time in an editing session. One of the
browsers is elected as the senior editor and the others consid-
ered to be junior editors. The server maintains two message
queues, one for proposed changes from junior editors, and
the other for accepted changes from the senior editor. If the
senior editor fails to respond in a reasonable time, the server
arranges a new election to reassign the role.
The JSON format for changes gives the version number (as

controlled by the senior editor). Each change is a sequence
of operations, just as for the undo/redo history. Docu-
ment nodes are identified using tumbler notation e.g. “1.4.2”
where the successive numbers indicate the child node, with
1 for the first child, 2 for the second, and so forth.
The merging action takes the sequence of proposed changes

since a specified version of the document and maps them to
the changes that would be needed to the current version of
the document. Some changes may not survive, e.g. when
the senior editor deletes a parent node, and a junior editor
updates one of its children. This is a case where having a live
chat session integrated into the editor can be really benefi-
cial by allowing the person whose work was just eradicated
to ask the other editors to undo their changes.
Special treatment is given to changes to text nodes to

allow for the situation where two or more people are editing
the same paragraph at the same time. This is based upon
matching substrings.
Junior editors need to be able to revert their document

to the version given by the senior editor before applying the
changes approved by the senior editor. At the same time,
the changes the junior editor has made since then need to
be transformed to apply to the new version of the docu-
ment. A further complication is the need to revise the local
undo/redo history so that users can undo/redo their local
changes.
When a new election takes place, it does so with respect

to the latest version of the document as approved by the
former senior editor. Each editor needs to synchronize its
uncommitted changes and its undo/redo history to match.
The election should try to pick the most active editor.

6. MISSING EVENTS
For keystrokes, browsers widely support the keydown, key-

press and keyup events. These were never formally stan-
dardized at W3C, and vary across browsers in respect to
key codes and auto repeat. However, the situation is better
with respect to keys such as Enter, Backspace and Delete,
which are critical to cross browser editor interoperability.
There are events for cut, copy and paste, as well as for

drag and drop operations. These are less widely supported,
and as such require work arounds on older browsers. There
are no events for undo/redo actions. This is only a problem
if these actions are invoked using the browsers native UI.
Providing prominent undo/redo buttons in the editor’s UI
will encourage users to invoke these actions in a way that the
editor can deal with. Ideally, undo and redo events would

be standardized, but it is likely to take time to convince
everyone of the benefits.

7. EDITOR ARCHITECTURE
A common approach is to have a web page for the editor

and to load the document to be edited into an IFRAME
element in combination with the designMode property. One
challenge is that documents may use scripts and style sheets
that cause problems for the editing user interface, e.g. through
use of CSS positioning and hidden elements. It may be bet-
ter to impose an editing style sheet that overrides the doc-
ument’s own styling. This can be done by the parent page
using a script to append a style element to the document’s
HEAD. The editor’s user interface and styling can be chosen
to match the kind of document to be edited. A major dis-
tinction is between structural editing and rich text editing.
There are limits to the applicability of what you see is what
you get (wysiwyg) editing, and sometimes it is worth using
a different presentation for documents for the purposes of
editing them.

8. EDITING PRACTICES
Editors need to be designed to work in an obvious fash-

ion. This can break down if people apply changes to a style
sheet and to individual paragraphs, as it can become unclear
what is causing the appearence to be what it is. Similar dif-
ficulties are often found in word processors with numbering,
especially for nested numbers for lists and sections. This is
where simple approaches for rich text editing can come into
conflict with the demands of structured documents.

Editing tools need to provide a rich range of document
templates and styles, and to discourage users from making
ad hoc changes that could later come back to bite them. A
related idea is for the editing tool to provide context sensitive
actions that make it easier for users to manage the desired
document structure.

9. CONCLUSION
This paper reports work on a test framework for a cross

browser open source library for browser based editors along
with work on live editing support. The aim is to encourage
the proliferation of a new generation of browser based editors
for a wide range of different purposes. This will in turn
encourage discussion on future standards for native browser
support, and replacements for today’s flawed execCommand
method.

10. REFERENCES

[1] Mark Pilgrim’s March 2009 blog on contentEditable.
http://blog.whatwg.org/
the-road-to-html-5-contenteditable.

[2] Slidy – an HTML based slide presentation solution.
http://www.w3.org/Talks/Tools/Slidy2.

[3] Hypertext transfer protocol (HTTP 1.1). RFC2616, June
1999. http://www.ietf.org/rfc/rfc2616.txt.

[4] Web Distributed Authoring and Versioning (WebDAV).
http://en.wikipedia.org/wiki/WebDAV.

[5] Google Docs. http://docs.google.com/.

[6] Etherpad. http://en.wikipedia.org/wiki/Etherpad.

[7] Collaborative Real-Time Editors. http://en.wikipedia.
org/wiki/Collaborative_real-time_editor.

581

