
Fine-grained Data Partitioning Framework for Distributed
Database Systems

Ning Xu
« Supervised by Bin Cui »

Key Lab of High Confidence Software Technologies (Ministry of Education)
& School of EECS, Peking University

ning.xu@pku.edu.cn

ABSTRACT
With the increasing size of web data and widely adopted par-
allel cloud computing paradigm, distributed database and
other distributed data processing systems, for example Pregel
and GraphLab, use data partitioning technology to divide
the large data set. By default, these systems use hash par-
titioning to randomly assign data to partitions, which leads
to huge network traffic between partitions.

Fine-grained partitioning can better allocate data and min-
imize the number of nodes involved within a transaction or
job while balancing the workload across data nodes as well.
In this paper, we propose a novel prototype system, LuTe
, to provide highly efficient fine-grained partitioning scheme
for these distributed systems. LuTe maintains a lookup ta-
ble for each partitioned data set that maps a key to a set of
partition ID(s). We use a novel lookup table technology that
provides low cost of reading and writing lookup table. LuTe
provides transaction support and high concurrency writing
with Multi Version Concurrency Control (MVCC) as well.

We implemented a prototype distributed DBMS on Post-
gresql and used LuTe as a middle-ware to provide fine-grained
partitioning support. Extensive experiments conducted on
a cluster demonstrate the advantage of the proposed ap-
proach. The evaluation results show that in comparison with
other state-of-the-art lookup table salutations, our approach
can significantly improve throughput by about 20% to 70%
on TPC-C benchmark.

1. INTRODUCTION
Large data processing are common in the Internet, par-

ticularly for social networks. For example, the graph of web
pages is reported to have at least one trillion edges, and the
social network graph such as Facebook has one billion users
and 140 billion friendship connections [5]. Data partitioning
is a key issue to process these “big data” with high efficiency.

These recent emerging parallel data processing systems,
for example Pregel, GraphLab, PowerGraph [7, 6, 4] and dis-
tributed relation database systems use hashing for data par-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2567949.

titioning by default. This simple partitioning strategy which
assigns data to partitions at random with balanced data size
is fast and easy to maintain. However, it lacks consideration
of the relationship between data, and could lead to huge net-
work traffic or distributed transactions for large number of
edge cuts between partitions. Taking distributed database
system for example, SNS providers, such as Facebook and
Twitter, use distributed RDBMS to process OLTP queries
on data records with complex relationships. If a query of
fetching recent events of a user’s friends uses a hash parti-
tioned table, the records are likely to be randomly placed
on several partitions, which brings distributed transactions
and slows down the query. Fine-grained partitioning is pro-
posed to solve this problem. It allocates data to partitions
exploiting internal relationships between data records [3].
For example, we can place the data of a user’s friends to the
same partition which reduces distributed transactions when
fetching recent events mentioned above. A solution of fine-
grained partitioning is maintaining a lookup table, which is
a mapping from a partitioning key to partitioning ID(s) that
stores the data. With the help of lookup table, data can be
placed in an arbitrary way [11].

There are many works focus on fine-grained partitioning
algorithms, in this paper, we focus on how to provide fine-
grained lookup table service efficiently instead of the algo-
rithms. The lookup-table we discussed is distributed stored
in each node who needs to access it often. A central lookup-
table sever is inefficient in distributed systems since every
remote lookup requires another network round trip and the
server itself is a bottleneck of the system. For the distributed
lookup table, there are mainly two types:

a) Consistent lookup table: The lookup table in every
Router is consistent all along. This would provide guarantee
that the lookup table entities are always correct. However,
when a tuple is moved or inserted, the cost to maintain
consistency is prohibitive because distributed transactions
would be used to update the other Routers’ lookup tables.

b) Inconsistent lookup table: A Router executing a
query that changes a certain tuple will not affect the other
Routers immediately. Lookup table entities of that tuple on
the other Routers stay unchanged and become stale. Thus
lookup table update is free of transactions. When stale
lookup table entities are used, a broadcast will be issued
to correct the lookup tables and to find the desired tuple.
In this way, the transactional overhead of updating all the
Routers’ lookup tables is mitigated. However, accessing a
stale lookup table entity generates broadcast for updating
lookup table entities.

57



To the best of our knowledge, there are few recent works
on supporting fine-grained partitioning for distributed database
systems or data processing systems. Aubrey et al. [11] pro-
posed a fine-grained partitioning framework for OLTP database
systems. The approach is based on inconsistent lookup table
which is inefficient when accessing stale lookup table entities.
In addition, the framework is tightly coupled with the pro-
posed prototype database systems that cannot be migrated
to other systems easily.

In this paper, we propose a novel prototype system LuTe
to provide highly efficient fine-grained partitioning for dis-
tributed database and other distributed data processing sys-
tems. LuTe provides transaction support and high con-
currency writing with Multi Version Concurrency Control
as well. It uses a novel lookup table technology named
semi-consistency lookup table that integrates the advantages
of Consistent lookup table and Inconsistent lookup table.
Semi-consistency lookup table uses temporary lookup table
to maintain the correct result for the stale lookup table en-
tity and updates the stale one when system is idle.

We built a distributed DBMS by extending a popular open
source system Postgresql [1] and used LuTe to provide fine-
grained partitioning support. We evaluated our approach
using TPC-C [2] benchmark on a test bed of 10-node clus-
ter. The evaluation results show that our fine-grained par-
titioning approach can significantly improve throughput by
about 17% in comparison with other state-of-the-art lookup
table salutations, and 57% to 70% better throughput than
simple hash partitioning.

The remaining of this paper is organized as follows. In
Section 2 we give an overview of lookup table and related
works. Section 3 discusses the framework of LuTe . In Sec-
tion 4 we present the experimental study. At last, we con-
clude this work in Section 5.

2. LOOKUP TABLE AND IMPLEMENTA-
TION

In this section, we introduce the detailed lookup table
mechanism and the related works.

To better understand the lookup table with transaction
support, in the following of this paper, we discuss the lookup
table used in distributed relation DBMS which is more com-
plicated comparing with distributed data processing sys-
tems. Thus, we use tuple to denote the basic data unit
in the system, Routers to denote the machines that di-
rectly access lookup tables and Data Nodes to denote the
machines storing the real data. The lookup table maps each
tuple to a set of Data Node ID(s) where the tuple is stored.
In this paper, we only discuss situations that one tuple is
stored on only one Data Node. Note that, in practice, a
tuple might be stored on multiple Data Nodes. This can
be solved by designating one partition for each value as the
primary partition as mentioned in [11].

Basically, there are two implementations of lookup table:
Consistent Lookup Table: Consistent Lookup Table

guarantees that all the Routers store the correct Data Node
ID for every tuple. When a tuple is updated or a new tuple
is inserted, all the Routers update their lookup tables in
the same transaction of the update or insertion. In this
type of lookup table, every update or insertion operation will
introduce a distributed transaction involving all the Routers.
It is more suitable for consistent lookup table to execute

workload which contains a lot of reading queries and few
updating queries.

Inconsistent Lookup Table: Inconsistent Lookup Ta-
ble stores most of the correct Data Node IDs, and allows
missing and incorrect lookup entries. When a query finds a
missing lookup table key, a broadcast to all Data Nodes is
used to get the correct result. Besides missing entries, there
is another case to consider: the table is stale. When the
Router receives the query, we cannot determine whether the
lookup table entity is up to date or stale. The query may
be sent to a partition that used to store the tuple but now
deleted or moved. The Router will fall back to broadcast
the query, as dealing with the missing entry. This is be-
cause when inserting or updating a tuple, only the Router
handling the query updates its lookup table entries, thus
the other Routers lacking such information would result in
missing or stale lookup table entries.

Comparing with consistent lookup table, inconsistent lookup
table avoids unnecessary distributed transactions when deal-
ing with update or insert because of the allowance of incor-
rect lookup table entity. Thus, inconsistent lookup table can
handle workloads with frequent updating more efficiently
than consistent lookup table. However, when Router is exe-
cuting queries involving missing or stale lookup table entries,
broadcast will occur for the inconsistent state.

[11] proposes a lookup table framework based on Incon-
sistent Lookup Table with some optimizations. [10, 9, 8]
use the similar implementation of [11]. These works use
inconsistent lookup table which is inefficient when access-
ing stale lookup table entities. Besides, these lookup table
frameworks are tightly coupling with the proposed prototype
systems that cannot be migrated to other systems easily.

In this paper, we develop a novel prototype system, LuTe
, to provide fine-grained partitioning for distributed sys-
tems with a novel semi-consistency lookup table. Semi-
consistency lookup table integrates the advantages of Con-
sistent lookup table and Inconsistent lookup table. It uses
the temporal Router to maintain the correct result for the
stale lookup table entities and update the stale ones when
system is idle. LuTe can be used as an independent middle-
ware which can be migrated to other systems with trans-
action support and high concurrency writing with MVCC
model.

Lookup Table 
Transaction Manager

...

Router 2

Router Backend

Router 1

Router Backend

Data Node 1 Data Node 2 Data Node 3 Data Node 4

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

...

Figure 1: Architecture of LuTe on a Distributed DBMS

provide consistent transaction management and MVCC con-
trol. Router Backend is the interface for distributed systems
to access the lookup service and each RB stores a copy of
the whole lookup entities. We place RB on the same node of
the distributed system router for local accessing. Data Node
Backend is placed on Data Node which stores real data and
executes sub query generated from Router. DNB can tem-
porarily store lookup entity as a lookup proxy for RB which
will be discussed below.

Distributed DBMS components: The router is the
interface for user to execute query on the DBMS. When a
query comes, the router parse the query to get the tuples
used in this query. Then it check the tuples from Local RB
and rewrite the query to data node involved in the query.
Data node will execute the query received from router and
return the result to router for merging.

3.2 Semi-consistent Lookup Table
For consistent lookup table, lookup table in every router is

consistent all along, providing a strong guarantee that the lo-
cation pointer is always correct. However, distributed trans-
actions will occur when updating the other routers lookup
tables. For inconsistent lookup table, the update is free
of transactions. A router executing a query that moves a
certain tuple will not affect the other routers immediately.
Lookup tables on the other routers stay unchanged until a
tuple cannot be found using the local lookup table. How-
ever, when a query uses the missing or stale lookup entity,
a broadcast will be issued to correct the lookup tables and
to find the desired tuple. To integrate the advantages of
the above two approaches and conquer the weakness, we
propose a novel approach named semi-consistent lookup ta-
ble. The motivation is that in most cases, the insertion or
movement of a tuple to certain data node does not require
to be done immediately. The movement or insertion to the
target data node can be delayed until system is not busy
which we called delayed update. Thus when insert new
tuple, we can place the tuple on the data node by hash
result without updating other routers immediately until a
proper time to tell routers modify their lookup table entities.
For example, when the client application issues a request
to insert a Tuplet to DataNodeN , our approach operates
in two steps. First, our approach simply stores Tuplet on
the DataNodeM which is computed by the hash function
Hash(Tuplet)=M . Then, move Tuplet from DataNodeM
to DataNodeN until the system and both datenodeN and
DataNodeM are idle. During the moving necessary updates
on the routes’ lookup tables is performed as well. In our
experiment, we use the running transaction count as the

threshold to determine whether the system is busy. When
Tuplet is accessed between inserted to DataNodeM and re-
moved to DataNodeN , DNB will act as a temporary lookup
table that takes charge of Tuplet. In this way, all routers
could always find Tuplet, using the hash function before the
second step, or using lookup tables after the second step and
access Tuplet with updated lookup table after second step.
The insert operation is shown in Figure 2.

...

Router 2

Router Backend

Router 1

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

...

Tuple T

Tuple TWhen system idle

Router 2

Router Backend

Router 1

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Tuple T

Tuple TWhen system idle move

Tuple T

Figure 2: Example of Tuple Insert on Semi-consistent
Lookup Table

The same method is applicable to situations of tuple re-
move. Suppose that a Tuplet is stored at DataNodeP which
is recorded in routers lookup tables. When Tuplet is moved
to DataNodeQ, we use the original DataNodeP as a tem-
poral router, which records the correct node holding Tuplet.
Therefore, DataNodeP could act as a proxy and direct re-
quests for Tuplet from the other routers to the right node
DataNodeQ, even if they have not updated their lookup ta-
bles. When the system are idle, DataNodeP issues a broad-
cast and tells the other routers to update their lookup tables.
In this way, all the routers contain the correct lookup table
entities for all the existing tuples without distributed trans-
action when insert or move tuple. The lookup table entities
on other RB will be updated when the system is idle.

3.3 Transaction and MVCC
LTTM is a key component for LuTe to provide consis-

tent transaction management and MVCC control. In LuTe
, when router call the lookup table to access entities, the up-
date is executed in a transaction with a given unique trans-
action ID from LTTM. The transaction ID is in ascending
order to distinguish which transaction order. Besides, ev-
ery lookup table entity maintains a transaction id pair mint

and maxt that denotes the visibility for certain transaction.
The mint is set when the lookup table entity is inserted
into LuTe , and maxt is set when it deleted. Thus lookup
table entities is visible for the transaction with transaction
ID in range (mint,maxt). Thus, update actually creates a
new lookup entity and delete does not really remove which
providing high concurrency writing. To remove the lookup
entity that will be not visible to any future transactions,
LuTe execute a auto-removing processing on each RB and
DNB at a configurable frequency.

3.4 Storage
Lookup table is accessed often. To avoid performance

penalty, it is stored in main memory of each Router. Lookup
tables map a tuple to a list of partitions where the tuple is

Figure 1: Architecture of LuTe on a Distributed DBMS

3. LUTE FRAMEWORK
In this section, we describe the overview of our system

design and present the semi-consistent lookup table.

58



3.1 Overall
Figure 1 shows the architecture of LuTe implemented on

a distributed DBMS.
LuTe components: LuTe is composed of three major

components: LTTM (Lookup Table Transaction Manager),
RB (Router Backend) and DNB (Data Node Backend) as
shown in Figure 1. LTTM is a key component of LuTe to
provide consistent transaction management and MVCC con-
trol. Router Backend is the interface for distributed systems
to access the lookup service and each RB stores a copy of
the whole lookup table entities. We place RB on the same
node of the distributed system Router for local accessing.
Data Node Backend is placed on Data Node which stores
real data and executes sub query generated from Router.
DNB can temporarily store lookup entity as a lookup proxy
for RB which will be discussed below.

Distributed DBMS components: The Router is the
interface for user to execute query on the DBMS. When a
query comes, the Router parses the query to get the tu-
ples used in this query. Then it checks the tuples from Lo-
cal RB and rewrites the query to Data Node(s) involved in
the query. After that, Data Node(s) will execute the query
received from Router and return the result to Router for
merging.

3.2 Semi-consistent Lookup Table
For consistent lookup table, lookup table in every Router

is consistent all along, providing a strong guarantee that
the location pointer is always correct. However, distributed
transactions will occur when updating the other Routers’
lookup tables. For inconsistent lookup table, the update is
free of transactions. A Router executing a query that moves
a certain tuple will not affect the other Routers immediately.
Lookup tables on the other Routers stay unchanged until a
tuple cannot be found using the local lookup table. Thus,
when a query uses the missing or stale lookup table entities,
a broadcast will be issued to correct the entities and to find
the desired tuple.

To integrate the advantages of the above two approaches
and conquer the weakness, we propose a novel approach
named semi-consistent lookup table. The motivation is that
in most cases, the insertion or movement of a tuple to cer-
tain Data Node does not require to be done immediately.
The movement or insertion to the target Data Node can
be delayed until system is not busy which we called de-
layed update. Thus when inserting new tuple, we can
place the tuple on the Data Node by hash result without
updating other Routers immediately until a proper time to
tell Routers modify their lookup table entities. For exam-
ple, when the client application issues a request to insert a
Tuplet to DataNodeN , our approach operates in two steps.
First, our approach simply stores Tuplet on the DataNodeM
which is computed by the hash function Hash(Tuplet)=M .
Then, move Tuplet from DataNodeM to DataNodeN un-
til the system and both datenodeN and DataNodeM are
idle. During the moving necessary updates on the route’s
lookup tables is performed as well. In our experiment, we
use the running transaction count as the threshold to deter-
mine whether the system is busy. When Tuplet is accessed
between the time stamps of insertion to DataNodeM and
movement to DataNodeN , DNB will act as a temporary
lookup table that takes charge of Tuplet. In this way, all
Routers could always find Tuplet, using the hash function

before the second step, or using lookup tables after the sec-
ond step and access Tuplet with updated lookup table after
second step. The insert operation is shown in Figure 2.

...

Router 2

Router Backend

Router 1

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

...

Tuple T

Tuple TWhen system idle

Router 2

Router Backend

Router 1 (Query)

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Temporary
RB

Tuple T

Tuple TWhen system idle move

Tuple T

Router 2 (Query)

Router Backend

Router 1

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Proxy
RB

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Tuple T

Tuple TWhen system idle move

Tuple T

Update Lookup Entity
on other RB

Update Lookup Entity
on other RB

Figure 2: Tuple Insert on Semi-consistent Lookup Table

The same method is applicable to situations of tuple up-
date as shown in Figure 3. Suppose that a Tuplet is stored
at DataNodeP which is recorded in Routers’ lookup tables.
When Tuplet is moved to DataNodeQ, we use the origi-
nal DataNodeP as a temporal Router, which records the
correct Data Node holding Tuplet. Therefore, DataNodeP
could act as a proxy and direct requests for Tuplet from the
other Routers to the right node DataNodeQ, even if they
have not updated their lookup tables. When the system
is idle, DataNodeP issues a broadcast and tells the other
Routers to update their lookup tables. In this way, all the
Routers contain the correct lookup table entities for all the
existing tuples without distributed transaction when insert
or move tuple. The lookup table entities on other RB will
be updated when the system is idle.

...

Router 2

Router Backend

Router 1

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

...

Tuple T

Tuple TWhen system idle

Router 2

Router Backend

Router 1 (Query)

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Temporary
RB

Tuple T

Tuple TWhen system idle move

Tuple T

Router 2 (Query)

Router Backend

Router 1

Router Backend

Data Node N Data Node M Data Node P Data Node Q

Proxy
RB

Data Node 
Backend

Data Node 
Backend

Data Node 
Backend

Tuple T

Tuple TWhen system idle move

Tuple T

Update Lookup Entity
on other RB

Update Lookup Entity
on other RB

Figure 3: Tuple Update on Semi-consistent Lookup Table

3.3 Transaction and MVCC
LTTM is a key component for LuTe to provide consis-

tent transaction management and MVCC control. When
a Router updates lookup table entities, the update is exe-
cuted in a transaction with a given unique transaction ID
from LTTM. The transaction ID is in ascending order to
distinguish the execution order. Besides, every lookup table
entity has a transaction ID pair mint and maxt that de-
termine the visibility for certain transaction. The mint is
set when the lookup table entity is inserted into LuTe , and
maxt is set when it is deleted. Thus, lookup table entities
is visible for the transaction with transaction ID in range
(mint,maxt). In fact, to provide high concurrency writing,

59



update or delete only creates a new lookup entity and does
not really remove the old one. To remove the lookup entity
that will be not visible to any future transactions, LuTe con-
ducts an auto-removing processing on each RB and DNB at
a configurable frequency.

3.4 Storage
Lookup table needs to be frequently accessed in distributed

system processing. To avoid performance penalty, it is stored
in main memory on each Router. Lookup table maps a tuple
to a list of partitions where the tuple is stored. We can use
an N-bit number to present the partitions that stores the
key where N is the number of partitions. In our implemen-
tation, we further use bloom filter to reduce the memory
cost, which provides a more compact representation though
it has the disadvantage of producing some false positives.
A false positive means that a query may access some parti-
tions which do not contain the targeting tuples. These false
positives may decrease performance, but will not affect the
correctness. Besides, we can control the false positive rate
low enough with high compact rate.

4. EVALUATION
In this section, we present the performance of our lookup

table approach. We firstly introduce our experimental setup
in subsection 4.1. Then we provide partitioning scheme of
different partitioning approaches in subsection 4.2. At last,
we show the simulation query and system throughput in
subsection 4.3 and subsection 4.4.

4.1 Experiment Setup
To evaluate LuTe , we built a distributed DBMS by ex-

tending a popular open source system Postgresql [1] and im-
plemented LuTe together with hash(H), consistent lookup
table(C) and inconsistent lookup table(IC) on this proto-
type system. We conducted our experiment in a cluster of
10 commodity machines with AMD Opteron 4180 2.6Ghz
CPU, 48GB memory and a 50GB disk. Due to the space
limit, here we mainly present the result with two Routers
and eight Data Nodes. The experimental results on the
other data sets show the similar performance improvement.
We used TPC-C benchmark for our experimental evaluation
which contains 9 tables and 5 types of queries which contain
about 48% writing (update and insert) and 47% reading. In
the experiment, graph of the tuples was horizontally parti-
tioned into each Data Node according to hash or fine-gained
partitioning mentioned in [3]. In addition, to evaluate the
performance with different types of reading/writing ratio,
we used a synthetic dataset containing 5 million tuples and
0.35 million transactions with different reading/writing ra-
tio. The detailed configuration of five workload refers to
table 1.

4.2 Partitioning Scheme
In our experiments, we compared the performance of hash

partitioning and fine-grained partitioning that was supported
by three kinds of lookup table. Hash partitioning: We used
tuple-level hash partitioning which places the tuple accord-
ing to its primary key using a hash function. When the query
involved the attribute which is not primary key, broadcast
will occur for processing the query. Fine-gained partition-
ing: we used tuple-level fine-gained partitioning algorithm
mentioned in [3] to partition the dataset. The partitioning

was based on a tuple-level graph where each edge represents
a transaction and nodes spanned by the edge represent tu-
ples in the same transaction from workload log. Due to the
space limit, the fine-gained partitioning algorithm will not
be further discussed.

������� 	
����� 	
�������������


��
�
��
�
�
�

�

�

��

��

��

��

��

����

���

��

�

Figure 4: Simulation Query on Different Lookup Tables

4.3 Simulation Query
We first measure the lookup table efficiency when dealing

with simulation query which is one tuple insert (writing) or
one tuple select (reading) on cluster with 2 Routers and 2
Data Nodes. The experiment uses a table which contains
only one attribute with no tuple at the beginning of the ex-
periment. Firstly, we execute 3,000 transactions that insert
a tuple with random value into the table. Then we randomly
read one of these 3,000 tuples. At last, we mix read and
write transactions (each 50%). We compare the three types
of lookup table together with hash on these three types of
workloads. Figure 4 shows the comparison of average pro-
cessing time. As we can see, for writing transaction, con-
sistent lookup table shows poor performance since it must
update lookup table entity on the other Routers for insert
operation with inefficient two phase commit. The result also
indicates that for reading intensive transaction, inconsistent
lookup table needs more time to process because the Routers
may not have lookup table entity for some reading tuples and
have to broadcast the query to all the Data Nodes. On the
contrary, LuTe integrates the advantages and conquers the
weakness, it takes almost the same processing time compar-
ing with hash.

Table 1: Workload Statistics

Workload Read Ratio Write Ratio
Ratio-M1 75% 25%
Ratio-M2 50% 50%
Ratio-M3 25% 75%
Ratio-R 100% 0%
Ratio-W 0% 100%

4.4 System Throughput
In order to evaluate the throughput of our approach, we

partition the TPC-C tables by fine-grained partitioning al-
gorithm [3] to 8 partitions and evaluate LuTe ’s through-
put comparing other two lookup table implementations and
hash partitioning scheme. To ascertain the suitability of
different types of workloads, we use workloads Workload-
M1, Workload-M2, Workload-M3, Workload-W, Workload-

60



R and original TPC-C workload which contain different pro-
portions of reading and writing ratio. The Workload-W
workload executes inserting only transaction while Workload-
R workload is reading only. Proportions of other workloads
are shown in table 1. All the experiments use two Routers
each of which takes charge half of the queries.

As shown in Figure 5, there is a substantial reduction of
throughout for hash partitioning compared with fine-grained
partitioning since fine-grained partitioning approaches re-
duce the distributed transactions with better tuple place-
ment. LuTe beats inconsistent and consistent lookup table
almost on every workload with about 17% better through-
put which is attributed to the combination of the advantage
of the two implementations. Besides, it scores a 57% to 70%
better throughput than simple hash partitioning.

���� ���	 
� �

�
�
�
�
�
�
�
�
��
��
��
�
��
�

�

��

���

���

���

���

a. TPC-C

���� ���	 
� �

�
�
�
�
�
�
�
�
��
��
��
�
��
�

�

��

���

���

���

���

b. Workload-M1

���� ���	 
� �

�
�
�
�
�
�
�
�
��
��
��
�
��
�

�

��

���

���

���

���

c. Workload-M2

���� ���	 
� �

�
�
�
�
�
�
�
�
��
��
��
�
��
�

�

��

���

���

���

���

d. Workload-M3

���� ���	 
� �

�
�
�
�
�
�
�
�
��
��
��
�
��
�

�

��

���

���

���

���

e. Workload-R

���� ���	 
� �

�
�
�
�
�
�
�
�
��
��
��
�
��
�

�

��

���

���

���

f. Workload-W

Figure 5: Throughput on Different Workloads

The above evaluation results confirm that LuTe can pro-
vide highly efficient and transaction supported fine-grained
partitioning support for distributed systems and improve the
throughput of these systems.

5. CONCLUSIONS
In this paper, we systematically investigated lookup ta-

ble implementation in current distributed systems. We pro-
posed a novel semi-lookup table technology and designed a
fine-grained partitioning framework LuTe base on it. Proto-
type and experimental results confirmed the improvements
of our new lookup table approaches.

There are several promising directions for our future work.
First, a further theoretical analysis of partitioning algorithm
on different workloads is valuable. Second, experiments on
distributed data processing system with LuTe for partition-
ing are interesting as well. At last, how to use LuTe for
distributed index support is another open problem.

6. ACKNOWLEDGMENTS
This research was supported by the National Natural Sci-

ence foundation of China under Grant No. 61272155.

7. REFERENCES
[1] Postgresql. http://www.postgresql.org/.

[2] Tpc-c benchmark. http://www.tpc.org/tpcc/.

[3] Carlo Curino, Evan Jones, Yang Zhang, and Sam
Madden. Schism: a workload-driven approach to
database replication and partitioning. Proceedings of
the VLDB Endowment, 3(1-2):48–57, 2010.

[4] H. Gu D. Bickson J. Gonzalez, Y. Low and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

[5] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is twitter, a social network or a news
media? In Proc. of WWW, pages 591–600.

[6] Yucheng Low, Danny Bickson, Joseph Gonzalez,
Carlos Guestrin, Aapo Kyrola, and Joseph M
Hellerstein. Distributed graphlab: A framework for
machine learning and data mining in the cloud.
volume 5, pages 716–727. VLDB Endowment, 2012.

[7] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proc. of SIGMOD, pages
135–146, 2010.

[8] Josep M Pujol, Vijay Erramilli, Georgos Siganos,
Xiaoyuan Yang, Nikos Laoutaris, Parminder Chhabra,
and Pablo Rodriguez. The little engine (s) that could:
scaling online social networks. In ACM SIGCOMM
Computer Communication Review, volume 40, pages
375–386. ACM, 2010.

[9] Abdul Quamar, K Ashwin Kumar, and Amol
Deshpande. Sword: scalable workload-aware data
placement for transactional workloads. In Proceedings
of the 16th International Conference on Extending
Database Technology, pages 430–441. ACM, 2013.

[10] Zechao Shang and Jeffrey Xu Yu. Catch the wind:
Graph workload balancing on cloud. In Data
Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 553–564, 2013.

[11] Aubrey L Tatarowicz, Carlo Curino, Evan PC Jones,
and Sam Madden. Lookup tables: Fine-grained
partitioning for distributed databases. In Data
Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 102–113. IEEE, 2012.

61


	Introduction
	Lookup Table and Implementation
	LuTe Framework
	Overall
	Semi-consistent Lookup Table
	Transaction and MVCC
	Storage

	Evaluation
	Experiment Setup
	Partitioning Scheme
	Simulation Query
	System Throughput

	Conclusions
	ACKNOWLEDGMENTS
	References



