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ABSTRACT
Traversal-based approaches to execute queries over data on the Web
have recently been studied. These approaches make use of up-to-
date data from initially unknown data sources and, thus, enable ap-
plications to tap the full potential of the Web. While existing work
focuses primarily on implementation techniques, a principled anal-
ysis of subwebs that are reachable by such approaches is missing.
Such an analysis may help to gain new insight into the problem of
optimizing the response time of traversal-based query engines. Fur-
thermore, a better understanding of characteristics of such subwebs
may also inform approaches to benchmark these engines.

This paper provides such an analysis. In particular, we identify
typical graph-based properties of query-specific reachable subwebs
and quantify their diversity. Furthermore, we investigate whether
vertex scoring methods (e.g., PageRank) are able to predict query-
relevance of data sources when applied to such subwebs.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous

1. INTRODUCTION
In recent years, the publication of Linked Data on the World Wide
Web (WWW) has gained significant momentum. Link traversal
based query execution (LTBQE) approaches for live querying this
emerging data space have received interest [5, 10, 11] since they
do not depend on query processing functionality to be provided by
data publishers; instead, they rely only on the lookup of URIs as a
means of data access. The novelty of these approaches lies in inte-
grating a traversal-based retrieval of data into the query execution
process. Hence, these approaches do not assume a-priori a fixed set
of potentially relevant data sources; instead, the traversal process
discovers data and data sources on the fly.

While LTBQE approaches may answer queries based on data
from initially unknown data sources, query results cannot guaran-
teed to be complete w.r.t. all Linked Data on the WWW [4]. As a
consequence, LTBQE approaches typically support a reachability-
based query semantics according to which the scope of any query is
restricted to a well-defined subweb (that may differ for each query).
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For instance, under cMatch-semantics [4] such a subweb for a given
query consists of all data that is reachable by traversing recursively
all data links that match some pattern in the query.

Since LTBQE systems do not have a-priori information about the
reachable subweb for any given query, to guarantee that a computed
query result is complete, such a system has to fully explore the
reachable subweb during query execution. These reachable sub-
webs may differ significantly among different queries. As a re-
sult, queries that are similar in a more traditional setting may cause
dissimilar behavior when evaluated under a reachability-based query
semantics over Linked Data on the WWW. For example, consider
the following two SPARQL queries from the FedBench benchmark
suite [13] (prefix declarations omitted).

LD2: SELECT * WHERE {
?proceedings swc:relatedToEvent

<http://data.semanticweb.org/conference/eswc/2010> .
?paper swc:isPartOf ?proceedings . ?paper swrc:author ?p . }

LD′10: SELECT * WHERE {
?n dct:subject

<http://dbpedia.org/resource/Category:Chancellors_of_Germany> .
?p2 owl:sameAs ?n . ?p2 nyt:latest_use ?u . }

Both queries are structurally identical (i.e., both are path-shaped
and have the same number and type of triple patterns). Thus, both
queries appear to be similarly selective [14]. However, when we
execute them (under cMatch-bag-semantics; cf. Section 2) using an
LTBQE system that performs a breadth-first traversal strategy, we
observe that executing LD2 completely takes almost 5 times longer
than executing LD′10 completely (109 min vs. 22 min), because the
reachable subweb for LD2 turns out to contain ca. 37 times more
documents. On the other hand, we also notice that the query results
for LD2 and LD′10 are already complete after 3.7% and 63.6% of the
overall query execution time, respectively (ca. 4 min vs. 14 min)!

These observations illustrate that the performance of any travers-
al-based execution of a given query depends significantly on the
corresponding reachable subweb, and so does any attempt to opti-
mize such an execution. Consequently, improving the state of the
art in link traversal based query execution requires a detailed un-
derstanding of typical reachable subwebs and their properties.

To achieve such an understanding this paper presents a compre-
hensive analysis of various, query-specific reachable subwebs. In
particular, this paper makes the following contributions:
1.) We study several graph-based properties of query-specific reach-
able subwebs and show that these subwebs may differ in multiple
dimensions (i.e., not only in the number of documents covered).
2.) Based on these findings we introduce a quantitative approach to
compare workloads of queries w.r.t. the diversity of their reachable
subwebs. Such an approach is important for designing a realistic
benchmark for testing LTBQE systems.
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3.) Furthermore, we investigate whether methods for ranking graph
vertices (such as PageRank) are suitable for predicting which of the
documents in reachable subwebs actually contribute to the corre-
sponding query result (in which case such a suitable method may
be used for response time optimization in LTBQE systems).
Due to space limitations, this paper focuses on the concepts intro-
duced for our analysis and summarizes the main findings. A more
comprehensive technical report gives full account of our observa-
tions [6]. Furthermore, all digital artifacts related to our study (e.g.,
software, test data, etc.) are available online.1

The remainder of the paper is structured as follows: Section 2
introduces the formal foundations of our study. Sections 3 and 4
discuss graph-based properties of reachable subwebs and our ap-
proach to measure their diversity, respectively. Section 5 focuses
on vertex-scoring methods and Section 6 concludes the paper.

2. PRELIMINARIES
This section introduces the formal foundations of our study. These
foundations are based on a data model and a notion of SPARQL-
based conjunctive queries under reachability-based semantics that
we have formalized in our earlier work [4]. Due to space con-
straints, we omit most of the technical details of this formalization
and define only the concepts used in the remainder of this paper.

Furthermore, we also assume familiarity with RDF [9] and the
SPARQL query language [3]. We write U , B, L, and V to denote
the sets of all URIs, blank nodes, literals, and variables, respec-
tively. Thus, a tuple from the set T = (U∪B)×U×(U∪B∪L) is an
RDF triple and a finite subsetB ⊆ (U∪V)×(U∪V)×(U∪L∪V)
is a basic graph pattern (BGP), which is the basic building block
of a SPARQL query. While SPARQL has further, more expressive
features, existing work on LTBQE focuses on conjunctive queries
expressed using BGPs [5, 10, 11]. Therefore, our study in this pa-
per also focuses on BGPs. The standard SPARQL set semantics
defines the query result of a BGP B over a set of RDF triples G as
a set that we denote by [[B]]G and that consists of partial mappings
µ : V → (U ∪ B ∪ L), which we refer to as valuations.

While the standard SPARQL semantics is suitable for querying a
well-defined set of RDF triples (which might be stored in a DBMS),
it is insufficient for querying Linked Data that is distributed over the
WWW. Hence, to use BGPs as Linked Data queries in a well-de-
fined manner, we need a query semantics that specifies the expected
result of executing such a query over Linked Data on the WWW.

As a basis for defining such query semantics we have to intro-
duce a data model that captures the idea of Linked Data formally:
We define a Web of Linked Data as a tuple W = (D, data, adoc)
that consists of the following elements [4]: D is a set of symbols
that we use to formally capture the concept of Web documents that
can be obtained by looking up URIs in W. Hereafter, we call each
d ∈ D a Linked Data document, or LD document for short.

Mapping data : D → 2T associates each LD document with a
finite set of RDF triples such that no blank node appears in data(d)
and in data(d′) of two distinct LD documents d 6= d′.

Finally, adoc : U → D is a partial, surjective mapping which
models the fact that a lookup of a URI u ∈ dom(adoc) in W
results in the retrieval of LD document adoc(u) = d ∈ D. We
may understand d as the authoritative source of data for URI u.
Nonetheless, u may also be used in the data of other documents.

Then, using URI u in the data of LD document d′ ∈ D consti-
tutes a data link to LD document d = adoc(u). These data links
form a graph structure that we call link graph. Formally, the link
graph of a Web of Linked Data W = (D, data, adoc) is a di-
1http://squin.org/experiments/WWW2014/

rected graph (D,E) whose vertices are all LD documents in W,
and whose edges are all data links between these documents; i.e.,

E :=
{(
d, adoc(u)

)
∈ D ×D

∣∣ t ∈ data(d) and u ∈ uris(t)
}
.

Due to the openness and unbounded nature of the WWW, it is im-
possible to compute query results that are complete w.r.t. all Linked
Data on the WWW [4]. Thus, to define queries that can be com-
puted completely over any possible Web of Linked Data, we need
a query semantics that restricts the scope of queries to well-defined
“subwebs” of the queried Webs. However, a restriction to an a pri-
ori selected, fixed set of data sources significantly limits the possi-
bilities for serendipitous discovery and, thus, does not allow Linked
Data query execution systems to tap the full potential of the WWW.

Reachability-based query semantics avoid this limitation by
using a notion of reachability to restrict the scope of a query. To
specify such a notion of reachability formally, we have introduced
the concept of a reachability criterion [4]. Given such a reachabil-
ity criterion c, we have defined the reachable subweb of a queried
Web of Linked Data in the context of a BGP B and a finite set of
URIs S ⊆ U (which serve as a “seed”): Informally, the (S, c,B)-
reachable subweb of a Web of Linked Data W = (D, data, adoc)
is a Web of Linked Data W ∗ = (D∗, data∗, adoc∗) such that
D∗ ⊆ D and any LD document d ∈ D∗ can be obtained using
a seed URI u ∈ S—in which case we call d a seed document—or
there exists a path in the link graph of W from a seed document to
d such that each of the data links on that path “qualifies” according
to reachability criterion c (mappings data∗ and adoc∗ depend on
data and adoc in the obvious way [4]). An example of a reach-
ability criterion is cMatch according to which a data link qualifies
if that link corresponds to a triple pattern in the given BGP B [4].
Hereafter, we refer to each d ∈ D∗ as a reachable document.

We are now ready to define conjunctive Linked Data queries
(CLD queries) that use BGPs under a reachability-based query se-
mantics: The CLD query that uses a BGP B, a set of seed URIs
S, and reachability criterion c, denoted by QB,Sc , is a total func-
tion over the set of all Webs of Linked Data; for any such Web W,
this function is defined byQB,Sc (W ) := (Ω, ρ) such that (Ω, ρ) is a
multiset of valuations whose underlying set is Ω := [[B]]AllData(W∗)

with W ∗= (D∗, data∗, adoc∗) being the (S, c,B)-reachable sub-
web of W and AllData(W ∗) =

⋃
d∈D∗ data(d); the correspond-

ing function ρ : Ω → {1, 2, ...} defines the cardinality of each
valuation µ ∈ Ω in the multiset as the number of distinct mappings
prv : µ[B]→ D∗ such that t ∈ data

(
prv(t)

)
for all t ∈ µ[B].

We emphasize that the given definition of CLD queries intro-
duces a family of (reachability-based) query semantics, each of
which is based on a different reachability criterion c and, hereafter,
referred to as c-semantics. Observe that all these query semantics
are bag semantics (which is a divergence from our earlier work in
which we define set semantics [4]). Hence, valuations may appear
multiple times in a query result because any RDF triple used for
constructing such a valuation may occur in the data of more than
one (reachable) LD document. Bag semantics are more suitable for
our study (and usually more easy to implement in systems).

Finally, we note that existing work on LTBQE techniques fo-
cuses on CLD queries under cMatch-semantics (or slight variations
thereof) [5, 10, 11]. Therefore, our analysis in this paper also fo-
cuses cMatch-semantics. However, the concepts that we shall define
for our analysis are generic and, thus, may be applied easily to anal-
yses that focus on any other reachability-based semantics.

3. PROPERTIES OF LINK GRAPHS
We now study typical graph-based properties of reachable sub-

webs. For this study we are interested in some aspects of such
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Query (BGP) #docs #edges e/v #sc-comp diameter acyc. #rlv-docs %rlv-docs res-size
LD1 5167 13844 2.679 4 50 no 314 6.08 % 5662
LD2 10175 28453 2.796 6 31 no 237 2.33 % 1480
LD4 12896 43131 3.345 6 26 no 61 0.47 % 1600
LD5 74 193 2.608 2 3 no 49 66.22 % 180
LD′6 9655 13245 1.372 8140 7 no 66 0.68 % 1044
LD′7 18 34 1.889 1 3 no 18 100.00 % 64
LD′9 1710 10514 6.149 1 26 no 3 0.18 % 4
LD′10 1554 1920 1.236 1457 6 no 7 0.45 % 12

wstdev: 57301.44 141501.07 14.52 18655.64 143.30 n/a 1086.12 362.94 % 15983.53
wstdev PSQ3: 1937.32 3755.55 8.78 673.78 11.19 n/a 28.11 30.95 % 46.04

rel. difference: 0.966 0.973 0.396 0.964 0.922 n/a 0.974 0.915 0.997

Table 1: Characteristics of query profile graphs (QPGs) for some of the FedBench Linked Data queries over the WWW.

subwebs that go beyond what is captured by the link graph of these
subwebs. More precisely, in addition to information about how the
reachable LD documents are interlinked with each other, we are in-
terested in (i) the relevance and the (relative) importance of those
LD documents for the corresponding query result and (ii) whether
those LD documents are seed documents. Consequently, to cap-
ture all information relevant for our study, we introduce a more en-
hanced graph structure that extends the notion of the link graph of
a reachable subweb as follows: Given a CLD query QB,Sc , a Web
of Linked Data W = (D, data, adoc), and the (S, c,B)-reach-
able subweb of W, denoted by W ∗, the query profile graph (QPG)
of QB,Sc over W is a multirooted, vertex-weighted directed graph
p = (D∗, E,R, rcc) such that:

• (D∗, E) is the link graph of reachable subweb W ∗;
• the set of root vertices R ⊆ D∗ are the seed documents (for
QB,Sc in W ); i.e., R := {adoc(u) ∈ D∗ |u ∈ S}; and
• the vertex labeling function rcc : D∗ → {0, 1, 2, ...} maps

each LD document d ∈ D∗ to the number of valuations in
QB,Sc (W ) whose computation is based on an RDF triple in
data(d); i.e., rcc(d) :=

∣∣{µ ∈ Ω |µ[B] ∩ data(d) 6= ∅}
∣∣,

where Ω is the underlying set ofQB,Sc (W ) = (Ω, ρ).

We call rcc(d) of an LD document d ∈ D∗ the result contribution
counter of d, and d is relevant (forQB,Sc over W ) if rcc(d) > 0.

For our study we executed various CLD queries and used in-
formation recorded during these executions to construct QPGs. In
the following, we first discuss our observations for QPGs obtained
from executing queries of the FedBench benchmark [13] over “real”
Linked Data on the WWW. Afterwards, we analyze QPGs of addi-
tional test queries over different, artificial Webs of Linked Data.

3.1 FedBench Queries
The FedBench benchmark suite proposes to test Linked Data query
systems using a set of eleven BGPs, LD1, ... , LD11 [13]. Hence,
these BGPs are designed to be evaluated over Linked Data on the
WWW (notably, FedBench does not specify any query semantics
for such an evaluation). For our study, we use these BGPs under
cMatch-semantics; that is, we have eleven CLD queriesQLD1,S1

cMatch
, ... ,

QLD11,S11
cMatch

; as seed URIs Si these queries use all subject-position
and object-position URIs mentioned in the corresponding BGP LDi.

Preliminary tests with these queries revealed that some of the
original FedBench BGPs (namely, LD6 to LD10) use outdated vo-
cabularies. To fix this problem we slightly adjusted these BGPs
(without changing the intent of the queries or their structural prop-
erties). The resulting BGPs, denoted by LD′6 to LD′10, and the other,
original FedBench BGPs are given in our technical report [6].

Table 1 reports properties of the QPGs that we obtained by ex-
ecuting our FedBench-based CLD queries over the WWW. Before
discussing these properties, we emphasize that we conducted this

experiment from Nov. 11 to Nov. 18, 2013. During these days—in
fact, during the whole time of our work on this paper—we have not
been able to execute the queries that use LD3, LD′8, and LD11, with-
out observing a great number of URI lookups that time out nonde-
terministically (due to temporarily unresponsive Web servers).2 As
an unfortunate consequence, we have to exclude the three queries
from our study (and, hence, they are missing from Table 1).

The types of properties of any QPG p = (D∗, E,R, rcc) in Ta-
ble 1 are the following (ignore the additional rows at the bottom of
the table for the moment):

#docs: the number of vertices; i.e., |D∗|
#edges: the number of edges; i.e., |E|

e/v: the ratio of edges per vertex; i.e., |E||D∗|
#sc-comp: the number of strongly connected components
diameter: the length of longest shortest path between vertices

acyc.: represents whether the graph is acyclic
#rlv-docs: the number of relevant documents; i.e., |Drlv| where

Drlv = {d ∈ D∗|rcc(d) > 0}
%rlv-docs: the percentage of relevant documents; i.e., |Drlv|·100%

|D∗|

In addition to these properties, Table 1 reports the size of the query
results returned after executing completely the given FedBench-
based CLD queries (column res-size); since query results are mul-
tisets (Ω, ρ), we measure their size as

∑
µ∈Ω ρ(µ).

The values in Table 1 illustrate that the (measured) properties
differ significantly across the studied reachable subwebs (except
for acyclicity). While these differences are not entirely unexpected
for some properties, we have been somewhat surprised by the dif-
ferences for #sc-comp and %rlv-docs. Note that the standard devi-
ation (which is 36.29%) for the eight %rlv-docs values is 164.58%
of their arithmetic mean (22.05%), and there are two “outliers”
(LD5 and LD′7) that are not within one standard deviation from the
mean; for the #sc-comp values, the standard deviation (2665.09) is
even 221.70% of the mean (1202.13) with one outlier (LD′6).

Our measurements also explain why, in the experiment outlined
in the introduction, the query result for LD2 was complete already
after an unexpectedly small 3.7% of the overall query execution
time (in contrast to 63.6% recorded for LD′10): For both queries all
relevant LD documents are close to the seed document (at most two
steps away in both cases). However, for LD2, the comparably high
diameter suggests that many of the irrelevant LD documents are far-
ther away, which is not the case for LD′10 (the aforementioned Web
page for this paper provides a visualization of the corresponding
QPGs that verifies this explanation). Therefore, since we have used
a breath-first traversal for this experiment, the relevant documents

2For this experiment we adhered to the usual politeness policy of
requesting at most two URIs per second from each Web server [7].
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φ1 φ2 #docs #edges e/v #sc-comp diameter acyc. #rlv-docs %rlv-docs res-size
0 0 19 18 0.947 19 0 yes 0 0.00 % 0
0 0.33 55 54 0.982 55 3 yes 0 0.00 % 0
0 0.66 25 24 0.960 25 3 yes 2 8.00 % 1
0 1 1 0 0.000 1 0 yes 0 0.00 % 0

0.33 0 162 215 1.327 109 6 no 3 1.85 % 4
0.33 0.33 160 216 1.350 103 6 no 0 0.00 % 0
0.33 0.66 119 189 1.588 48 6 no 3 2.52 % 4
0.33 1 64 122 1.906 5 6 no 5 7.81 % 6
0.66 0 295 496 1.681 93 6 no 3 1.02 % 4
0.66 0.33 209 363 1.737 54 6 no 5 2.39 % 8
0.66 0.66 231 428 1.853 34 6 no 4 1.73 % 6
0.66 1 118 232 1.966 4 6 no 3 2.54 % 2

1 irrel. 367 734 2.000 1 6 no 7 1.91 % 12
wstdev: 1937.32 3755.55 8.78 673.78 11.19 n/a 28.11 30.95 % 46.04

Table 2: Characteristics of query profile graphs for query SQ3 over test Webs that differ in their link structure.

have been among the first reachable documents to be discovered
during the execution of LD2, whereas, for LD′10, the breath-first
traversal discovered many irrelevant documents in the beginning.

3.2 Simulation-Based Experiments
The differences of the properties that we have measured for the
FedBench QPGs raise the research question of whether these dif-
ferences are an artifact of using different queries or whether such
differences can also be observed when querying different Webs us-
ing the same query. While the FedBench-based CLD queries allow
us to study QPGs over the particular Web of Linked Data that exists
on the WWW (at the time of our experiments), to answer the given
question we aim to study QPGs of test queries over multiple, differ-
ently structured Webs of Linked Data. To be able to meaningfully
compare the QPGs of a test query over different Webs, we used a
single base dataset to generate a set of synthetic test Webs.

We selected as base dataset the set of RDF triples that the data
generator of the Berlin SPARQL Benchmark suite [1] produces
when called with a scaling factor of 200. This set, hereafter denoted
by Gbase, consists of 75,150 RDF triples and describes 7,329 en-
tities in a fictitious e-commerce scenario (including products, re-
views, etc.). Each of these entities is identified by a single, unique
URI. Let Ubase denote the set consisting of these 7,329 URIs.

Each test Web generated from this base dataset is a Web of Linked
Data Wtest = (D, data, adoc) for which the following properties
hold: (i) |D| = 7, 329, (ii) dom(adoc) = Ubase, (iii) adoc is bijec-
tive, and (iv)

⋃
d∈D data(d) = Gbase.

To distribute the RDF triples from the base dataset Gbase over
such a test Web, we partitioned Gbase into 7,329 (potentially over-
lapping) subsets, each of which became the set data(d) for a differ-
ent LD document d ∈ D. Given thatGbase ⊆ Ubase×U × (U ∪L),
we always placed any base dataset triple (s, p, o) ∈ Gbase with
o /∈ Ubase into the set data

(
adoc(s)

)
. For any of the other triples

(s, p, o) ∈ Gbase ∩Ubase×U ×Ubase, we considered three options:
placing (s, p, o) into both data

(
adoc(s)

)
and data

(
adoc(o)

)
, into

data
(
adoc(s)

)
only, or into data

(
adoc(o)

)
only. We applied a

random approach for choosing among these three options: With
probability φ1 the triple was placed into both data

(
adoc(s)

)
and

data
(
adoc(o)

)
; otherwise, it was placed into either data

(
adoc(s)

)
or data

(
adoc(o)

)
(but not into both), where φ2 is the probabil-

ity for placing the triple into data
(
adoc(s)

)
. It is easy to see

that the selected probabilities φ1 and φ2 impact the link structure
of the resulting test Web. Therefore, we could obtain a diverse
set of differently structured test Webs by systematically varying
φ1 and φ2. In particular, we have used each of the twelve pairs
(φ1, φ2) ∈ {0, 0.33, 0.66} × {0, 0.33, 0.66, 1} to generate twelve

test Webs W (0,0)
test , ... ,W

(0.66,1)
test , and we complemented them with

the test Web W (1)
test that we generated using probability φ1 = 1 (in

which case φ2 is irrelevant)—giving us 13 test Webs in total.
To query these test Webs, we used six CLD queries under cMatch-

semantics. These queries, denoted by SQ1 to SQ6, differ w.r.t. their
structural properties (shape, size, etc.). Due to space limitations,
the remainder of this section focuses on discussing QPGs of query
SQ3. Our technical report describes all six queries and the proper-
ties of their QPGs over any of our test Webs [6].

We executed query SQ3 over any of the aforementioned 13 test
Webs to collect information for constructing the corresponding 13
QPGs. Table 2 lists the properties of these QPGs (again, ignore the
additional row at the bottom of the table for the moment).

First, we observe that for some properties the measured values
differ significantly (similar to the FedBench case). However, some
properties appear to be more regular (in particular, e/v and diam-
eter). We also note that, in contrast to the FedBench QPGs, some
QPGs of SQ3 are acyclic. This holds in particular for the test Webs
with φ1 = 0. In these Webs, there is not a single RDF triple that
establishes a bidirectional data link (a.k.a. “back links”), which nat-
urally introduce cycles in the link graph of reachable subwebs.

Furthermore, we notice that for the test Webs generated with a
greater φ2 the number of reachable documents decreases. We ex-
plain this phenomenon as follows: The seed URI of query SQ3
appears in the object position of a triple pattern in the BGP of SQ3
and the subject of that triple pattern is a variable. Therefore, in
the test Webs in which the corresponding seed document has been
generated with a greater φ2, that seed document contains more data
links that satisfy reachability criterion cMatch and, thus, there exist
more paths to reachable documents from such a seed document.

Our observations for the other test queries, SQ1, SQ2, SQ4, SQ5,
and SQ6, are similar [6]. That is, the properties of reachable sub-
webs and their link graphs depend significantly on how the queried
data is interlinked. However, the overall diversity of the QPGs for
SQ3 (or any of the other five queries) does not seem to be as high as
the diversity of the eight FedBench QPGs. In the following section
we propose a quantitative approach that verifies this hypothesis.

4. DIVERSITY OF WORKLOADS
Let a finite set of pairs (Q,W ), withQ being a CLD query and W
being a Web of Linked Data, be a workload. Then, our observations
in the previous section suggest that the QPGs for all pairs (Q,W )
in some workload are more diverse than the QPGs for some other
workload. This section proposes a quantitative approach for com-
paring workloads w.r.t. this diversity; we then apply this approach
for particular workloads (such as those discussed before).
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The main application of our approach is to assess the suitability
of possible benchmarks for testing LTBQE systems. Apparently,
a QPG and its properties influences how the corresponding query
might be executed and what effect possible query optimizations
have. Consequently, workloads that induce more diverse QPGs,
are more suitable for benchmarking LTBQE systems.

QPGs may differ along multiple dimensions. Our approach fo-
cuses on eight dimensions that correspond to properties reported in
Tables 1 and 2. We define a measure of diversity for a given set of
QPGs that may be applied separately to any of these dimensions.
Thereafter, we specify how two sets of QPGs can be compared by
taking into account their relative diversity in all eight dimensions.

Let M = {#docs, #edges, e/v, #sc-comp, diameter, #rlv-docs,
%rlv-docs, res-size} be types of properties of QPGs as specified in
Section 3.1. For each such property m ∈ M , let m(p) denote the
value that a given QPG p has for property m , and let avgm(P ) and
stdevm(P ) be the arithmetic mean and the standard deviation of
the m-values of a given set of QPGs P , respectively.

Then, we measure the diversity of P w.r.t. m by the weighted
standard deviation wstdevm(P ) :=

(
ωm

1 (P )+ωm
2 (P )

)
·stdevm(P )

where the weight is the sum of (i) the number of unique values
m(p) across all p ∈ P , i.e., ωm

1 (P ) :=
∣∣{m(p) | p ∈ P}

∣∣, and
(ii) the number of the “outlier” QPGs p ∈ P whose value m(p)
is not within one standard deviation from the arithmetic mean, i.e.,
ωm

2 (P ) :=
∣∣{p ∈ P | stdevm(P ) < abs(avgm(P )−m(p))}

∣∣.
For instance, the first additional row at the bottom of Tables 1

and 2 provides the weighted standard deviations for the set of QPGs
listed in each of the tables, respectively. By comparing these values
we note that, for every property m∈M , the set of FedBench QPGs
is more diverse w.r.t. m than the QPGs of query SQ3 over the
13 test Webs (even if the set of FedBench QPGs contains five QPGs
less). Hence, the overall diversity of the set of FedBench QPGs is
also greater (that is, if we take into account all eight properties).

However, for some other pair of sets of QPGs, the first set may
be more diverse w.r.t. some of the properties, whereas the second is
more diverse w.r.t. other properties. Even in such a case we aim to
identify the set of QPGs that has a greater overall diversity. To this
end, we add up the relative differences of the respective weighted
standard deviations. That is, given two sets of QPGs P1 and P2,
we first compute the relative difference for any property m ∈ M :

rdiffm(P1, P2) :=

0 if wstdevm(Pi) = 0 for all i ∈ {1, 2},
wstdevm(P1)−wstdevm(P2)

max
(

wstdevm(P1),wstdevm(P2)
) else.

We now define the diversity of P1 relative to P2 as the sum of these
differences; that is, div(P1|P2) :=

∑
m∈M rdiffm(P1, P2).

For instance, if PFedB denotes the set of FedBench QPGs (as
listed in Table 1) and PSQ3 denotes the set of QPGs of query SQ3
over the 13 test Webs (in Table 2), the diversity of PFedB relative to
PSQ3 is div(PFedB|PSQ3) = 7.14 (the corresponding relative differ-
ences rdiffm(PFedB, PSQ3) are given in the last row of Table 1).

We emphasize that, for any two sets of QPGs P1 and P2, any
relative difference rdiffm(P1, P2) (for all m ∈ M ) is a rational
number in the interval [-1,1].3 As a consequence, div(P1|P2) is a
rational number in [-8,8]. If div(P1|P2) > 0 (resp. < 0), then P1

is more (resp. less) diverse than P2. If div(P1|P2) = 0, then P1

and P2 are equally diverse. The latter may not only be the case if
wstdevm(P1) = wstdevm(P2) for all m ∈ M , but also if all eight
relative differences rdiffm(P1, P2) cancel out (when summed up).
3For our use case, the relative difference is more suitable than
the actual difference (i.e., wstdevm(P1)−wstdevm(P2)) because,
e.g., an actual difference of 2 between values 1 and 3 is more signif-
icant than the same actual difference between values 101 and 103.
The relative difference takes this significance into account.

Similar to comparing our (reduced) FedBench workload to the
workload with query SQ3 (over our 13 test Webs), we compared the
FedBench workload to workloads with our other five test queries.
If PSQi (for i ∈ {1, ... , 6}) denotes the set of QPGs of test query
SQi over the 13 test Web, the resulting relative diversities are:

div(PFedB|PSQ1) = 2.62, div(PFedB|PSQ2) = 5.72,

div(PFedB|PSQ3) = 7.14, div(PFedB|PSQ4) = 4.75,

div(PFedB|PSQ5) = 4.80, div(PFedB|PSQ6) = 6.80,

Apparently, in all cases, the FedBench workload is more diverse.
Given this result, we are interested in how the FedBench work-

load compares to a workload that uses all six of our test queries over
a single test Web. Thus, let P(φ1,φ2) denote the set that contains the
six QPGs of any query SQ1, ... , SQ6 over the test Web W (φ1,φ2)

test ,
respectively. We computed the following relative diversities:

div(PFedB|P(0,0)) = 6.13, div(PFedB|P(0,0.33)) = 4.74,

div(PFedB|P(0,0.66)) = 4.67, div(PFedB|P(0,1)) = 6.17,

div(PFedB|P(0.33,0)) = 4.07, div(PFedB|P(0.33,0.33)) = 3.60,

div(PFedB|P(0.33,0.66)) = 3.81, div(PFedB|P(0.33,1)) = 4.22,

div(PFedB|P(0.66,0)) = 3.17, div(PFedB|P(0.66,0.33)) = 3.12,

div(PFedB|P(0.66,0.66)) = 3.15, div(PFedB|P(0.66,1)) = 3.48,

div(PFedB|P(1)) = 2.64.

Hence, even in these cases, the FedBench workload is more diverse.

5. VERTEX SCORING IN LINK GRAPHS
So far we have studied metrics that focus on a (link) graph as a
whole. Now we turn to methods that assign some score to each ver-
tex (e.g., PageRank). Hereafter, we refer to these methods as vertex-
scoring methods or, simply scoring methods. For these methods we
are interested in their suitability for predicting the (ir)relevance of
reachable LD documents (which are the vertices in link graphs).
As mentioned in the introduction, such a prediction may be used
for response time optimizations in LTBQE systems. Therefore, this
section first defines a quantitative approach for measuring whether
a given vertex-scoring method is suitable; afterwards, we use this
approach to evaluate several well-known vertex-scoring methods.

5.1 Measuring Suitability
Intuitively, a scoring method would be suitable for predicting the
relevance of LD documents in a (query execution-specific) reach-
able subweb W ∗, if there exists a correlation (or an anticorrelation)
between the relevance (resp. the result contribution counter) of the
LD documents and the scores that the method assigns to these LD
documents in the link graph of W ∗.

The typical approach to measure correlation is to use Pearson’s
correlation coefficient (PCC). However, in our scenario this ap-
proach is unsuitable because in many cases the percentage of reach-
able LD documents that are relevant is very small (as we have seen
in Section 3). As a result, the few relevant LD documents appeared
as outliers in a preliminary analysis during which we computed
PCCs between the result contribution counter of reachable LD doc-
uments and some test scores. Therefore, we introduce an alternative
approach to measure the suitability of vertex-scoring methods.

Given the QPG p = (D∗, E,R, rcc) of a CLD query over a Web
of Linked Data, and a scoring method sm, our approach consists
of four steps: First, we use sm to compute the score of every non-
seed document in the link graph (D∗, E). Let score(d) denote this
score for any non-seed document d ∈ D∗\R (we ignore the seed
documents because LTBQE systems have already retrieved these
seeds before they may begin prioritizing the lookup of discovered
URIs). Hereafter, we use Dns as shorthand for D∗\R.
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Then, we normalize these scores to the interval [0, 1] (to make
comparable our results for different scoring methods); that is, for
each non-seed document d ∈ Dns, we compute a normalized score
nscore(d) := score(d)−min

max−min
where min = min

(
{score(d) | d ∈

Dns}
)

and max = max
(
{score(d) | d ∈ Dns}

)
.

The third step consists of computing the arithmetic mean of these
normalized scores for the relevant non-seed documents and for all
non-seed documents, respectively. Hence, we obtain

avg rel :=

∑
d∈Drel

nscore(d)

|Drel|
and avg :=

∑
d∈Dns

nscore(d)

|Dns|
,

where Drel = {d ∈ Dns | rcc(d) > 0}.
We note that if avg rel shows a clear tendency to be either no-

tably high or low, then the scoring method sm may be suitable for
predicting whether a reachable (non-seed) LD document d ∈ Dns

belongs to the set of relevant documents Drel ⊆ D. However, if
there does not exist a significant difference between avg rel and avg ,
the scoring method cannot be suitable (because, in this case, rele-
vant and irrelevant documents are—on average—indistinguishable
from each other w.r.t. the given score). Therefore, as the final
step of our method, we compute the distance between both means,
dist := |avg rel − avg |, and the difference of avg rel to the center of
interval [0, 1], diff := avg rel − 0.5.

If dist < α for a given thresholdα, we say that the scoring meth-
od sm is dist-insignificant for QPG p. Similarly, if |diff | < β for
a given β, sm is diff -insignificant for QPG p. Then, based on the
aforementioned reasoning, we conceive the scoring method sm as
unsuitable for predicting the relevance of LD documents during an
execution of query QB,ScMatch

over W, if the sm is dist-insignificant
or diff -insignificant for p (recall that the QPG p can be constructed
only after executingQB,ScMatch

over W ).
By conducting such an analysis for a diverse set of QPGs, we

may achieve an understanding of the general suitability (or unsuit-
ability) of the scoring method sm for predicting the relevance of
LD documents. In the following we describe such a study for sev-
eral well-known scoring methods. For our study we use thresholds
α = 0.25 and β = 0.1 (note that dist is a number in the interval
[0,1] and diff is in the interval [-0.5,0.5]).

5.2 Analyzing Well-Known Scoring Methods
Our study focuses on PageRank [12], HITS [8], k-step Markov [15],
betweenness centrality [2], and the in-degree (i.e., the number in-
coming edges). We selected these methods because they present
a mix of different types of vertex-scoring methods: PageRank and
HITS are popular in the context of the WWW, k-step Markov is
an example of measuring importance of vertices relative to some
designated vertices, betweenness centrality is a global measure of
vertex importance, and the in-degree has been used for prioritizing
URI lookups in Ladwig and Tran’s LTBQE approach [10].

Our analysis of these scoring methods shows that none of them
is suitable [6], because, in most cases, they are dist-insignificant
or dist varies too much for different test Webs. For instance, the
chart in Figure 1 illustrates dist values that we measured for scor-
ing method in-degree. Every cross in the chart represents the dist
measured for the corresponding test query, SQ1, ... SQ6, over one
of our 13 test Webs. The dark blue dots represent the arithmetic
mean of these measurements for each query and the error bars rep-
resent one standard deviation, respectively. Similar charts that il-
lustrate the diff values of the few dist-significant cases, show that
these diff values are also either insignificant or vary too much. Our
results for the other scoring methods are very similar [6].

We attribute the limited suitability of the studied vertex-scoring
methods to the fact that none of these methods takes into account
context-specific information about the LD documents for which

Figure 1: Chart that illustrates the values of dist for in-degree.

they compute scores. Therefore, an interesting topic of future work
is to develop new methods that use such information.

6. CONCLUSIONS
In this paper we have studied reachable subwebs of Linked Data
queries under a reachability-based query semantics. We have shown
that the subwebs for different queries may differ in multiple dimen-
sions, and, even for the same query, reachable subwebs may differ
significantly depending on how the queried Web is interlinked. Fur-
thermore, we have proposed a quantitative approach to compare
workloads of queries w.r.t. the diversity of their reachable subwebs
and we have shown that well-known vertex-scoring methods are
unsuitable for predicting query-relevance of data sources.
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