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ABSTRACT
In this paper, we provide a characterization of the topologi-
cal features of the Twitter follow graph, analyzing properties
such as degree distributions, connected components, short-
est path lengths, clustering coefficients, and degree assorta-
tivity. For each of these properties, we compare and con-
trast with available data from other social networks. These
analyses provide a set of authoritative statistics that the
community can reference. In addition, we use these data
to investigate an often-posed question: Is Twitter a social
network or an information network? The “follow” relation-
ship in Twitter is primarily about information consumption,
yet many follows are built on social ties. Not surprisingly,
we find that the Twitter follow graph exhibits structural
characteristics of both an information network and a social
network. Going beyond descriptive characterizations, we hy-
pothesize that from an individual user’s perspective, Twitter
starts off more like an information network, but evolves to
behave more like a social network. We provide preliminary
evidence that may serve as a formal model of how a hybrid
network like Twitter evolves.

Categories and Subject Descriptors: H.3.5 [Online In-
formation Services]: Web-based services

Keywords: graph analysis; social media

1. INTRODUCTION
We provide a characterization of the topological properties

of a snapshot of the Twitter follow graph with two goals:
First, we present a set of authoritative descriptive statistics
that the community can reference for comparison purposes.
Second, we use these characterizations to offer new insight
into a question that many have asked: Is Twitter a social
network or an information network?

To answer this question in a meaningful way, we must
first define a social network. Unfortunately, there is no
universally-accepted definition by researchers in network sci-
ence. However, one can point to a prototype such as Face-
book, which researchers would all agree is a social network.
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Our operational definition of a social network is simply one
that exhibits characteristics we observe in other social net-
works. These include high degree assortativity, small short-
est path lengths, large connected components, high cluster-
ing coefficients, and a high degree of reciprocity. An in-
formation network, on the other hand, is a structure where
the dominant interaction is the dissemination of information
along edges: these are characterized by large vertex degrees,
a lack of reciprocity, and large two-hop neighborhoods.

Intuitively, Twitter appears to be both. On the one hand,
the follow relationship seems to be primarily about informa-
tion consumption. Users follow a news outlet not because of
any meaningful social relationship, but to receive news. Ex-
cept in a few special cases, these edges are not reciprocated—
this is Twitter being used as an information network. On
the other hand, it is undeniable that many follow relation-
ships are built on social ties, e.g., following one’s colleagues,
family members, and friends. In these cases, Twitter be-
haves like a social network. Not surprisingly, our analyses
show that the Twitter graph displays characteristics of both
an information network and a social network.

Why is this question important? From an intellectual per-
spective, we believe that Twitter exemplifies a hybrid system
and it is important to understand how such networks arise
and evolve. From a practical perspective, a better under-
standing of user and graph behavior helps us build products
that better serve users.

2. DATA AND METHODS
Our analysis is based on a snapshot of the Twitter follow

graph from the second half of 2012 with 175 million active
users and approximately twenty billion edges. In addition to
the complete follow graph, we also examined the subgraphs
associated with three different countries: Brazil (BR), Japan
(JP), and the United States (US). Each subgraph contains
only vertices corresponding to active users logging in from
that particular country. Unlike previous work (e.g., [7]), our
study is based on a complete graph snapshot, and thus our
findings are free from artifacts that can be attributed to
methodological issues around crawling.

Because the follow relationship is asymmetric, the Twitter
follow graph is directed. To facilitate comparisons, our anal-
yses make reference to the undirected mutual graph, which
is the graph with just the edges that are reciprocated. An
edge between two users in the mutual graph implies that
both users follow each other. In all, 42% of edges in the
follow graph are reciprocated, so there are a total of around
four billion undirected edges in the mutual graph.

493



10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

P
(D

e
g
re

e
)

In Degree

(a) In degree (All)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

P
(D

e
g
re

e
)

Out Degree

(b) Out degree (All)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

P
(D

e
g
re

e
)

Mutual Degree

(c) Mutual degree (All)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

P
(D

e
g
re

e
)

In Degree

Brazil
JP

USA

(d) In degree (country)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

P
(D

e
g
re

e
)

Out Degree

Brazil
JP

USA

(e) Out degree (country)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

P
(D

e
g
re

e
)

Mutual Degree

Brazil
JP

USA

(f) Mutual degree (country)

Figure 1: Degree distributions in the follow graph.

Our findings are contrasted with studies of other social
networks: Facebook [1, 14] (721m vertices, 68.7b undirected
edges) and the network from users of MSN Messenger [8, 13]
(180m vertices, 1.3b undirected edges). Properties of these
two social networks provide a point of reference.

When considering the size of the Twitter graph, comput-
ing exact values of different statistical quantities is challeng-
ing. In many cases, we performed approximations, noted
in each section. All analyses in this work were conducted
on Twitter’s Hadoop analytics stack using Pig. More de-
tails about analytics infrastructure at Twitter can be found
elsewhere [10].

3. GRAPH CHARACTERISTICS

3.1 Degree Distributions
Since the Twitter follow graph is directed, vertices have

both an inbound degree, or in-degree (the number of users
who follow them) and an outbound degree, or out-degree
(the number of users who they follow). Figure 1(a) shows
the in-degree distribution across all users. Not surprisingly,
we see a heavy tail resembling a power-law distribution. The
out-degree distribution in Figure 1(b) also exhibits a heavy
tail, although not to the same extent as the in-degree distri-
bution. This is interesting, as one might expect that users’
limited capacity to consume information would set a rela-
tively low upper bound on the number of people they can
follow. Instead, some users follow hundreds of thousands of
accounts. These are often celebrities who choose to recip-
rocate the follows of some of their fans (in some cases, au-
tomatically). For example, in Summer 2012, the pop singer
Lady Gaga was the most-followed user on Twitter, and she

Network 25% 50% 75% 95% Max α µ σ2

In-All 4 16 65 339 14.7m 1.35 2.83 3.36
Out-All 11 39 121 470 757k 1.28 3.56 2.87
Mut-All 3 13 50 223 563k 1.39 2.59 3.03
In-BR 6 32 127 514 3.0m 1.30 3.34 3.76
Out-BR 16 69 209 894 140k 1.25 4.03 3.28
Mut-BR 5 19 57 204 115k 1.35 2.83 2.63
In-JP 4 17 60 347 1.2m 1.35 2.84 3.21
Out-JP 6 23 71 360 297k 1.32 3.08 2.93
Mut-JP 4 15 50 253 276k 1.37 2.72 2.90
In-US 4 20 89 402 5.1m 1.33 3.01 3.59
Out-US 11 43 138 509 325k 1.28 3.62 3.05
Mut-US 4 16 64 257 235k 1.36 2.76 3.14

Table 1: Statistics for the degree distributions (in-
bound, outbound, and mutual) for the four graphs
we examined. The parameter α assumes P (x) ∼ x−α

for degree x (power law). The µ and σ2 parameters

assume P (x) ∼ 1
x

exp
[
(ln x−µ)2

2σ2

]
(log-normal).

followed more than 130k other users; Barack Obama had
21m followers and followed more than 600k people. In an-
other common case, businesses will reciprocate follows to
better connect with customers (for example, the grocery
store chain Whole Foods followed more than 500k people).
More commonly, journalists have been found to follow many
thousands of people.

The presence of users with thousands of followings is in-
dicative of“non-social”behavior. It has been well-established
that individuals are only able to maintain around 150 stable
social relationships at a time [3]. Furthermore, it has been
established through studying reciprocated direct messaging
on Twitter that the number of social relationships a user can
effectively maintain is limited by this constraint as well [5].
Also of note in the out-degree distribution is the apparent
spike at 2,000 followings. Spambots have been observed in
the past to arbitrarily follow a large number of people. To
curtail this, Twitter does not allow users to follow more
than 2,000 accounts unless they themselves have more than
2,200 followers. This is not to imply that all users who fall
in this spike are spambots, but only more well-known users
can “break through” this limit.

The degree distribution of the mutual graph is shown in
Figure 1(c). Here, we still observe relatively large degrees,
although smaller than both the in-degrees and out-degrees.
Figures 1(d), 1(e), and 1(f) show the various degree distribu-
tions for each of the three country subgraphs. Surprisingly,
there is very little variation between them.

Finally, Table 1 shows the statistics of the various degree
distributions. In addition to the percentiles of each distri-
bution, we also tried fitting each to both a power law and
a log-normal distribution. Interestingly, both the in-degree
distribution and the mutual degree distributions were best
fit by a power law, while the out-degree distribution was best
fit by a log-normal. Furthermore, each of the percentiles re-
ported are higher for the out-degree distributions compared
to the in-degree or mutual degree, even though the max-
imum out-degree is much smaller than the maximum in-
degree. This means that the typical Twitter user follows
more people than she has followers, but this does not hold
for a small population of “celebrity” users who have very
large in-degrees (i.e., many followers).
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Figure 2: The connected component size distribu-
tions of the follow graph.

Conclusion: The degree distributions of the Twitter graph
is inconsistent with that of a social network. It is highly
unlikely that an individual can maintain as many social re-
lationships as the out-degrees of the vertices suggest.

3.2 Connected Components
In directed graphs, the distinction is often made between

weakly and strongly connected components. In a weakly
connected component, determination of connectivity ignores
edge direction, whereas in a strongly connected component,
a pair of vertices must be reachable through a directed path.

Figure 2 shows the size distribution of the two types of
components in the Twitter follow graph. One can see that
in both cases, there is a single large component that dwarfs
the other components in size. The largest weakly connected
component contains 92.9% of all active users. Of the remain-
ing vertices not in this largest component, the majority are
completely disconnected because they contain no edges at
all—they default to component sizes of one. Of all vertices
with at least one edge (inbound or outbound), the largest
weakly connected component contains 99.94% of all vertices.

In contrast, the largest strongly connected component only
contains 68.7% of all active users. This is interesting in that
the figure is much lower compared to other social networks—
in both the Facebook graph [14] and the MSN messenger
graph [8], the largest connected component contains more
than 99% of all vertices. One possible explanation of this
is that a reciprocated edge in Twitter is often an indication
of a social connection, but perhaps Twitter is not entirely
a social network to begin with. In fact, more than 30% of
active users do not have a single mutual edge—these are in-
stances where the user is exclusively using Twitter for either
information dissemination or consumption.

Conclusion: Due to the abundance of unreciprocated edges,
the Twitter graph is less well connected than one would ex-
pect if it were a social network.

3.3 Shortest Path Lengths
The path length between users is the number of traversals

along edges required to reach one from another; the distri-
bution of shortest path lengths quantifies how tightly users
are connected. Here, we examine both symmetric paths over
the mutual graph as well as directed paths across the follow
graph. We see that the Twitter graph exhibits small path
lengths between vertices, which previous work has argued to
be a typical characteristic of social networks [2].

It is computationally infeasible to identify the shortest
path length between every pair of vertices in a large graph.
For the Twitter follow graph, there are about N×(N−1) =

10
-9

10
-6

10
-3

10
0

 4  8  12  16

D
e

n
s
it
y

Path Length

Mutual
Directed

(a) Entire Graph

10
-9

10
-6

10
-3

10
0

 4  8  12

D
e

n
s
it
y

Path Length

BR
JP
US

(b) Selected Countries

Figure 3: The distribution of path lengths in the
mutual and follow graphs.

2.6×1020 different shortest paths (where N is the number of
connected vertices), and the mutual graph has 7.3×1015. In-
stead, we make use of the probabilistic shortest path length
counter called the HyperANF algorithm [2]. This counter
approximates the size of a user’s neighborhood after a cer-
tain number of traversals using the HyperLogLog counter [4],
which gives a probabilistic estimate of the number of unique
items in a large stream. The number of shortest paths of
length n through which a user is connected can be approxi-
mated as the change in her neighborhood size after the nth

jump. This technique was also used to analyze the Facebook
graph [1]. For the HyperLogLog counter, we found that us-
ing registers of length 64 for each user (which leads to a
relative standard deviation of accuracy of about 0.1325) to
be sufficient for our purposes.

Figure 3 shows the distribution of both types of short-
est path lengths in the Twitter follow graph. The average
path length is 4.17 for the mutual graph and 4.05 for the
directed graph. This is shorter than the social networks
to which we compare (in both the directed and undirected
cases): the average path length for Facebook is 4.74, and for
MSN messenger, 6.6. The average degree of the MSN mes-
senger graph is much lower than that of the mutual graph
so perhaps this is less surprising, but the average degree of a
vertex in the Facebook graph is higher than both the Twit-
ter follow graph and mutual graph. Despite the fact that
the Facebook graph has a higher branching factor (and a
larger clustering coefficient—see below), users in the Twit-
ter graph appear to be more closely connected. Note that
although the Facebook graph contains more vertices, previ-
ous work suggests that in social networks the average path
length should actually decrease with size [9]—this makes the
short average path lengths in Twitter more surprising.

The spid (dispersion of the path length distribution) is an-
other important graph metric. It is the ratio of the variance
of the distribution to the mean of the distribution: social
networks have a spid of less than one while web graphs have
a spid greater than one. The spid of the mutual path length
distribution is 0.115, and 0.108 for the directed path length
distribution. These are well within the “social” range, but
are slightly higher than that of the Facebook graph (0.09)—
suggesting that the distribution for the Twitter graph is
slightly “wider” than that of the Facebook graph.

The path length distribution of each country subgraph
does not deviate much from that of the entire graph. The
results are shown in Table 2. Brazil is the most tightly-
connected subgraph with an average shortest path length
of 3.78, and the US has the largest average shortest path
length of 4.37. Note that these findings do not necessarily
contradict the results of Leskovec et al. [9] (shrinking diam-
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Graph Avg. Path Length spid
Twitter

Follow Graph 4.05 0.12
Mutual Graph 4.17 0.11
Mutual BR 3.78 0.13
Mutual JP 3.89 0.16
Mutual US 4.37 0.18

Other Networks
Facebook 4.74 0.09
MSN 6.6 -

Table 2: Summary of the average shortest path
length distributions for the various graphs.
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Figure 4: The average clustering coefficient of users
as a function of their mutual degree.

eters with increasing graph size) since there may be genuine
connectivity differences between the country subgraphs.

Conclusion: Analysis of the shortest path lengths and spid
shows that the Twitter follow graph exhibits properties that
are consistent with a social network.

3.4 Clustering Coefficient
The clustering coefficient [15] in social networks measures

the fraction of users whose friends are themselves friends—
a high clustering coefficient is another property commonly
attributed to social networks. Here, we examine the lo-
cal clustering coefficient of vertices in the Twitter mutual
graph. Figure 4(a) plots the average local clustering co-
efficient against the vertex degree. As expected, the lo-
cal clustering coefficient decreases with increasing degree.
While the clustering coefficient of the Twitter mutual graph
is lower than that of the Facebook graph, it is still in the
range that one would expect of a social network. Ugander
et al. [14] found that the average clustering coefficient for
degree = 5 is about 0.4 in the Facebook graph, compared
to Twitter mutual graph’s 0.23; for degree = 20, Facebook
is 0.3 and the mutual graph is 0.19. Around degree = 100,
the two graphs become very comparable with a coefficient
around 0.14. Even though the clustering coefficient of the
Twitter mutual graph is lower than that of Facebook’s, it is
still more tightly clustered than the MSN Messenger graph:
for degree = 5 the mutual graph’s clustering coefficient is
more than 50% greater than that of the MSN graph, and for
degree = 20 it is ∼90% greater.

Also of interest are the differences between the three coun-
tries shown in Figure 4(b). First, Japan has a higher clus-
tering coefficient compared to the US or Brazil, and it is also
higher overall compared to the entire globe. In Japan, the
rate of reciprocity is much higher (i.e., if you follow some-
one, the chances that they follow you back is much higher)
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Figure 5: The size of users’ inbound and outbound
two-hop neighborhoods as a function of their degree.

and so the mutual graph has a higher edge to vertex ratio.
What is even more interesting is that the clustering coeffi-
cient in the Japan subgraph begins to increase with degree
at around a degree of 200 and peaks at a degree of 1,000.
One possible explanation for this is the presence of massive
cliques: members of these cliques would have high degrees
as well as high clustering coefficients. The increase in clus-
tering coefficients for large degrees in the overall graph, as
in Figure 4(a), can be attributed to this idiosyncrasy in the
Japan subgraph.

Conclusion: Analysis of clustering coefficients in the Twit-
ter mutual graph suggests that Twitter exhibits character-
istics that are consistent with a social network.

3.5 Two-Hop Neighborhoods
An important consideration in network analysis is a ver-

tex’s two-hop neighborhood, i.e., the set of vertices that are
neighbors of a vertex’s neighbors. Many algorithms, par-
ticularly edge prediction algorithms, use this set of vertices
as the starting point for predicting the formation of new
edges [6]. In the context of Twitter, the directed nature of
the follow graph creates two such neighborhoods: the set of
a vertex’s followers’ followers (inbound two-hop) and the set
of a vertex’s followings’ followings (outbound two-hop).

Viewed from the perspective of an information network,
the outbound two-hop neighborhood characterizes the “in-
formation gathering potential” of a particular user, in that
any tweet or retweet from those vertices has the potential of
reaching the user. Similarly, the inbound two-hop neighbor-
hood characterizes the“information dissemination potential”
of the user, in that any retweet of the user’s tweet has the
potential of reaching those vertices.

As expected, followers of a user’s followers are often not
unique (it is likely that at least one user follows two peo-
ple that follow the original user), so we consider both the
unique and non-unique two-hop neighborhoods. The non-
unique two-hop inbound neighborhood is simply the sum of
the inbound degrees of a user’s followers. To approximate
the size of the unique second degree neighborhoods, we used
the HyperANF algorithm described earlier.

Comparisons between the unique and non-unique two-hop
neighborhoods are informative. If they are close in value,
then the number of edges between users within those neigh-
borhoods is low. This would also imply that, for instance,
gaining a new follower dramatically increases the size of
the two-hop neighborhood. This would also mean that the
neighborhoods do not exhibit community structure, which
provides evidence against Twitter as a social network.

Figures 5(a) and 5(b) show the average size of a vertex’s
two-hop neighborhoods as a function of its degree. For both
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the inbound and outbound variants, the average number of
unique and non-unique neighbors in the two-hop neighbor-
hood is plotted against the degree, along with k2, where k
is the degree of the user. If a user links exclusively to other
users with the same degree (high degree assortativity—see
below), then these (non-unique) neighborhoods would be ex-
actly of size k2. From these figures, we see that most users
have two-hop neighborhoods greater than k2; it is not un-
til a user has an inbound/outbound degree of greater than
around 3,000 that the neighborhood sizes are less than k2.

The fact that the two-hop neighborhoods are usually much
larger than would be predicted by the branching factor (both
inbound and outbound) suggests that there is a type of am-
plification effect. From the average Twitter user’s perspec-
tive, the structure of the graph is very efficient for both
information gathering (outbound) and information dissemi-
nation (inbound).

What is also striking about these plots is that for in-
bound/outbound degree of less than around 100, the number
of unique and non-unique two-hop neighbors is practically
the same. For example, the first 100 or so followers that a
Twitter user receives adds almost all of the new user’s fol-
lowers as unique secondary followers. More specifically, for
users with an inbound degree of less than 100, each new fol-
lower a user receives adds on average 4770 new secondary
followers. Similarly, each new follow a user makes connects
her to 3573 new secondary followings.

It is worth comparing these results to the Facebook graph.
A Facebook user with 100 friends typically has 27,500 unique
friends-of-friends. This more than an order of magnitude less
than the 497,000 (unique) followers of followers of a typical
Twitter user with 100 followers, or the 367,000 (unique) fol-
lowings of followings of a user who follows 100 other users.

Conclusion: Analysis of two-hop neighborhoods suggests
that Twitter behaves efficiently as an information network
since the graph structure exhibits a pronounced amplifica-
tion effect for information dissemination and reception.

3.6 Degree Assortativity
Degree assortativity, sometimes called assortative mixing,

is the preference for a graph’s vertices to attach to others
that are similar (or dissimilar) in degree. Typically, this is
quantified in terms of the correlation of the vertex degrees
on either side of each edge [11]. Newman and Park [12] argue
that degree assortativity is a fundamental characteristic that
separates social networks from all other types of large-scale
networks. In most social networks, an assortative measure
between 0.1 and 0.4 is typical; for example, the Facebook
global network measures 0.226.

Most previous analyses of degree assortativity have looked
at undirected graphs. In the Twitter case, it is appropriate
to look at both in-degree and out-degree correlations. This
requires us to extend the standard formulation, illustrated
in Figure 6. To be precise, in our analysis “source” refers
to the follower, and “destination” refers to the person being
followed. We consider four cases associated with each edge:
source in-degree (SID), source out-degree (SOD), destina-
tion in-degree (DID), and destination out-degree (DOD).

In looking at the Pearson correlations across these degree
measures, we find almost no correlation—most likely due
to the heavy tails of the distributions. A more informative
measure is the correlation of the logarithm of the degrees.
Specifically, if x and y are two different types of degrees

Src. Dest.
Follows

Src. Out-degree (SOD)

Src. In-degree (SID)

Dest. Out-degree(DOD)

Dest. In-degree (DID)

Figure 6: A diagram of the four different types of
degrees between which we examine correlations.

associated with an edge, then we can measure the Pearson
correlation coefficient between log(x + 1) and log(y + 1).
This measures whether or not the degrees are correlated in
magnitude. Below, we examine each of these correlations in
turn (all of which are significant):

SOD vs. DOD has a positive correlation (0.272). This
means that the more people you follow, the more people that
those people are likely to follow. From a social network per-
spective, this makes sense: if we interpret “following” as so-
cial behavior, this correlation represents the type of assor-
tativity we would observe in social networks—social users
engage with other social users.

SID vs. DOD has a positive correlation (0.241). On Twit-
ter, the number of followers is typically understood as a mea-
sure of popularity (or notoriety). This means that the more
popular you are, the people you follow will tend to follow
more people. This also appears to be consistent with social
network theory: the more popular one becomes, the greater
tendency one would engage with other socialable users (i.e.,
those who follow more people).

SOD vs. DID has a negative correlation (−0.118). This
means that the more people you follow, the less popular those
people are likely to be. This is highly unexpected, since the
fact that the edge is present increases both the SOD and the
DID by one, and this would suggest a positive correlation.

SID vs. DID has a negative correlation (−0.296). This
means that the more popular you are, the less popular the
people you follow are. In a social network, we would expect
that popular people are friends with other popular people—
in Twitter terms, we would expect popular users (i.e., with
many followers) to follow other popular users. However, this
is not the case, and stands in contrast with social network
properties observed by others [11, 12].

Conclusion: Analysis of degree assortativity in the Twitter
graph leads to conflicting and counter-intuitive results. In
some ways, Twitter exhibits characteristics that are consis-
tent with a social network; in other ways, the results are the
opposite of what we observe in other social networks.

4. DISCUSSION
Quickly recapping the results: some analyses suggest that

Twitter behaves more like an information network, but other
analyses show that Twitter exhibits characteristics consis-
tent with social networks. Beyond these descriptive charac-
terizations, are there deeper insights that we can glean?

We are currently developing a model that explains these
findings by taking into account the order in which edges
in the Twitter follow graph are added. Our hypothesis is
that from an individual user’s perspective, Twitter starts
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Figure 7: User age versus their in-degrees (a) and out-degrees (b). The source order of an edge versus the
in-degree of the destination user (c).

off more like an information network, but evolves to be-
have more like a social network. Specifically, the first few
accounts that a new user chooses to follow are likely high-
profile, popular accounts with large inbound degrees (i.e.,
many followers), driven by preferential attachment—users
with high in-degrees are more visible and are therefore more
likely to receive new edges, further increasing their inbound
degrees. However, as a user follows more people and be-
comes more “experienced” using Twitter, the preferential
attachment effect diminishes. They become more selective
and choose followings based on other criteria beyond popu-
larity. The user typically discovers a community with which
to engage—whether it be based on real-world social ties,
common interests, or other factors—and Twitter starts be-
having more like a social network.

One fact that sometimes gets lost in the analysis of a sin-
gle graph snapshot is that the graph structure is constantly
evolving. In particular, users accumulate followers and fol-
low more people over time. This is shown in Figure 7(a) and
(b), where in-degree and out-degrees are plotted against ac-
count age. In reality, our Twitter graph snapshot contains
a mix of new users who recently just discovered Twitter
and experienced users who have been active for a long time.
Most revealing is Figure 7(c), where the x-axis shows the
source order of the edge, or its ordering of when the source
vertex added it, and the y-axis plots the average inbound
degree of the destination vertex of that edge. For example,
the 20th account a user chooses to follow has an average
in-degree of about 500,000, whereas the 1,000th user has an
average in-degree of about 70,000.

These graphs immediately explain many of the degree cor-
relations we observe. SID and DOD are positively correlated
because Twitter users tend to gain more followers and follow
more accounts over time. The same explanation applies to
SOD vs. DOD correlation as well. Figure 7(c) provides an
explanation of why SOD and DID are inversely correlated—
users who have lots of outbound edges are choosing follow-
ings who have fewer inbound edges. That is, over time,
users’ tendency to follow celebrities decreases (i.e., preferen-
tial attachment gives way to social ties).

5. FUTURE WORK AND CONCLUSIONS
In this paper, we present evidence that Twitter differs

from previously-studied social networks in certain aspects,
but it also demonstrates many social properties as well.
Beyond descriptive characterizations that may be indepen-
dently useful for the community, we have formulated a hy-

pothesis that attempts to explain these findings and are de-
veloping a model to better formalize these ideas.

Ultimately, we believe that there are two major “modes”
of behavior on Twitter: one that is based upon information
consumption, and another that is based upon reciprocated
social ties. The network structure we observe results from a
mixture of the two, where the mix depends on the age of the
account. However, to further analyze this mixture, we need
to develop a more precise characterization of information
networks and social networks. We provide only preliminary
evidence for this hypothesis, but at an intuitive level, this
hybrid structure seems to be plausible.
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