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ABSTRACT
Influence maximization [4] is NP-hard under the Linear Thresh-
old (LT) model, where a line of greedy algorithms have
been proposed. The simple greedy algorithm [4] guaran-
tees accuracy rate of 1 − 1/e to the optimal solution; the
advanced greedy algorithm, e.g., the CELF algorithm [6],
runs 700 times faster by exploiting the submodular prop-
erty of the spread function. However, both models lack ef-
ficiency due to heavy Monte-Carlo simulations during esti-
mating the spread function. To this end, in this paper we
derive an upper bound for the spread function under the LT
model. Furthermore, we propose an efficient UBLF algo-
rithm by incorporating the bound into CELF. Experimental
results demonstrate that UBLF, compared with CELF, re-
duces about 98.9% Monte-Carlo simulations and achieves at
least 5 times speed-raising when the size of seed set is small.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining
General Terms Theory, Algorithms, Performance
Keywords Influence Maximization, CELF, Upper Bound.

1. INTRODUCTION
Influence maximization is defined as finding a small sub-

set of nodes that maximizes spread of influence in social
networks based on a given stochastic influence propagation
model. Popular stochastic influence propagation models in-
clude the Independent Cascade (IC) model and the Linear
Threshold (LT) model [4]. However, influence maximization
under both models is NP-hard.
Kempe et al. [4] observed that the spread function is

monotone and submodular, and proposed a simple greedy
algorithm which repeatedly chooses the seed node with the
maximal marginal gain. The simple greedy algorithm can
approximate the optimal solution with a factor of (1−1/e−ϵ)
for any ϵ > 0.
However, the simple greedy algorithm is computational

inefficiency, and two types of solutions have been proposed.
First, many heuristic algorithms, such as DegreeDiscount
[1] and ShortestPath [5], were proposed with orders of mag-
nitude faster, but without theoretical accuracy guarantee,
which may incur unboundedly bad results in some practical
applications. Second, some sophisticated greedy algorithms
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were proposed with fewer Monte-Carlo estimations of the
spread function. A representative work by Leskovec et al.
[6] exploited the submodular property of the spread function
and proposed a Cost-Effective Lazy Forward (CELF) algo-
rithm, which improves the running time by up to 700 times.
Moreover, Goyal et al. [3] proposed an extension of CELF,
i.e., the CELF++ algorithm, which can further reduce the
number of spread estimations by 35%− 55%.

Although CELF and CELF++ significantly improve the
simple greedy algorithm, their time costs are still very heavy
on a large network [1]. In particular, they are relatively inef-
ficient at the initial step, because they need to estimate the
initial upper bound of spread using Monte-Carlo for each
node in the network, leading to N times of Monte-Carlo
calls (N is the network size). When N is very large, CELF
and CELF++ are inapplicable. This limitation raises a fun-
damental question that can we derive an upper bound of
spreads which can be used to prune unnecessary spread esti-
mations (Monte-Carlo calls) in the CELF algorithm?

To answer the question, in this paper we derive an up-
per bound of spread under the LT model 1. Based on the
bound, we propose a new greedy-based algorithm Upper
Bound based Lazy Forward (UBLF for short). Experiments
show that UBLF is at least 5 times faster than CELF.

2. THE UPPER BOUND FOR σL(S)
In this part we derive the upper bound for the spread

σL(S) under the LT model. Note that the exact computa-
tion of σL(S) is #P-hard [2]. As disucssed in the work [4],
the LT model is tantamount to the reachability in a live-
edge graph. Let P be the set of all simple paths with the
starting node in S ⊆ V , then we have

σL(S) =
∑
π∈P

∏
e∈π

w(e). (1)

Eq. (1) was originally given in the work [2]. Based on the
equation, we derive a new Theorem 1 as follows,

Theorem 1. The upper bound for spread σL(S) is

σL(S) ≤
N−|S|∑
t=0

ΠS
0 ·W t · 1 (2)

where W = (wij) is the weight matrix.
Proof: For t = 0, . . . , N −|S|, let Bt be the set of all simple
paths with length t in P, and Ct be the set of all paths with
length t and starting node in S. If a path belonging to Ct,
the nodes are allowed to reappear. Then, we have

σL(S) =

N−|S|∑
t=0

∑
π∈Bt

∏
e∈π

w(e)

1For the upper bound of spread under the IC model, refer
to the work [7].
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Table 1: Number of Monte-Carlo simulations at the first 10 iterations.
Datasets Algorihms 1 2 3 4 5 6 7 8 9 10 Sum

ca-GrQc
CELF 5,242 1 1 1 2 1 1 2 2 1 5,254
UBLF 43 1 1 1 2 3 1 1 2 1 56

Wiki-vote
CELF 7,115 1 1 1 1 2 2 2 3 2 7,130
UBLF 58 1 1 2 2 3 3 2 2 1 75

≤
N−|S|∑
t=0

∑
π∈Ct

∏
e∈π

w(e) =

N−|S|∑
t=0

ΠS
0 ·W t · 1

where the first ’=’ is derived from both Eq. (1) and the
definition of Bt, the first ’≤’ is due to Bt ⊆ Ct and the
second ’=’ is obtained from the graph theory. 2

Furthermore, if the weight matrix W satisfies the condi-
tion maxv

∑
u w(u, v) < 1, the upper bound of σL(S) can

be relaxed to

σL(S) ≤ ΠS
0 · (E −W )−1 · 1, (3)

where E is a unit matrix and (E−W )−1 is the inverse of the
matrix (E −W ). By doing so, the upper bound in Eq. (3)
is computationally tractable.

3. THE UBLF ALGORITHM
The key idea behind CELF is that the marginal gain of

a node in the current iteration cannot be more than that
in previous iterations. However, CELF demands N spread
estimations to establish the initial bounds of marginal in-
crements. In contrast, UBLF uses the upper bound given in
Theorem 1 to rank all nodes in the initialization step, which
eventually reduces the total number of spread estimations.
We summarize UBLF in Algorithm 1.

Algorithm 1: UBLF under the LT model

01: Input: weight matrix W and budget k
02: Output: the most influential node set S
03: initial S ← ∅ and δ ← bounds in Eq. (2) or Eq. (3)
04: for i = 1 to k do
05: set I(v)← 0 for v ∈ V \S
06: while TRUE do
07: u← argmaxv∈V \S δv
08: if I(u) = 0
09: δu ←MC(S ∪ {u})−MC(S); I(u)← 1
10: end if
11: if δu ≥ maxv∈V \(S∪{u}) δv
12: S ← S ∪ {u}; break
13: end if
14: end while
15: end for
16: output S

In Algorithm 1, the column vector δ =
{
δu

}
denotes the

upper bounds of marginal increments under the current seed
set S, i.e., δu ≥ σI

(
S ∪ {u}

)
− σI(S). Before searching for

the first node (i.e., S = ∅), we estimate the upper bound for
each node by using Eq. (2) or Eq. (3). Then, the algorithm
proceeds the same as CELF.

4. EXPERIMENTS
We conduct experiments on two real-world data sets, ca-

GrQc and Wiki-vote 2, to evaluate the UBLF algorithm.
We assign edge weights by following w(u, v) = 1/(din(v)+1),
where din(v) is the in-degree of node v. We only compare

UBLF with CELF, as the performance of CELF++ is almost
the same as CELF [3]. In all the experiments, we run 10,000
times of Monte-Carlo simulations to estimate the spread.

2For details, visit http://snap.stanford.edu/data/.
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Figure 1: Runtime w.r.t. seed size k.

From Table 1, we can observe that the number of Monte-
Carlo calls in UBLF is significantly reduced compared to
that in CELF, especially in the first iteration. From the last
column of Table 1, the total number of Monte-Carlo calls
at the first 10 iterations of UBLF is reduced by 98.93% and
98.95% on the two data sets. From Fig. 2, we can observe
that UBLF is at least 5 times faster than CELF.

5. CONCLUSIONS
In this paper we derived an upper bound for the spread

function in the social network influence maximization prob-
lem. Based on the bound, we further proposed a new Upper
Bound based Lazy Forward algorithm (UBLF in short).
Compared with CELF, UBLF can significantly reduce the
number of Monte-Carlo calls, e.g., over 98.9% reduction
of Monte-Carlo calls in our experiments. The experimen-
tal results also verified that UBLF is at lease 5 times faster
than CELF when the size of seed set k is small.
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