Improving Query Suggestion through Noise Filtering and
Query Length Prediction

Liang Wu
Computer Network Information
Center, Chinese Academy of
_ Sciences
wuliang@chnic.cn

ABSTRACT

Clustering-based methods are commonly used in Web search
engines for query suggestion. Clustering is useful in reduc-
ing the sparseness of data. However, it also introduces noises
and ignores the sequential information of query refinements
in search sessions. In this paper, we propose to improve
cluster based query suggestion from two perspectives: fil-
tering out unrelated query candidates and predicting the
refinement direction. We observe two major refinements be-
haviors. One is to simplify the original query and the other
is to specify it. Both could be modeled by predicting the
length (number of terms) of queries when candidates are be-
ing ranked. Two experimental results on the real query logs
of a commercial search engine demonstrate the effectiveness
of the proposed approaches.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Experimentation, Application

Keywords

Query suggestion, web search, search log analysis

1. INTRODUCTION

Query suggestion has been widely used to improve user
experiences in Web search. The suggestions are designed to
assist users to reformulate their queries to meet their infor-
mation needs or recommend other content they may also get
interested in. A mainstream of query suggestion methods is
based on clustering: Firstly, queries are clustered based on
their click patterns, and suggestion candidates are selected
from the clusters where the query belongs; Secondly, ma-
chine learning and data mining techniques are employed to
rank the suggestion candidates. The clustering-based meth-
ods is very effective in reducing the sparsity of data. How-
ever, it also introduces some issues due to the nature of

Copyright is held by the author/owner(s).

WWW’14 Companion, April 7-11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577339.

Bin Cao
Microsoft Corporation
bincao@microsoft.com

399

Yuanchun Zhou
Jianhui Li
Computer Network Information
Center, Chinese Academy of
Sciences
{zyc, lijh}@cnic.cn

clustering algorithm. The first problem is that clustering
unavoidably brings noises when building up query cluster-
s. Since the distribution of search queries is heavy-tailed,
which means that the size of generated clusters varies sig-
nificantly. In some big clusters, there often exist queries on
diverse topics. Suggestions on other topics may be annoy-
ing for users, especially when they are popular, e.g., given a
query “download microsoft update”; the top popular query
in a cluster in which it appears is “microsoft downloads 77,
while a better one “microsoft update center” ranks lower in
the cluster. Our proposed approach is to increase the prob-
ability of the second query to be selected as a candidate.
The second problem is that cluster-based method loses the
sequential information hidden in clicks in a search session.
The sequence of queries are normally not encoded into clus-
ters due to the nature of clustering. Moreover, even we
want to build clusters based on the sequential information
of queries, the sparsity problem would be more severe.

In order to solve the first problem, we introduce a better
measurement to calculate the similarity between the sug-
gestion and the query. We collect better candidates from a
cluster by take both similarity and representative into con-
sideration. To solve the second issue, we propose to capture
the sequential information by predicting the refinement di-
rection. We observe two major refinements behaviors in the
data. One is to simplify the original query which means the
user want to search in a larger scope. The other is to specify
it which means the user would like to be more specific on the
information need. We find both case could be identified by
predicting the query length, which is the number of terms,
for the following refinement queries.

2. UNRELATED CANDIDATE FILTERING

The generation of Clicked URL-based clusters can be found
in [1]. A cluster C': {(¢,p)|q € C} consists of queries ¢ and
queries’ popularity p. p is measured by the number of clicks
that fall in the cluster. A query ¢ consists of at least one
term t. Traditionally, when a user inputs a query qo, can-
didate selection only depends on the popularity p of each
query g, and the content of go is not exploited. In order
to filter out the unrelated candidates in big clusters, a term
weight tw is is first calculated for each term in a cluster:
tw = tf x iqf, where term frequency tf is the number of
clicks of a term which fall in the cluster; iqf = log %
is the inverse query frequency. tf constrains the weight of
unpopular words and iqf represents the discriminating pow-
er of a term.

Table 1: Results of taking candidates from clusters

containing more than 100 queries
| [PQl0 | P@20 | NDCG@5 | NDCQ@20 |

Cluster 0.0015 | 0.0013 0.0066 0.0067
Filtering 0.0019 | 0.0018 0.0081 0.0083
Improvement 27% 38% 23% 24%

Table 2: Results of taking candidates from clusters

containing more than 500 queries
| [P@l0 | P@20 | NDCG@5 | NDCG@20 |

Cluster 0.011 0.011 0.0039 0.0039
Filtering 0.018 0.017 0.0057 0.0057
Improvement 64% 55% 46% 46%

When qo is given, its cosine similarity s with each candi-
date is produced based on the term weight tw. Candidates
are then selected by s X p, instead of p only. The method
can be deployed efficiently to online systems as it only adds
an independent weighting module.

3. QUERY LENGTH-SENSITIVE RANKING

In order to capture the sequential order of queries, we
adopt the query length as a feature when ranking the can-
didates. Since the change of query length can often reflect
how a user’s information need is satisfied, e.g., when a query
is not specified enough, adding more terms into the query
makes it more detailed; when a detailed query still recalls
inaccurate information, she might change a term to try a
different way. Here we propose to use a linear regression
model to predict the length of the good suggestion and fea-
tures are listed below:

Length of Query: The length of the original query qo.

Avg Length of Candidates in the Cluster: The average num-
ber of terms in queries from clusters in which go appeared.
Avg Query Length of Most Clicked Query: The average num-
ber of terms of most clicked queries in clusters in which go
appeared.

Number of Click: The average number of clicks of go in clus-
ters.

Ratio of Click: The proportion of clicks of go in clusters.
Rank in Cluster: The average quantile of go in clusters.

The first three features are based on the length of queries
and the rest features measure how popular qo is, since a more
frequently clicked query may possess a higher probability to
fulfill user’s information need, and the popularity of a query
can be useful for revealing how we should reformulate the
query.

The predicted length L is then incorporated into the rank-
ing system as a new feature. The feature is produced as il-
lustrated in equation 1, where candidate.length denotes the
number of terms in a suggestion candidate.

1.0
exp(|candidate.length — L|)

feature =

(1)

Table 3: NDCG@10 of the proposed method and
baselines

[baseline [filtering | filtering+length |
[0.00164 | 0.00166 | _ 0.00198 |
0.0% | 12% | 20.7% |

[NDCGQ10
[Improvement |

400

4. EXPERIMENTS

The dataset we used here was collected from one ma-
jor commercial search engine, containing over 100 million
queries and over 10 million query clusters. In order to e-
valuate our model, we extract 178,546 queries and its fre-
quently clicked suggestions from user sessions for training
and testing, and the noises and spams are pruned by auto-
matic techniques and annotators’ manual work. Precision at
top k (p@k) and Normalized Discounted Cumulative Gain
at top k (NDCGQ@k) are adopted as our evaluation metrics.
For both experiments, five fold cross validation is used.

In both experiments, commonly used features and meth-
ods are adopted as baselines, since the performance can be
improved by directly adding the proposed methods to query
suggestion systems as pre- and post-processing.

Table 1 and 2 illustrate the experimental results of the
candidate filtering method on big clusters. In this experi-
ment, we only extract candidates from clusters containing
more than 100 or 500 queries. The queries whose right sug-
gestions fall in big clusters are extracted to build a small
training and testing set. Cluster collects candidates mere-
ly based on query popularity, while Filtering denotes the
proposed approach, which selects candidates based on both
popularity and the proposed weighted similarity. We adop-
t the lexical features [2] and Multiple Additive Regression
Trees (MART) for ranking in both methods. The result-
s show that the proposed method outperforms the baseline
obviously by kicking out unrelated queries from candidate
set, and the improvement is even more significant when the
cluster size is bigger.

Table 3 shows the results of the second experiment. baseline
only uses lexical features, filtering filters unrelated candi-
dates based on the proposed approach and uses lexical fea-
tures, filtering + length both filters candidates and consid-
ers query length. MART is also adopted as our ranking mod-
el, but unlike the first experiment, here we collect candidates
regardless of the cluster size and NDCG@10 is used as the
evaluation metric. The result shows that filtering + length
has improved the baseline method over 20%.

S. CONCLUSIONS

In this paper, we studied two problems of existing query
suggestion methods which are based on query-URL bipartite
graph. Two efficient methods, which can be easily added to
existing systems, are proposed to solve the problems by fil-
tering unrelated candidates in big clusters and taking query
length as a feature. Experimental results on real dataset
prove the effectiveness of the proposed models.

6. ACKNOWLEDGEMENTS

We thank the support of NSFC 91224006 and the CAS’s
Strategic Priority Research Program XDA06010202.

7. REFERENCES

[1] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and
H. Li. Context-aware query suggestion by mining
click-through and session data. In Proceedings of ACM
SIGKDD, pages 875-883. ACM, 2008.

[2] U. Ozertem, O. Chapelle, P. Donmez, and
E. Velipasaoglu. Learning to suggest: a machine
learning framework for ranking query suggestions. In
SIGIR’12, pages 25—-34. ACM.

