
Answering Provenance-Aware Regular Path Queries on
RDF Graphs Using an Automata-Based Algorithm

Xin Wang†‡, Jun Ling†‡, Junhu Wang§, Kewen Wang§, Zhiyong Feng†‡
†School of Computer Science and Technology, Tianjin University, Tianjin, China
‡Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

§School of Information and Communication Technology, Griffith University, Australia
{wangx, lingjun}@tju.edu.cn, {j.wang, k.wang}@griffith.edu.au, zyfeng@tju.edu.cn

ABSTRACT
This paper presents an automata-based algorithm for an-
swering the provenance-aware regular path queries (RPQs)
over RDF graphs on the Semantic Web. The provenance-
aware RPQs can explain why pairs of nodes in the classical
semantics appear in the result of an RPQ. We implement a
parallel version of the automata-based algorithm using the
Pregel framework Giraph to efficiently evaluate provenance-
aware RPQs on large RDF graphs. The experimental results
show that our algorithms are effective and efficient to answer
provenance-aware RPQs on large real-world RDF graphs.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Automata; provenance-aware; RDF; regular path queries

1. INTRODUCTION
RDF is a graph-based data model for describing things

and their relationships on the Semantic Web. Regular path
queries, or RPQs, are widely considered an essential query-
ing mechanism for large RDF graphs. The classical seman-
tics of an RPQ Q over a graph G is a set of pairs (u, v) of end
points of paths in G that satisfies Q, however, such a seman-
tics provides no clue as to why a pair of nodes satisfiesQ. For
example, the RPQ ?u (part_of/part_of)+|(part_of/is_a)+

?v asks for pairs of terms (u, v) such that u can reach v
through an even number of part_of relations or an alter-
nating sequence of part_of and is_a relations over the bi-
ological dataset GO. For u = GO:0044333, the answers (i.e.,
the set of v) to this RPQ are listed in the table shown in
Figure 1(a), from which one cannot know how each term
is reached from GO:0044333 at all. In contrast, the graph
shown in Figure 1(b) is the provenance-aware answer to the
above RPQ, from which one can easily tell how the terms
(the gray nodes) can be reached from GO:0044333 (the black
node) through the paths that satisfy the above RPQ.

To the best of our knowledge, Dey et al [1] have been the
first to investigate the provenance-aware semantics of RPQs.
Their work resorted to translating provenance-aware RPQs
into Datalog or SQL implementations. However, from their

Copyright is held by the author/owner(s).
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577284.

?v

GO:0048565

GO:0044767

GO:0009653

GO:0032502

GO:0044333
GO:0048546

GO:0048565

GO:0009653

GO:0044767

GO:0048856

GO:0032502

part of

part of

is a

is a

part of is a

(a) Classical (b) Provenance-aware

Figure 1: Two semantics of RPQs

experimental results on relatively small graphs of the N-
queens problem, we could see that their approach can be
hardly scalable for large real-world RDF graphs. In this pa-
per, we also study the provenance-aware feature of RPQs.
Compared with [1], our work makes two contributions: (1)
we present an automata-based algorithm that answers the
provenance-aware RPQs natively, and (2) we parallelize our
automata-based algorithm using the Pregel framework Gi-
raph [3] to efficiently evaluate provenance-aware RPQs on
large-scale real-world RDF graphs.

2. PROBLEM AND OUR APPROACH
An RDF graph T is a set of triples, each triple (s, p, o)

representing a statement of a predicate p between a subject
s and an object o. We use subj(T), pred(T), and obj(T)
to denote the set of subjects, predicates and objects in T
respectively. More formally, an RDF graph T can be mod-
eled as a directed labeled graph G = (V,E, l), where the
node set V = {v | v ∈ subj(T) ∪ obj(T)}, the edge set
E ⊆ V × V , and l : E → pred(T) is a function that assigns
a label to each edge. For each (s, p, o) ∈ T , there exists an
edge e = (s, o) ∈ E and l(e) = p. A path in G from node
x to y is a sequence ρ = v0e0v1 · · · vn−1en−1vn, vi ∈ V ,
v0 = x, vn = y, and ei = (vi, vi+1) ∈ E. The label of
ρ, denoted by λ(ρ), is the string l(e0)l(e1) · · · l(en−1) in Σ∗,
where Σ = pred(T).

An RPQ over G is of the form ?x
r−→?y, where ?x and ?y

are variables, and r is a regular expression over the alphabet
Σ = pred(T), which is defined as r ::= p

∣∣ r/r ∣∣ r|r ∣∣ r∗ ∣∣ r+,

where p ∈ Σ and /, |, ∗, and + are concatenation, alterna-
tion, Kleene closure, and Kleene plus respectively that have
the usual meanings. L(r) is the language expressed by r.
The classical semantics of an RPQ Q over a graph G is de-
fined as a set of pairs of nodes JQKG = {(u, v) | there exists
a path ρ in G from node u to v whose label λ(ρ) is in L(r)}.
We use Pr(x, y) to denote the set of all paths from x to y inG
whose labels are in L(r). The provenance-aware semantics of
an RPQ Q over a graph G is a set of graphs (i.e., subgraphs

395

of G) JQKprovG = {GQ(x, y) = (VQ(x, y), EQ(x, y)) | (x, y) ∈
JQKG} such that VQ(x, y) = {v | v ∈ ρ ∧ ρ ∈ Pr(x, y)}, and
EQ(x, y) = {e | e ∈ ρ ∧ ρ ∈ Pr(x, y)}.

LetG = (V,E, l) be an RDF graph andA = (S,Σ, q0, δ, F)
be the DFA converted from the regular expression r of an
RPQ Q. We construct Ĝ = (V̂ , Ê, l) from G, where V̂ =

V ∪ {v̂} (i.e., v̂ is a newly added node to V), Ê = E ∪ {ê |
ê = (v̂, v) ∧ v ∈ V }, and l(ê) = ε. Also, we construct

Â = (Ŝ, Σ̂, q̂0, δ̂, F) from A, where (1) Ŝ = S ∪ {q̂0, qd},
(2) Σ̂ = Σ ∪ {ε}, (3) δ̂(q, a) = δ(q, a), δ̂(q, ε) = qd for

q ∈ S ∧ a ∈ Σ, and (4) δ̂(q̂0, a) = q0, δ̂(qd, a) = qd for

a ∈ Σ̂. The product automaton of Ĝ and Â is an NFA
Ĝ × Â = (S′, Σ̂, q′0, δ

′, F ′), where S′ ⊆ V̂ × Ŝ, q′0 = (v̂, q̂0),

δ′ : S′ × Σ̂ → 2S′
, and F ′ = {(v, qf) | v ∈ V̂ ∧ qf ∈ F}.

For (u, s1) ∈ S′ and p ∈ Σ̂, we have (v, s2) ∈ δ′((u, s1), p)

iff δ̂(s1, p) = s2 and e = (u, v) ∈ Ê ∧ l(e) = p. Algorithm 1
shows the procedure for evaluating a provenance-aware RPQ
using the above product automaton, in which the function
GetResults is used to extract the answers from the prod-
uct automaton recursively. We have proved that Algorithm
1 can be done in O(|Ĝ| · |Â|) time.

Algorithm 1 Evaluating a provenance-aware RPQ

Input: A graph G and an RPQ Q
Output: GQ = (VQ, EQ) // Provenance-aware semantics

1: Construct Â from Q and Ĝ from G
2: Construct the product automaton Ĝ× Â
3: for each (v, qf) ∈ F ′ do // F ′ of Ĝ× Â
4: (Vt, Et)← GetResults(Ĝ× Â, (v, qf))
5: VQ ← VQ ∪ Vt and EQ ← EQ ∪ Et
6: end for
7: function GetResults(Ĝ× Â, (v, qf))
8: Vt ← ∅ and Et ← ∅
9: if (v, s) ∈ S′ is visited then // S′ of Ĝ× Â

10: return (Vt, Et)
11: end if
12: Vt ← Vt ∪ {v}
13: for each (u, s′) such that (v, s) ∈ δ′((u, s′), p) do
14: Et ← Et ∪ {(u, v)}
15: (V ′t, E ′t)← GetResults(Ĝ× Â, (u, s′))
16: Vt ← Vt ∪ V ′t and Et ← Et ∪ E ′t
17: end for
18: Mark (v, s) visited
19: return (Vt, Et)
20: end function

To efficiently evaluate provenance-aware RPQs on large-
scale RDF graphs, we parallelize Algorithm 1 using the Pregel
framework [2] that is more suitable for large graph process-
ing than MapReduce according to [2]. In our parallel setting,

every node of Ĝ computes independently and keeps track of
its own data, which include incoming and outgoing nodes,
states of Â in which the node currently is, and other neces-
sary information. We observe that the construction of the
product automaton and the recursive answer extraction can
be well parallelized. Due to space limitations, we can only
present preliminary experimental results in the next section.

3. EXPERIMENTS
Our experiments were conducted on a 4-node cluster con-

nected by a gigabit Ethernet switch. Each node has 4 Intel

 0

 5

 10

 15

 20

 25

 30

 35

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

E
xe

cu
tio

n
tim

e
(s

ec
.)

Queries

Single-node
Parallel

Figure 2: Experimental results

Xeon CPUs E5-4607 (2.2GHz, 6cores), 64GB memory, and
64-bit Ubuntu 12.04 as the OS. We implemented Algorithm
1 in Java on one single node in the cluster and the parallel al-
gorithm using the Giraph [3] Pregel framework on all 4 clus-
ter nodes. We evaluated two versions of our algorithm over
3 real-world RDF graphs, i.e., GO (86MB, 160775 nodes,
701043 edges), BioGRID (225MB, 817093 nodes, 2162520
edges), and DBpedia (3.5GB, 4079463 nodes, 25910645 edges).
Each graph is explored by three queries: (1) Q1 (is_a)+, Q2
(part_of)+, and Q3 (regulates)+ on GO, (2) Q4 (0407)+,
Q5 (0915)+, and Q6 (0915/0407)+ on BioGRID, and (3) Q7
(influenced)∗, Q8 (successor|child)∗, andQ9 (spouse/child)∗

on DBpedia. Figure 2 shows the results of the above queries.
We can observe that the parallel version outperforms the
single-node version for all queries in general. Since the GO
graph is relatively small, the performance improvement of
the parallel version for GO is not so obvious as for BioGRID
and DBpedia.

4. CONCLUSION
In this paper, we present an automata-based algorithm for

answering the provenance-aware RPQs over RDF graphs,
which can provide users the reason why pairs of nodes sat-
isfy a given RPQ. We also implement a parallel version of
our automata-based algorithm using the Pregel framework
Giraph. The preliminary experimental results show that
our algorithms can answer the provenance-aware RPQs on
large-scale real-world RDF graphs effectively and efficiently.
We will perform an experimental comparison between our
approach and [1] in the future full version of this paper.

Acknowledgments. This work is supported by the Na-
tional Natural Science Foundation of China (61100049), the
National High-tech R&D Program of China (863 Program)
(2013AA013204), and the Australia Research Council (ARC)
Discovery grants DP130103051 and DP1093652.

5. REFERENCES
[1] S. Dey, V. Cuevas-Vicentt́ın, S. Köhler, E. Gribkoff,

M. Wang, and B. Ludäscher. On implementing
provenance-aware regular path queries with relational
query engines. In Proceedings of EDBT/ICDT, pages
214–223. ACM, 2013.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In Proceedings of
SIGMOD, pages 135–146. ACM, 2010.

[3] The Apache Software Foundation. Apache Giraph.
http://giraph.apache.org/, 2013.

396

