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ABSTRACT
We study the first countermeasure against user identity link-
age attack across multiple online social networks (OSNs).
Our goal is to keep as much as user’s information in public
and meanwhile prevent their identities from being linked on
different OSNs via k-anonymity. We develop a novel greedy
algorithm, incorporating an efficient manner to compute the
greedy function, and validate it in terms of both solution
quality and robustness using real-world datasets.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems
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User Identity Linkage Attack, Countermeasure, Algorithm

1. INTRODUCTION
More and more Online Social Networks (OSNs) have e-

merged for various purposes. People provide specific pro-
files, interact with particular types of friends and join dis-
tinct groups on different OSNs. However, a person’s mul-
tiple user identities can be easily linked by a practical Us-
er Identity Linkage Attack, leading to user privacy breach
and put the users at risks unconsciously [2]. For instance,
when the attacker links a user’s two identities on Facebook
and Linkedin, his/her professional connections on Linkedin
are disclosed to the attacker, although they are not his/her
friends on Facebook. More seriously, based on the integrat-
ed profile and inferred private information from the friends
of the linked user, the attacker could create fake accounts
pretending to be this person on social networks and then so-
licit others to connect, referred to as an alternative identity
theft. Therefore, it is of great importance to prevent the user
identity linkage across OSNs by malicious users beforehand.

In this paper, we develop the first countermeasure frame-
work against user identity linkage attack [1] across multiple
OSNs, in which we formulate an optimization problem to
study the trade-off between user information sharing and
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user privacy via k-anonymity. We devise an effective algo-
rithm to solve this problem and validate its performance and
robustness on real-world datasets.

2. PROPOSED COUNTERMEASURE
We propose a countermeasure aiming to defend against

the user identity linkage (UIL) attack, which can smartly
generate features merely based on user’s public information,
thereby only needs 0.5% of user linkage information to ac-
curately predict over 85% other user identity linkages. Our
countermeasure is applied to each user on OSN1 (service OS-
N) by smartly hide his information for preventing him from
being linked to their identities on OSN2 (auxiliary OSN).

Problem Definition: In order to tackle the trade-off
between user information sharing and user privacy, we define
an optimization problem, named PRivacy-aware User iN-
formation sElection (PRUNE) problem as follows: Given a
positive integer k, a user w associated with two identities w1

and w2 on OSN1 and OSN2 respectively, i.e., w = (w1,w2).
The objective of PRUNE problem is to maximize user w’s in-
formation visibility in OSN1(service OSN) and achieve the
k-anonymity for user w between his identity w1 and all user
identities V2 on OSN2 (auxiliary OSN).

More specifically, a user w achieves k-anonymity if and
only if there exist at least k − 1 users S (identical users)
on OSN2 such that m(w1,w2) ≤ m(w1, u) for any u ∈ S,
where m(·, ·) =

∑
i∈F βi(·, ·) is determined by Adaboost (De-

cision Stump) classifier on features due to its most serious
consequence in UIL attack. Here βi(·, ·) is the summation of
coefficients in Adaboost classifier for each feature. The max-
imization of user information visibility is to max

∑
i∈S v

w
i ,

in which vwi = 1 means that user w prefers to release infor-
mation i to public and 0 otherwise.

Resist User LinkagE (RULE) Algorithm: We de-
sign the RULE algorithm based on our observation that
most of users on OSN2 are distinctive users, i.e., they have
βi(w1,w2) ≥ βi(w1, u) for all features between themselves
and user w. Therefore, our proposed RULE algorithm iter-
atively hides a feature i which maximizes

λ(i) =
∑

u∈V j
2
I(βi(w1,w2)− βi(w1, u))/vwi

where V j
2 is the set of non-identical users on OSN2 after iter-

ation j. The indicator variable I(x) = 1 if x > 0 and 0 if x =
0. In order to efficiently find the feature i with maximum
λ(i) in each iteration, we propose three priority queues with
respect to the distinctive and non-distinctive users on OSN2
and feature sets: the priority of Qd is

∑
i∈F I(βi(w1,w2)−

βi(w1, u)); the priority of Qn is
∑

i∈F βi(w1,w2)−βi(w1, u);
the priority of Qf is λ(i).
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In each iteration, RULE algorithm (Algorithm 1) picks
the feature in Qf with highest priority and updates Qd and
Qn after removing the selected feature. The algorithm ter-
minates if the number of users in Qd with priority 0 plus
the number of users in Qd with non-positive priority is larg-
er than or equal to k. Otherwise, if there are users in Qn

converting to distinctive users, remove them from Qn and
insert to Qd. In Qf , we recompute the feature with highest
priority if some users in Qd becomes to identical users to w,
i.e., their priorities change to 0. If its new priority is invalid,
we remove it from Qf and insert into the existing order. The
process terminates until there is a valid feature in Qf . Note
that in most cases, we only need to compute once to update
Qf and this increases the efficiency of our RULE algorithm.

Algorithm 1: RULE Algorithm

Input : βi(w1,w2), βi(w1, ·), vw
Output: visible features S

1 S ← F;
2 Construct priority queues Qd, Qn, Qf ;
3 D ← {u|priority(u) = 0, u ∈ Qd};
4 Remove D from Qd;
5 N ← {u|priority(u) ≤ 0, u ∈ Qn};
6 while |D ∪N | < k do
7 Hide feature i with highest priority in Qf (S ← S \ {i});
8 Update Qd and Qn after removing feature i;
9 Insert {u|u ∈ Qn, βi(w1,w2) > βi(w1, ·) ∀i ∈ F \ S} into

Qd;
10 N ← {u|priority(u) ≤ 0, u ∈ Qn};
11 D ← D ∪ {u|priority(u) = 0, u ∈ Qd};
12 Remove D from Qd;
13 Update mini∈F\S λ(i) in Qf until validation;

14 return S;

The running time of RULE algorithm is O(|F|(|F| log |F|+
|V2| log |V2|)) in the worst case. Note that a more careful
implementation can reduce the running time to O(|F|(|F|+
|V2|)) by maintaining Qd, Qn and Qf within time O(|F|) and
O(|V2|) respectively. In addition, RULE algorithm achieves
k-anonymity of user w for any k > 0.

3. EXPERIMENTAL RESULTS
Datasets: We collect data (Table 1) from three of the

most popular OSNs, Google+, Twitter and Foursquare. Due
to the infeasibility of collecting the information of all users
in these OSNs, we consider the user identity linkage between
ego users, i.e., the users we have crawled their complete pro-
file and neighborhood information. Then we link the ego
users on these three OSNs using their public API function-
s. Finally, we link all neighborhood of ego users, including
friends, followers and followees, between these three OSNs.

Table 1: Dataset Statistics

User Types Ego Users
Neighborhood

Followers Followees

OSNs
Google+ 258 86,652 86,297
Twitter 48,100 11,485,756 6,319,928

Foursquare 5,709 138,872 138,872

Linked 〈Twitter,G+〉 258 875,054 1,459,621
Crossing 〈Fsq,Twitter〉 5,709 11,448,961 6,352,896
Users 〈G+,Fsq〉 153 71,664 67,797

Performance & Robustness: For each pair of OSNs
(OSN1 and OSN2), we consider each one of them as service
OSN (and the other as auxiliary OSN) respectively, that
is, we run our algorithm on OSN1 and OSN2 separately.
Therefore, we will evaluate the proposed algorithm on six
datasets. In terms of the inputs, matching function is de-
rived from UIL attack with Adaboost (Decision Stump) as

we discussed in the above section. As for the visibility pa-
rameters, w.l.o.g., we randomly select either 0 or 1 for each
of the user’s information.

We compare the solution quality of RULE algorithm with
the optimal solution, provided via Integer Programming:

max
∑
i∈F

vwi xi

s.t.
∑

i∈F[βi(w1,w2)− βi(w1, u)]xi ≤ Ω(1− yu) ∀u ∈ V2∑
u∈V2

yu ≥ k
xi, yu ∈ {0, 1}, ∀i ∈ F, u ∈ V2

where xi = 1 if feature i of user w is visible and 0 other-
wise; yu = 1 if m(w1,w2) ≤ m(w1, u) and 0 otherwise; V2 is
the set of users on OSN2 and Ω is a large enough constant.
The objective is to maximize the user information visibili-
ty as described in problem definition. The first constraint
ensures m(w1,w2) ≤ m(w1, u) for each user u ∈ S in the
k-anonymity, i.e., yu = 1 for u ∈ S. The second constraint
guarantees the k-anonymity. This IP formulation is imple-
mented using the CPLEX optimization suite from ILOG.

Table 2: Performance of RULE (visibility(%))

Dataset
RULE Optimality

Service OSN1 Auxiliary OSN2

Twitter
Foursquare 99.231 99.231
Google+ 99.578 99.582

Google+
Foursquare 99.202 99.202
Twitter 83.287 83.620

Foursquare
Google+ 47.729 47.729
Twitter 49.254 49.312

We test our RULE algorithm on these six datasets, with
different k values from 90% to 100% users on OSN2. As
shown in Table 2, the visibility returned by RULE algorithm
is at most 0.5% smaller than optimal solution, and reaches
optimality in 3 datasets. And the running time of RULE
algorithm is consistently less than 10 seconds, which is up
to 20 times faster than solving the IP formulation.
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Figure 1: Robustness of RULE

Figure 1 shows the robustness of RULE algorithm by mea-
suring anonymity level with respect to different classifiers
(service OSN > auxiliary OSN). As this anonymity level re-
mains consistently larger than 40%, the application of our
countermeasure can still anonymize a user with at least oth-
er 36% users on average as we select k between 90% and
100% of all users in our experiments.
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