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ABSTRACT
We propose a fast, parallel maximum clique algorithm for
large sparse graphs that is designed to exploit characteristics
of social and information networks. Despite clique’s status
as an NP-hard problem with poor approximation guarantees,
our method exhibits nearly linear runtime scaling over real-
world networks ranging from 1000 to 100 million nodes. In a
test on a social network with 1.8 billion edges, the algorithm
finds the largest clique in about 20 minutes. Key to the
efficiency of our algorithm are an initial heuristic procedure
that finds a large clique quickly and a parallelized branch
and bound strategy with aggressive pruning and ordering
techniques. We use the algorithm to compute the largest
temporal strong components of temporal contact networks.

Categories and Subject Descriptors
G.2.2 [Graph theory]: Graph algorithms; H.2.8 [Database
Applications]: Data Mining

1. ALGORITHMS AND APPLICATIONS
We propose a fast, parallel maximum clique finder well-

suited for applications involving large sparse graphs. Our
algorithm is a branch and bound method with novel and
aggressive pruning strategies. Branch and bound type al-
gorithms for maximum clique explore all maximal cliques
that cannot be pruned via search tree optimizations [3, 7,
5, 8]. They differ chiefly in the way the pruning is done.
Our algorithm is distinguished by several features. First,
it begins by finding a large clique using a near linear-time
heuristic; the obtained solution is checked for optimality be-
fore the algorithm proceeds any further, and the algorithm is
terminated if the solution is found to be optimal. Second, we
use this heuristic clique, in combination with (tight) upper
bounds on the largest clique, to aggressively prune. The
upper bounds are computed at the level of the input graph
or individual neighborhoods. Third, we use implicit graph
edits and periodic full graph updates in order to keep our
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Figure 1: Results of our heuristic on over 74 networks

originating from 8 types of data. We find that our heuris-

tic (ω̃) finds the largest clique (ω) in biological, collabo-

ration, and web networks in all but one case.

implementation efficient. Additional features the algorithm
incorporates are discussed in the full version of this paper [6].

Heuristic step. Our heuristic, outlined in Algorithm 1,
builds a clique by searching around each vertex in the graph
and greedily adding vertices from the neighborhood as long
as they form a clique. The order of vertices is the degeneracy
order. This heuristic step finds the largest clique in the graph
in over half of the social networks we consider (see Figure 1).
It can therefore be used as a stand-alone procedure.

Bounds. Our branch and bound procedure, Algorithm 2,
heavily uses several bounds to prune the search space. Let
the core-number of vertex v be denoted by K(v). If K(G) is
the largest core number of any vertex in G, then K(G) + 1 is
an upper bound on the clique size. Well-known relationships
between core numbers, degeneracy order, and coloring allow
us to further tighten this bound. Let L(G) be the number
of colors used by a greedy coloring algorithm in degeneracy
order. Then L(G) ≤ K(G) + 1 and we get a potentially
tighter bound on the size of the largest clique:

Fact 1.1. ω(G) ≤ L(G) ≤ K(G) + 1

We can further improve the bounds in Fact 1.1 by exploiting
the fact that the largest clique must also be in a vertex
neighborhood. Let NR(v), the reduced neighborhood graph
of v, be the vertex-induced subgraph of G corresponding to
v and all neighbors of v that have not been pruned from the
graph yet. All the bounds in Fact 1.1 apply to finding the
largest clique in each of these neighborhood subgraphs:

Fact 1.2. ω(G) ≤ maxv L(NR(v)) ≤ maxv K(NR(v))+1

Our algorithm uses the bounds in Fact 1.2 in its search
procedure.
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Figure 2: The empirical runtime of our exact clique

finder in social and information networks scales almost

linearly with the network dimension.

Runtime. We plot the runtime of the algorithm pictorially
in Figure 2 for a representative subset of 32 of the 74 networks.
The figure demonstrates linear scaling between 1000 vertices
and 100M vertices. The runtime for the friendster graph with
1.8 billion edges (from the SNAP collection) is 20 minutes.
The algorithm is parallelized in a shared memory setting
using a worker task-queue and a global broadcast [6]. Our
source code and additional data on an extensive collections
of networks is available in an online appendix.1

Application. As a demonstrative application, we use our
maximum clique finder to identify temporal strong compo-
nents (tSCC), a recently introduced notion [1, 2]. A temporal
network is defined by a set of vertices V and a temporal set
of edges ET ⊆ V ×V ×R+ between the vertices. Specifically,
each edge (u, v, t) in a temporal network has a unique time
t ∈ R+. In such a network, a path represents a sequence
of edges that must be traversed in increasing order of edge
times. If each edge represents a contact between two entities,
for example, then a path is a feasible route for information.
Two vertices (u,w) are strongly connected if there exists
a temporal path P from u to w and from w to u. And a
tSCC is a maximal set of vertices C ⊆ V such that any pair
of vertices in C are strongly connected [1, 2]. Checking if
a graph has a k-node tSCC is NP-complete. Nonetheless,
we can compute the largest tSCC by finding a maximum
clique in a derived graph called a strong-reachability graph
[2]. A strong-reachability graph is obtained by inserting an
edge between every pair of vertices in the temporal graph
whenever there is a temporal path between them [4]. A max-
imum clique in the reachability graph, after non-reciprocated
edges have been removed, is then the largest temporal strong
component [2]. When we apply our maximum clique finder to
compute tSCC in reachability graphs with millions of edges,
it takes less than a second.
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Algorithm 1 Our greedy heuristic to find a large clique.
The input array K holds core numbers of vertices.

1 procedure HeuristicClique(G = (V,E) ,K)
2 Set H = {}, Set max = 0
3 for each v ∈ V in decreasing core number order do
4 if v’s core number is ≥ max then
5 Let S be the neighs. of v with core numbers ≥ max
6 Set C = {}
7 for each vertex u ∈ S by decreasing core num. do
8 if C ∪ {u} is a clique then Add u to C

9 if |C| > max then Set H = C, Set max = |H|
10 return H, a large clique in G

Algorithm 2 Our exact maximum clique algorithm.

1 procedure MaxClique(G = (V,E))
2 Set K = CoreNumbers(G) . K is a vertex-indexed array
3 Set H = HeuristicClique(G,K)
4 Remove (explicitly) vertices with K(v) < |H|
5 while |G| > 0 do
6 Let u be the vertex with smallest reduced degree
7 InitialBranch(u) . the routine grows H
8 Remove u from G
9 Periodically, explicitly remove vertices from G

10 Return H, the largest clique in G
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24 Set C′ = C ∪ {u}
25 Set P ′ = P ∩ {NR(u)}
26 if |P ′| > 0 then
27 Set L = Color(P ′) in natural (any) order
28 if |C′|+ L > |H| then Branch(C′, P ′)

29 else if |C′| > |H| then . C′ is maximal
30 Set H = C′ . new max clique
31 Remove any v with K(v) < |H| from G . implicitly
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