
Efficient RDF Stream Reasoning with Graphics Processing
Units (GPUs)

Chang Liu
University of Maryland

USA
liuchang@cs.umd.edu

Jacopo Urbani
Vrije Universiteit Amsterdam

The Netherlands
jacopo@cs.vu.nl

Guilin Qi
Southeast University

China
gqi@seu.edu.cn

ABSTRACT

In this paper, we study the problem of stream reasoning and
propose a reasoning approach over large amounts of RDF
data, which uses graphics processing units (GPU) to improve
the performance. First, we show how the problem of stream
reasoning can be reduced to a temporal reasoning problem.
Then, we describe a number of algorithms to perform stream
reasoning with GPUs.

1. INTRODUCTION
Recently, a new research area, called stream reasoning,

has emerged to address the problem of performing reason-
ing for very dynamic inputs. Currently, stream reasoning is
visioned as a promising research area with many potential
applications such as monitoring and traffic patterns detec-
tion, financial transaction audits, wind power plant moni-
toring, or situation-aware mobile services [5].

So far, several approaches have been proposed to tackle
this problem [1]. However, they mostly propose serial al-
gorithms, and thus leave unsolved the problem whether it
is possible to leverage modern parallel computing architec-
tures to achieve shorter responding time and better scala-
bility. The work presented in [3] is the first to describe a
RDFS reasoning engine using a GPU architecture. How-
ever, it does not target stream reasoning and optimize the
computation to perform large batch computations.

In this work, we propose a system to perform stream rea-
soning on RDF data using the GPU computing architecture.
In this context, there is both a theoretical and a practical
challenge. The former is grounded on a lack of a formal-
ization of the problem, and we address it by showing how
stream reasoning can be formalized into a temporal reason-
ing problem, and consequently proposing a compact repre-
sentation of the data under such formalization. The latter is
more technical since it requires to design methods to perform
reasoning very quickly before new data becomes available.
Since the efficiency of a GPU hinges on the data alignment
of the input, we first propose a hash-based GPU encoding

Copyright is held by the author/owner(s).
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577323.

algorithm that can efficiently translate the string terms into
integer IDs of a fixed-length. Then, we present a number
of novel parallel algorithms using the CUDA1 programming
language to perform reasoning over dynamic data. Our pre-
liminary evaluation shows that our approach can compute
the closure for an input of hundred thousand LUBM triples
in a few milliseconds, making possible to reason over large
streams of structured data.

2. STREAM REASONING AS A TEMPORAL

REASONING PROBLEM
First, we define a RDF stream as a pair s = 〈KB,S〉 where

KB is the background knowledge, which is a RDF graph,
while S is the stream, which is defined as a sequence of
(τi, ti), where τi is a triple, and ti ∈ N is a timestamp.
We say τi is observed or arrives at time ti. We assume
∀i.ti ≤ ti+1.

In this work we consider a minimal fragment of RDFS,
called ρdf [4] to perform the inference. ρdf has a deductive
system ⊢ which can be used to compute all triples that can
be entailed from a given graph in polynomial time. The
deductive system contains several rules such as the following
one:

(X, sp, Y ) (Y,sp, Z) ⇒ (X, sp, Z)

Here sp is in the ρdf vocabulary, meaning a relationship of
subproperty between two properties. The deductive system
naturally defines a proof of H from G, denoted as G ⊢ H ,
i.e. each triple in H is either in G, or can be derived from
G using ρdf rules.

In a typical stream reasoning scenario, we are required to
perform inference on a RDF graph composed by the back-
ground knowledge base and all RDF triples in a window of a
RDF stream over time. A window is a time interval [t1, t2],
where t1 < t2, t1, t2 ∈ N . A window [t1, t2] has size t2 − t1.
The snapshot of the stream S in window [t1, t2], denoted as
S [t1, t2] is the set {τ : ∃t.t1 ≤ t ≤ t2 ∧ (τ, t) ∈ S}.

More formally, given a RDF stream 〈KB,S〉, and a fixed
window size w, a stream reasoning program is required to
decide RDF graph Gt, such that KB ∪ S [t − w, t] ⊢ Gt for
each moment t = 0, 1, .... 2

1http://www.nvidia.com/object/cuda_home_new.html
2Here, for t < w, we treat t− w as equivalent to 0

343



Figure 1: The general workflow of the stream rea-

soning engine.

2.1 From RDF Stream Reasoning to Tempo-
ral RDF Reasoning

A temporal RDF triple τ : λ is a pair of a RDF triple τ

and a temporal annotation λ. A temporal annotation λ is a
union of a finite number of intervals.

Temporal RDF has a deductive system which is an exten-
sion of ρdf rules. The temporal RDF deductive system also
naturally defines a proof of H from G, denoted as G ⊢t H .

Given a RDF stream s = 〈KB,S〉, the temporal corre-

spondence of s at moment t denoted as T (s, t), is a tempo-
ral graph defined by {τ : [0,+∞]|τ ∈ KB} ∪ {τ : [t′, t′ +
w]|(τ, t′) ∈ S ∧ t′ ≤ t}.

We can show the following result: Given a RDF stream
s = 〈KB,S〉, a RDF graph Gt, and a moment t, KB ∪S [t−
w, t] ⊢ Gt, if and only if ∀τ.τ ∈ Gt ⇔ ∃λ.t ∈ λ ∧ T (s, t) ⊢t

τ : λ. This result allows us to use a temporal RDF deductive
system to compute the closure avoiding the expensive dele-
tions required in the incremental process. To further speed
up the inference process, we use a compressed representation
of the temporal annotation: Instead of storing the temporal
interval, we only store t′ + w for a triple τ arriving at t′.

3. STREAM REASONING USING CUDA
If we treat a RDF graph as a three-column table, then

the execution of a rule translates in computing a relational
join over the tables. The premises of each rule contains at
most one ABox triple (i.e. the triples that do not contain
sp, sc, etc.). Furthermore, the number of TBox triples (i.e.
the triples that are not ABox triples) is small and there is
a static knowledge base, that will never change while new
stream triples are arriving.

First, our system executes the transitive closure rules over
the ABox triples in the static knowledge base. Then, it
executes the following steps after new triples arrive in the
stream: Removing the expired triples; Encoding the new
triples; Executing the rules. The system workflow is re-
ported in Figure 1, and in the following we describe each
phase in more detail.

Removing the expired triples. As discussed above, all ex-
pired triples are those τ : t′ where t′+w < t. Therefore when
a triple τ : t′ is arrived, we keep track of t′ +w as τ ’s anno-
tation. Then, we remove all triples whose annotation is less
than the current time t. This operation can be computed
in parallel using a parallel stream compaction algorithm like
the one described in [2].

Compression of the RDF Stream. Before performing rea-
soning, our system encodes the textual terms of the triples
into numeric IDs. We propose a two-phase hash-based al-
gorithm to perform this operation: in the first phase, we

compute the hash value of each variant-length string, while
in the second phase we assign a unique ID to each hash
value. The hash function is carefully chosen (e.g. SHA-1)
so that the collision probability is negligible. While this still
does not guarantee each string is mapped to a unique ID,
we argue that it is a good compromise for efficiency.

3.1 Rules Execution on a RDF Stream
Our system applies each rule in the order illustrated in

Figure 1 on both the stream and background knowledge
data. This is the same execution order as the one used
in [3].

However, differently from [3], our system needs to deal
with the incremental part. Since TBox is usually much
smaller than ABox, we cache all TBox triples in the GPU
memory. We implemented two strategies in case the TBox
is either static or present in the stream.

Static TBox. If the TBox is static, then we can omit all
rules that deal with only TBox triples (i.e. the rules in grep
box in Figure 1). All the other rules require a join between
TBox and ABox. In our case, the TBox is cached in the
GPU memory before the stream arrives, and this allows us
to perform some preprocessing on the TBox (e.g. sorting and
building hash table), so that computing the join between a
dynamic ABox (only the incremental part) and the static
TBox can be executed using well-known join algorithms like
sort-join or hash-join. In our experiment, an hash-join has
achieved the best performance.

Dynamic TBox. If the TBox is not static, then we cannot
omit the TBox rules like the ones required to compute the
transitive closure of sp and sc. Since computing the transi-
tive closure requires an iterative process until fixpoint where
each iteration produces redundant computation. To reduce
such a redundancy, we employ incremental algorithms that
computes only the join result over triples derived within two
iterations. This reduces the computation and allows a sub-
stantial increase of performance.

Acknowledge

Guilin Qi is partially supported by the Marie Curie IRSES
project SemData 612551. Jacopo Urbani is funded by the
Dutch VENI project 639.021.335.

4. REFERENCES
[1] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and

M. Grossniklaus. Incremental Reasoning on Streams
and Rich Background Knowledge. In Proc. of ESWC

’10, pages 1–15, 2010.

[2] M. Billeter, O. Olsson, and U. Assarsson. Efficient
stream compaction on wide SIMD many-core
architectures. In Proc. of HPG ’09, 2009.

[3] N. Heino and J. Z. Pan. RDFS Reasoning on Massively
Parallel Hardware. In Proceedings of ISWC, pages
133–148, 2012.

[4] S. Muñoz, J. Pérez, and C. Gutierrez. Minimal
Deductive Systems for RDF. In Proceedings of ESWC,
pages 53–67, 2007.

[5] E. D. Valle, S. Ceri, F. van Harmelen, and D. Fensel.
It’s a Streaming World! Reasoning upon Rapidly
Changing Information. IEEE Intelligent Systems,
24(6):83–89, 2009.

344




