
Finding k-Highest Betweenness Centrality Vertices
in Graphs

Min-Joong Lee
Department of Computer Science, KAIST

291 Daehak-ro, Yuseong-gu
Daejeon, Korea

mjlee@islab.kaist.ac.kr

Chin-Wan Chung
Division of Web Science and Technology &
Department of Computer Science, KAIST

291 Daehak-ro, Yuseong-gu
Daejeon, Korea

chungcw@kaist.edu

ABSTRACT
The betweenness centrality is a measure for the relative par-
ticipation of the vertex in the shortest paths in the graph.
In many cases, we are interested in the k-highest between-
ness centrality vertices only rather than all the vertices in
a graph. In this paper, we study an efficient algorithm for
finding the exact k-highest betweenness centrality vertices.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms, Path and circuit problems; E.1 [Data]: Data
structures—Graphs and networks

Keywords
Graph; Betweenness centrality; Top-k

1. INTRODUCTION
The centrality is one of the essential concepts for the

analysis of networks, and the betweenness centrality is one
of the most prominent measures among several centrality
measures. The betweenness centrality problem has been
extensively studied in the literature since the idea of the
betweenness centrality is defined by Anthonisse et al. [1].
The fastest known algorithm to compute exact betweenness
centralities for all the vertices is proposed by Brandes et al.
[2]. Recently, starting from the work by Lee et al. [3], a few
works address an updating problem in dynamic graphs.

However, in many cases, we are only interested in the k-
highest betweenness centrality vertices rather than the be-
tweenness centralities of all the vertices in a graph. This is
reasonable since a vertex with a higher centrality is viewed
as a more important vertex than a vertex with a lower cen-
trality, and we are only interested in the important vertices
in many applications such as finding influencers in a social
network, and locating bottlenecked junctions/routers in a
transportation network/the Internet. Moreover, a commu-
nity detection application, one of the most prominent ap-
plication of the betweenness centrality, utilizes the highest

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577358.

centrality vertex only. Despite the above evident applica-
tions, the k-highest betweenness centrality problem is hardly
discussed in the literature. In this paper, we propose an effi-
cient algorithm for finding the exact k-highest betweenness
centrality vertices in a graph. We utilize the novel properties
of biconnected components to compute the betweenness cen-
tralities of a part of vertices in a graph, and employ an idea
of the upper-bounding to compute the relative partial order
of the vertices with respect to their betweenness centralities.

2. PRELIMINARY
Definition 1 (Betweenness Centrality). A graph is repre-
sented by G = (V,E). The betweenness centrality of a ver-
tex vj ∈V is defined as follow. c(v) =

∑
i,j∈V (σi,j(v)/σi,j)

where v, i, j ∈ V , v �= i, i �= j, j �= v, σi,j(v) is the number of
shortest paths between i and j that include v, and σi,j is
the number of shortest paths between i and j.

Definition 2 (Biconnected Component and Articulation
Vertex). A biconnected graph is a inseparable graph by re-
moving an any vertex in a graph, and the biconnected com-
ponent is a maximal biconnected subgraph of the graph. Any
connected graph can be decomposed into biconnected com-
ponents that are connected to each other through a vertex
called articulation vertex. An example is shown in Figure 1.

a

b c

d

e

f

g

h

i

j k

l

e

Biconnected components
B1 = {a, b, c}, B2 = {c, e},
B3 = {d, e, f}, B4 = {e, g, h, i, j},

Articulation vertices = c, e, j

B5 = {j, k, l}

Figure 1: Graph Example.

3. SOLUTION
We can efficiently find the k-highest betweenness central-

ity vertices by solving the following two sub-problems.

1. Compute the betweenness centrality of a vertex faster
than the betweenness centralities of all vertices.

2. Compute the partial order of vertices with respect to
their betweenness centralities.

Sub-proplem 1. To compute the betweenness centrality
of a single vertex v, σi,j(v)/σi,j for all vertices pairs i, j in a
graph should be computed by Definition 1. Therefore, solv-
ing this sub-problem seems impossible. However, we propose
a novel idea to compute σi,j(v)/σi,j without performing all-
pairs shortest paths computation for all vertices pairs i, j in
the graph.

339

Let V(Bv) = {V i, ..., V k} be a set of vertex sets. V i ∈
V(Bv) is a set of vertices in the disconnected component
which has a vertex i among the disconnected components
induced by removals of all vertices in Bv. Then, the between-
ness centrality of vertex v in Bv can be efficiently computed
as follow.

c(v)=cBv (v)+
∑

i∈Bv,V j∈V(Bv)

|V j |·σi,j(v)

σi,j
+

∑

V i,V j∈V(Bv)

|V i|·|V j |·σi,j(v)

σi,j

where i �= j. The first term cBv (v) represents an amount
of the betweenness centrality of v with respect to the short-
est paths between vertices in Bv. Since the shortest paths
between vertices in a biconnected component only include
vertices in the component, we can compute this term by
computing the betweenness centrality of v on Bv using any
existing betweenness centrality computation algorithm. The
second term represents an amount of the betweenness cen-
trality with respect to the shortest paths between a vertex
in Bv and a vertex in not Bv, and the third term represents
an amount of the betweenness centrality with respect to the
shortest paths between vertices not in Bv. Note that the
above equation requires the shortest paths between pairs of
vertices i, j in Bv only, and the betweenness centralities of
all vertices in Bv can be computed also using the shortest
paths between i, j pairs in Bv. The number of vertices in
a biconnected component is fairly smaller than that in the
entire graph. In Figure 1, c(h)= 1

2
+(5·1

2
+ 2·1

2
)+(5·2·1

2
).

Sub-proplem 2. The betweenness centrality of any ver-
tex in Bv can not exceeds C(|Bv|, 2), the number of ways of
choosing two vertices from Bv. It is used to exclude bicon-
nected components with a small vertices. The number of
the shortest paths between a vertex in Bv and a vertex not
in Bv is (|V |−|Bv|) ·(|Bv | − 1). Among the shortest paths
between vertices not in Bv,

∑
V i,V j∈V(Bv)

|V i| · |V j | short-
est paths include at least one vertex in Bv. It is used to
exclude outlier biconnected components. Using the above
numbers, the upper-bound of the betweenness centralities
of vertices in Bv, denoted as ĉ(Bv), can be computed as
ĉ(Bv)=C(|Bv|, 2)+(|V |−|Bv|)·(|Bv |−1)+

∑
V i,V j∈V(Bv)

|V i|·|V j | .
The majority of cases, this upper-bound is an overestimate
compared to the actual centralities. Despite the overesti-
mate, it is enough to give a concrete theoretical reason for
pruning small and outlier components.

Overall Process. The overall process of our proposed
algorithm is as follows.

1. Decompose G into biconnected components. Let B be
a set of the decomposed biconnected components.

2. Calculate ĉ(Bv), the upper-bound of the betweenness
centralities of vertices in Bv, for each Bv ∈ B.

3. Calculate and update the betweenness centralities of
vertices in Bh. Bh is Bv with the highest ĉ(Bv) among
Bv ∈ B.

4. Update B to B \ {Bh}.
5. Repeat 3-4 until the known k-th highest betweenness

centrality is higher than the new ĉ(Bh).

Optimization. We can further optimize the above al-
gorithm by computing and utilizing the lower-bound of the
betweenness centrality of an articulation vertex after Step 2.
Let V(a) = {V1, ..., Vm} be a set of vertex sets. Vi ∈ V(a) is
consist of vertices in each disconnected component induced
by the removal of an articulation vertex a. The lower-bound
of the betweenness centrality of an articulation vertex a is
denoted and computed as č(a)=

∑
Vi,Vj∈V(a) |Vi|·|Vj | where

Vi �= Vj . Only the amount of the betweenness centrality,
with respects to the shortest paths between vertices in each
biconnected component which has a, is not considered in the
lower-bound of the centrality of a. Thus, it is a fairly tight
bound, and articulation vertices generally have higher be-
tweenness centralities than non-articulation vertices. There-
fore, we can prune vertices in many biconnected components
which have smaller upper-bounds than the lower-bound of
an articulation vertex.

4. EXPERIMENTAL RESULTS
Since an algorithm for finding the exact k-highest be-

tweenness centrality does not exist, we compare our algo-
rithm to the Brandes algorithm which is the fastest known
algorithm for the exact betweenness centrality computation.
Note that all existing algorithms require all-pairs shortest
paths even for computing the centrality of one vertex in a
graph. We show the experimental results with the summary
of graphs in Table 1. The speed-up shows how much im-
provement is achieved by our algorithm compared to the
Brandes algorithm. For example, our algorithm is 3312
times faster in ’eva’ dataset. Moreover, our algorithm is
scalable with respect to k since it compute the centralities
of vertices in a biconnected component simultaneously.

Table 1: Experiments on Real Graphs
Graph Type |V | |E| Speed-Up

k=1 k=5 k=10 k=50 k=100

disease Ownership 516 2376 18.22 18.09 17.38 17.12
eva Ownership 8343 6726 3312.37 3312.13
erdos972 Collab. 5822 14750 37.43
geon Collab. 9072 13567 6.33 6.31
CAGrQc Social 5242 14496 3.321 3.313
power Web link 4941 13188 4.021 4.020
pgp Web link 4680 24340 21.61
CAhep Collab. 9877 25998 3.02
contact Social 11604 88806 4.24

5. CONCLUSION AND FUTURE WORKS
In this paper, we propose an efficient algorithm for finding

the exact k-highest betweenness centrality vertices. To the
best of our knowledge, this is the first work which addresses
the exact k-highest betweenness centrality problem. The
proposed algorithm utilizes the novel properties of bicon-
nected components, and outperforms the existing algorithm
for finding the k-highest betweenness centrality vertices.

As future works, we plan to improve the upper-bound
computation. Currently, an upper-bound is computed by
only using the number of vertices in a biconnected compo-
nent. However, we expect a proper utilization of other graph
measures, such as the number of edges and the diameter, will
tighten the upper-bound. Also, we plan to employ our idea
for computing the exact betweenness centralities for all ver-
tices. This is also promising since our idea provides a key
for the divide and conquer computation.

Acknowledgments. This work was supported by the
National Research Foundation of Korea grant funded by the
Korean government (MSIP) (No. NRF-2009-0081365).

6. REFERENCES
[1] J. M. Anthonisse. The rush in a directed graph. Stichting

Mathematisch Centrum. Mathematische Besliskunde, (BN
9/71):1–10, 1971.

[2] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(1994):163–177, 2001.

[3] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung.
Qube: a quick algorithm for updating betweenness
centrality. In Proceedings of the 21st international
conference on World Wide Web, pages 351–360. ACM, 2012.

340

