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ABSTRACT
Understanding of which new interactions among data objects are
likely to occur in the future is crucial for a deeper understanding
of network dynamics and evolution. This question is largely un-
explored except a local neighborhood perspective, partly owing to
the difficulty in finding major factors which heavily affect the link
prediction problem. In this paper, we propose LPCSP, a novel link
prediction method which exploits the generalized cluster informa-
tion containing cluster relations and cluster evolution information.
Experiments show that our proposed LPCSP is accurate, scalable,
and useful for link prediction on real world graphs.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
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1. INTRODUCTION
Link prediction in complex networks has attracted a lot of atten-

tions from various domains including computer science and physics.
Great efforts have therefore been made to define the similarity be-
tween two vertices since link prediction algorithms typically as-
sume that similar vertices are likely to be connected [4]. A cluster
is a densely connected sub-graph in the entire graph, which means
the members in the same cluster are highly related to each other and
have similar properties. Thus, cluster information can be utilized
as a factor having a powerful predictive value. Although some state
of the art link prediction methods consider cluster information [7,
5], they do not consider the relations and evolution of clusters, and
thus they do not fully exploit cluster information. In this paper, we
propose LPCSP (Link Prediction inferred from Cluster Similarity
and cluster Power), a link prediction method which exploits both
static and temporal cluster information. In the static perspective,
LPCSP uses cluster similarity and static cluster power defined by
cluster’s structure. LPCSP gives more weight when cluster sim-
ilarity is higher and the structure of the cluster is more densely
connected. In the temporal perspective, LPCSP gives more weight
when the structure of the cluster is more strongly evolving. Exten-
sive experiments show that our proposed LPCSP is accurate, scal-
able, and useful for link prediction on real world graphs.

2. PROPOSED METHOD: LPCSP
LPCSP uses generalized cluster information which consists of

two major factors: (i) cluster similarity and (ii) cluster power. Those
can be used to improve baseline link prediction methods. An overview
of LPCSP is shown in Fig. 1.
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Figure 1: Overview of LPCSP method. LPCSP integrates the gen-
eralized cluster information with any base link prediction algorithm
to achieve better prediction power.

In addition, LPCSP has an advantage of using any link predic-
tion method as a plug-in. In other words, LPCSP can be regarded
as a general method for link prediction. In this paper, we use
several well-known link prediction metrics: Common Neighbors
(CN), Adamic/Adar (AA), Resource Allocation (RA), and Prefer-
ential Attachment (PA).

To find clusters, we use Multi-level modularity graph clustering
algorithm [1] which discovers high modularity partitions in large
networks within a reasonable amount of time.

2.1 Cluster Similarity
Intuitively, two clusters are similar if there are many inter edges

between them. Based on the intuition, we construct a cluster graph
whose vertices are clusters and edges denote interactions between
clusters. For two clusters α and β, let |Eα,β| be the number of
existing inter edges between them and |α| be the number of vertices
in α. Then, the edge weight between clusters α and β is defined as
the ratio of the number of existing inter edges to the number of all

possible inter edges (i.e.,
|Eα,β |
|α||β| ). Finally, the cluster similarity is

computed by applying Random Walk with Restart [6] on the cluster
graph.

2.2 Cluster Power
We define a notion of cluster power based on both the static and

temporal perspectives. The overall cluster power CPβ of a clus-
ter β is computed by combining static cluster power CPSβ and
evolving cluster power CPEβ . For the combination, we multiply
the two values (i.e., CPβ = CPSβ · CPEβ), but there can be
other alternative ways such as summation, etc.

Static cluster power: A well-known result on graph evolution
research [3] is that there exists a power law relationship, called
“densification power law”, between the numbers of edges (‖G‖)
and vertices (|G|) of a graph G: ‖G‖ = |G|R where the exponent
R is a densification coefficient of the graph. We use R as the static
cluster power to represent the time-invariant density of a cluster.

Evolving cluster power: For timestamps t1 and t2 (t1 < t2)
and a cluster β discovered at t2, we identify β’s previous cluster
α by computing argmax

γ
min( |β∩γ|

|β| , |β∩γ|
|γ| ) over the clusters γ at

t1, where β ∩ γ represents a set of vertices which belong to both β
and γ. In other words, we select the cluster having the maximum
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mutual membership ratio. However, if the maximum ratio is less
than a threshold (e.g., 0.1), we assume that there was no previous
cluster of β at t1 and do not consider cluster evolution for such
case. Finally, the evolving cluster power CPEβ of cluster β is
computed by CPSβ − CPSα + 1 if α is found, or 1 otherwise.

2.3 LPCSP Measure
The LPCSP measure for two vertices x and y is defined as fol-

lows: base(x, y) · ∑
v

Sim(Cx,Cv)+Sim(Cv,Cy)

2
· Sim(Cx, Cy) ·

CPβ , where base(x, y) is a baseline link prediction method like
Adamic/Adar, Sim() is a function for computing the similarity be-
tween two clusters, Cx is a cluster the vertex x belongs to, and v
is a common neighbor of x and y. If Cx �= Cy, CPβ is ignored in
the computation (i.e., CPβ = 1).

3. EXPERIMENTS
We test LPCSP on synthetic and 5 real world datasets 1: DBLP,

Slashdot (social network), AS-733 (autonomous system), Oregon
(autonomous system), and Gnutella (peer-to-peer network). These
networks range in size from 3,028 vertices and 11,705 edges (Ore-
gon) to 214,408 vertices and 563,688 edges (DBLP).

3.1 Accuracy
We compare the performance of LPCSP with four baseline link

prediction algorithms: (i) CN (Common Neighbor), (ii) AA (Adamic/
Adar), (iii) RA (Resource Allocation), and (iv) PA (Preferential At-
tachment). To evaluate the performance, we draw an ROC (Re-
ceiver Operating characteristics) curve and get AUC (Area Under
the ROC Curve) score for each method [2].

Table 1 shows the detailed results of our experiments. The term
"Naive" in this table represents a baseline method itself. In most
cases, LPCSP shows significantly better performances. In addition,
LPCSP performs the best in four out of five datasets. Even in the
Oregon graph where the LPCSP performs worse than the baseline,
the difference is very small (0.7106 and 0.6951).

Table 1: Comparisons of AUC scores between baseline and LPCSP
on all datasets. The best score for each dataset is in bold.

DBLP Slashdot AS-733 Oregon Gnuetella

Naive LPCSP Naive LPCSP Naive LPCSP Naive LPCSP Naive LPCSP
CN 0.5472 0.6163 0.6380 0.7192 0.6478 0.6954 0.5831 0.6449 0.3666 0.3631
AA 0.5783 0.6314 0.6281 0.6952 0.5594 0.6127 0.6284 0.6593 0.3216 0.4680
RA 0.5763 0.6350 0.6141 0.6048 0.5868 0.5735 0.7106 0.6951 0.4619 0.6977
PA 0.5937 0.6835 0.5916 0.5904 0.6179 0.6129 0.5295 0.5794 0.4982 0.5328

3.2 Scalability
We perform the scalability experiments of our proposed algo-

rithm. We generate the synthetic graphs using the NetworkX pack-
age varying the number of vertices from 100,000 to 1,000,000 with
the average degree fixed. The running times of our proposed algo-
rithm for these graphs is plotted in Fig. 2. Note that it has near-
linear scalability.
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Figure 2: Near-linear scalability of LPCSP.

1http://snap.stanford.edu/data/

3.3 LPCSP at Work
The result of applying LPCSP on the DBLP data is shown in Fig.

3 where solid lines are actually formed links, while a dotted line
implies a link not actually formed. Each circle represents a cluster,
and the colors denote cluster similarity: the left two clusters are
similar, while they are not similar to the third cluster. We use the
CN as the baseline method to compare with LPCSP. First, note that
when two vertices (e.g. Tiani Wu and Jiawei Han) belong to a same
cluster which is also evolving, the proximity score of LPCSP is
higher than that of the baseline method. Second, when two vertices
belong to different clusters, if the cluster similarity is high (e.g.
between Jiawei Han and Kyu-Young Whang), the proximity score
of LPCSP is slightly lower than that of the baseline; however, if
the cluster similarity is low (e.g. between Xiaoxin Yin and William
Yurcik), the proximity score of LPCSP is much lower than that of
the baseline.
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Figure 3: LPCSP on DBLP data showing two representative cases.

4. CONCLUSIONS
In this paper, we propose LPCSP, a novel link prediction method

based on generalized cluster information. The main contributions
are the followings.

• Static and Temporal Cluster information: Unlike previous
methods, the LPCSP method utilizes both static and temporal
cluster information to improve the quality of link prediction.
LPCSP outperforms all competitors on most datasets.

• Generality: LPCSP is general in the sense that any link pre-
diction method can be plugged in as a baseline algorithm.

• Scalability: LPCSP scales near-linearly on the edges.

Acknowledgments
Funding was provided by KAIST under project number G0413002.

5. REFERENCES
[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte,

and Etienne Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[2] Tom Fawcett. An introduction to roc analysis. Pattern
recognition letters, 27(8):861–874, 2006.

[3] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD, 2005.

[4] Linyuan Lü and Tao Zhou. Link prediction in complex
networks: A survey. Physica A: Statistical Mechanics and its
Applications, 390(6):1150–1170, 2011.

[5] Sucheta Soundarajan and John Hopcroft. Using community
information to improve the precision of link prediction
methods. In WWW, 2012.

[6] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast
random walk with restart and its applications. In ICDM, 2006.

[7] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.
Link prediction in complex networks based on cluster
information. In Advances in Artificial Intelligence-SBIA 2012,
pages 92–101. Springer, 2012.

318




