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ABSTRACT 
Online location-based services, such as Foursquare and Facebook, 
provide a great resource for location recommendation. As we 
know the time is one of the important factors on recommending 
places with proper time for users, since the pleasure of visiting a 
place could be diminished if arriving at wrong time, we propose to 
infer the visiting time distributions of locations. We assume the 
check-in data used is incomplete because in real-world scenarios it 
is hard or unavailable to collect all the temporal information of 
locations and the check-in behaviors might be abnormal. To tackle 
such problem, we devise a visiting time inference framework, 
VisTime-Miner, which considers the route-based visiting correla-
tion of time labels to model the visiting behavior of a location. 
Experiments on a large-scaled Gowalla check-in data show a 
promising result. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications–Data mining. 

Keywords 
Location visiting time, check-in data, semi-supervised. 

1. INTRODUCTION 
The pleasure of visiting a place can be significantly diminished if 
arrived at the wrong time. Some places have a wider range of 
visiting time span while others are constrained to certain particular 
time slots. For example, most people do not want to visit a beach 
during the boiling hot noon, but rather arrive in the late afternoon 
to enjoy the sunset scene. Or certain ball game events usually take 
place at particular time period (e.g. in the evening). As shown in 
Figure 1, which is derived from the Gowalla check-in data, some 
place has better chance to be visited at certain time slots. For ex-
ample, people visited Empire State Building from about 12:00 to 
the mid night (note that this place is famous for its excellent night 
view), in contrast, the proper time to visit Central Park is during 
daytime. 

      
Figure 1: The distribution of the visiting probability at each time unit 
(hour) for Empire State Building (left) and Central Park (right). 

In this paper, given a particular location, we aim to infer its visit-
ing time distribution from incomplete check-in data. Acquiring the 
visiting time distributions of locations would enable a number of 
applications. For example, one can provide time-aware location 
recommendation [4] based on the time at a current location. Be-
sides, the quality of route planning [3] can be boosted if the visit-

ing time of locations can be derived. Moreover, while existing 
work models the periodic and social mobility [1] for location pre-
diction, it would be more realistic if the proper location visiting is 
considered. However, as inferring the location visiting time from 
real-world location-based services, we encounter two critical chal-
lenges on obtaining enough and accurate time-labeled check-in 
data. First, the number of new locations or point-of-interests (POI) 
is rapidly generated due to new events, buildings, attractions, even 
new developed areas, and so on. It is hard and infeasible to ac-
quire the all the complete visiting information of locations. What 
we have could be incomplete or few records on the new locations. 
Second, even though we have lots of check-in records of locations, 
such data has high potential to contain noise and abnormal check-
in behaviors. We might have to data correction or manually anno-
tate the data before applications. Such processes are expensive 
and time-consuming. Therefore, in this paper, our goal lies in 
inferring the visiting time distribution of locations from incom-
plete check-in data. We assume the data used is partial time-
labeled and only a small amount. That is, we have only limited 
time-labeled information while most of locations are unlabeled.  

We propose a novel inference framework, VisTime-Miner, to infer 
the visiting time distributions (VTD) of locations. The VTD of a 
location is a probability distribution at each time unit (hour), such 
as Figure 1. Since we use very few time-labeled data (less than 
1%) on each location in a city, our method is built on a semi-
supervised inference model. The central idea is two-fold: (a) the 
visiting order of locations in a route reveals their time information, 
and (b) locations are temporally similar if they are also similar on 
geographical and contextual aspects. Experimental results show 
that our method is promising as significantly outperforming rea-
sonable baselines. 

Related Works. Some recent work exploits complete time-
labeled check-in data for location recommendation. Yuan et al. 
develop a collaborative recommendation model [4] to recommend 
POIs for a given user at a specified time in a day. Hsieh et al. 
develop a TripRouter system [3] to construct time-sensitive routes, 
which consider location popularity, visiting order, proper visiting 
time, and proper transit time to model the goodness of a route. 
Wei et al. [6] develop a route inference to construct the popular 
routes passing through a given location sequence within a speci-
fied time span. Sadilek et al. [5] predict the most likely location of 
an individual at any time, given the historical trajectories of 
his/her friends. To the best of our knowledge, we are the first to 
tackle the visiting time inference problem using check-in data.  

2. THE PROPOSED METHOD 
Notation. A route is a sequence of time-labeled locations, denoted 
by r = <(l1, t1), (l2, t2), ..., (lk, tk)>, in which li is a location and ti is 
the corresponding time label in hour (i.e., 0, 1, 2, ..., 23). A time-
labeled route is a route, in which each location is associated with a 
time stamp in hour. A time-unlabeled route is a route, in which all 
the locations have no time stamps associated. A visiting time dis-
tribution (VTD) of location li is a probability distribution over time 
labels in hour, denoted by VTD(li) = <(t0, p0), (t1, p1), (t2, p2), ..., 
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(t23, p23)>, where p0 + p1 + ... + p23 = 1. Given a set of routes, we 
define the time-label ratio (denoted by ) as the number of time-
labeled routes divided by the number of time-unlabeled routes. 
Note that  is usually less than 5% and is varied for the evaluation. 

Problem Definition. Given a set of routes with a certain time-
label ratio, our goal is to infer the VTD(li) for each location li in 
the routes. In other words, we aim to infer the visiting time for the 
locations in the time-unlabeled routes. It is because of that if we 
can obtain all the visiting time of locations in unlabeled routes, we 
then can aggregate and derive their VTD.  

[Step 1] Construct Route-Correlated Graph. For location li that 
appears in ni routes (including both labeled and unlabeled), we 
construct a weighted complete graph (RCG) with ni nodes, in 
which some nodes have time labels (i.e., those come from time-
labeled routes) while others do not. We compute edge weights 
considering the similarity between routes. The fundamental idea is 
that if two routes are more similar, their time labels of location li 
tends to be more correlated. Therefore, we give higher edge 
weights if two routes are more similar. Here we propose a novel 
route similarity, which consists of three parts: (a) location over-
lapping is the Jaccard coefficient on the location sets of two routes. 
If two routes have more locations overlapped, they will get higher 
score. (b) position difference is the reciprocal of the maximum 
position difference of location li between two routes, smoothed by 
adding one. If a location is visited at a relatively-close position on 
two routes, their edge weight gets higher. (c) geographical prox-
imity is the average distance in geography over locations between 
two routes. After some normalization, we calculate the geometric 
mean of such three scores and regard the value as the edge weight 
between two routes of location li in RCG. 

[Step 2] Learn the visiting time label. We learn the visiting time 
label for each location in time-unlabeled routes, by leveraging the 
graph-based semi-supervised inference technique [2], which ex-
ploits Gaussian random fields and harmonic functions to relax the 
Boltzmann machines. The basic idea is to optimize the loss func-
tion based on the constructed route-correlated graph such that the 
labeled data are clamped. Since the inference process goes beyond 
the scope of ours, please refer to Zhu et al.’s work [2] for details. 

[Step 3] Infer the probability with the corresponding visiting 
time label for each location in an unlabeled route. From Step 2, 
we derive the time label distribution over time labels for each 
location li in each time-unlabeled route. We would like to further 
consider the visiting order of locations in a route to infer the most 
proper probability of li. The idea is that users usually tend to visit 
locations along a route with the most proper time. Therefore, giv-
en a time-unlabeled route with location sequence <l1, l2, ..., lk>, we 
aim to find the corresponding time label probabilities p1, p2, ..., pk 
such that ∏ ୀଵ..  is maximized, under the constraint that the 
visiting time of the (i-1)th location should not be later than the 
visiting time of ith one. We adopt dynamic programming tech-
nique to find such probabilities. 

[Step 4] Aggregate the probabilities to derive VTDs. Finally, 
we aggregate the probabilities with the corresponding visiting 
time labels by simple statistic counting. Then the predicted visit-
ing time distributions for locations in each time-unlabeled route 
are derived. 

3. EXPERIMENTS 
We use a large-scaled check-in data from Gowalla [1] for the 
evaluation, which contains 6,442,890 check-in records. By con-
straining a route of a user within a day, we obtain 1,136,737 
routes. We extract two check-in subsets falling into the urban 

areas of New York and San Francisco. By varying the time-label 
ratio, we randomly select the time-labeled routes while the time 
labels of the remaining routes are removed. We aim to infer the 
VTDs of all the unlabeled locations in each city. We use the sym-
metric Kullback-Leibler (KL) Divergence as the evaluation metric, 
which measures the difference between the ground-truth VTD and 
the inferred VTD, the smaller the better. The average KL Diver-
gence value over all unlabeled locations in a city will be reported. 
For KL, we develop two baseline methods: (a) normal distribution 
method simply generates a Gaussian distribution whose mean 
locates at the most frequent check-in time (in hour) in the labeled 
data. (b) We construct the VTD from the labeled data, which 
serves as a strong baseline. The other evaluation measure is hit 
rate, defined as the number of successfully predicted check-in 
locations divided by the number of unlabeled check-in locations 
over all time-unlabeled routes. Higher hit rate indicates better 
quality of inference. For hit rate, the comparative method always 
chooses the most frequent check-in time label as the predicted one 
from the time-labeled routes. Figure 2 and Figure 3 shows the 
results. We can find our VisTime-Miner significantly outperforms 
the baseline methods.  

   
Figure 2: Average KL divergence values for New York (left) and San 
Francisco (right), by varying the time-label ratio.  

 
Figure 3: Hit rate for New York (left) and San Francisco (right), by 
varying the time-label ratio. 

4. Conclusion 
This paper proposes to infer the visiting time distributions of loca-
tions from incomplete check-in data. We consider the route-based 
visiting correlation of time labels to model the visiting behavior of 
a location, and devise the semi-supervised learning framework, 
VisTime-Miner, to tackle the visiting time inference problem. 
Experiments on Gowalla check-in data show the promising results. 
Ongoing work is to use the location visiting time for time-aware 
applications such as route planning and recommendation. 
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