
Dynamic Provenance for SPARQL Updates using Named
Graphs

Harry Halpin
World Wide Web Consortium

Massachusetts Institute of Technology
Cambridge, MA, USA

hhalpin@w3.org

James Cheney
School of Informatics

University of Edinburgh
Edinburgh, United Kingdom

jcheney@inf.ed.ac.uk

ABSTRACT

While the (Semantic) Web currently does have a way to
exhibit static provenance information in the W3C PROV
standards, the Web does not have a way to describe dy-
namic changes to data. While some provenance models and
annotation techniques originally developed with databases
or workflows in mind transfer readily to RDF, RDFS and
SPARQL, these techniques do not readily adapt to describ-
ing changes in dynamic RDF datasets over time. In this pa-
per we explore how to adapt the dynamic copy-paste prove-
nance model of Buneman et al. [1] to RDF datasets that
change over time in response to SPARQL updates, how
to represent the resulting provenance records themselves as
RDF using named graphs in a manner compatible with W3C
PROV, and how the provenance information can be provided
as a SPARQL query. The primary contribution is a semantic
framework that enables the semantics of SPARQLUpdate to
be used as the basis for a ‘cut-and-paste’ provenance model
in a principled manner.

Keywords

SPARQL Update, provenance, versioning, RDF, semantics

1. OVERVIEW
Our hypothesis is that a simple vocabulary, composed of

insert, delete, and copy operations as introduced by Bune-
man et al. [1], along with explicit identifiers for update steps,
versioning relationships, and metadata about updates pro-
vides a flexible format for dynamic provenance on the Se-
mantic Web. A primary advantage of our methodology is it
keeps the changes to raw data separate from the changes in
provenance metadata, so legacy applications will continue to
work and the cost of storing and providing access to prove-
nance can be isolated from that of the raw data.

Copyright is held by the author/owner(s).
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577357 .

2. PROVENANCE SEMANTICS
A single SPARQL update can read from and write to sev-

eral named graphs (and possibly also the default graph).
Any graph that records the insertion and deletion of triples
from a given graph is considered a provenance graph for the
given graph. The general concept is that in a fully auto-
mated process one should be able to re-construct the state
of the given graph at any time from its provenance graph
by following the history records for each update operation
tracked by the provenance graph.

C denotes basic graph (or dataset) patterns that may con-
tain variables; R denotes conditions; P denotes patterns,
and Q denotes queries. A graph store D = (G, {gi 7→
G1 . . . , gn 7→ Gn}) consists of a default graph G0 together
with a mapping from names gi to graphs Gi.

We model the provenance of a single RDF graph that
is updated over time as a set of history records, includ-
ing the special provenance graph named prov which keeps
track of auxiliary named graphs such as G_v0,. . . ,G_vn and
G_u1. . . ,G_um that store the precise triples changed in each
update (although they do not store the entire graph) along
with associated metadata. Intuitively, G_vi is the named
graph showing G’s state in version i and G_ui is another
named graph showing the triples inserted into or deleted
from G by update i.

For queries, we consider a simple form of provenance which
calculates a set of named graphs “consulted” by the query.
Unlike in a relational language, the names of the graphs con-
sulted by a query are dependent on the data, since a pattern
such as 1 ?X {〈a b c〉} can consult any graph that happens
to contain 〈a b c〉. The set of sources of a pattern or query
is computed as follows:

SJCKDG =
⋃

{names(µ(C)) | µ ∈ JCKDG}

SJP1 1 P2K
D

G = SJP1K
D

G ∪ SJP2K
D

G

SJP1 1 P2K
D

G = SJP1K
D

G ∪ SJP2K
D

G

SJP1 1 P2K
D

G = SJP1K
D

G ∪ SJP2K
D

G

SJP 1 RKDG = SJP KDG

SJ1 ? ~X 1 P KD = SJP KD

SJ1 C 1 P KD = SJP KD

287



where the auxiliary function names(C) collects all of the
graph names occurring in a ground basic graph pattern C:

names({t1, . . . , tn}) = ∅

names(1 A {t1, . . . , tn}) = {A}

names(C C
′) = names(C) ∪ names(C′)

We define the provenance of an atomic update by transla-
tion to a sequence of updates that, in addition to performing
the requested updates to a given named graph, also con-
structs some auxiliary named graphs (the history records)
and triples in a special named graph for provenance infor-
mation called prov (the provenance graph). We detail how
provenance information should be attached to each SPARQL
Update operation u.

• A graph creation 1 g is translated to

1 g;
1 g v0;
1 1 {1 prov {

〈g version g v0〉, 〈g current g v0〉,
〈u1 type create〉, 〈u1 output g v0〉,
〈u1 meta mi〉, (metadata)

}}

• A drop operation (deleting a graph) 1 g is handled as
follows, symmetrically to creation:

1 g;
1 1 {1 prov {〈g current g vi〉}};
1 1 {1 prov {

〈ui type drop〉, 〈ui input g vi〉,
〈ui meta mi〉, (metadata)

}}

where g vi is the current version of g. Note that since
this operation deletes g, after this step the URI g no
longer names a graph in the store; it is possible to
create a new graph named g, which will result in a
new sequence of versions being created for it.

• A clear graph operation 1 g is handled as follows:

1 g;
1 1 {1 prov {〈g current g vi〉}};
1 1 {1 prov {

〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui type clear〉, 〈ui input g vi〉,
〈ui output g vi+1〉, 〈ui meta mi〉,
(metadata)

}}

• A load graph operation 1 h 1 g is handled as follows:

1 h 1 g;
1 1 {1 prov {〈g current g vi〉}};
1 1 {1 prov {

〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui type load〉, 〈ui input g vi〉,
〈ui output g vi+1〉, 〈ui source hj〉,
〈ui meta mi〉, (metadata)

}}

where hj is the current version of h.

• An insertion 1 {1 g {C}} 1 P is translated to a se-
quence of updates that creates a new version and links
it to URIs representing the update, as well as links to
the source graphs identified by the query provenance
semantics and a named graph containing the inserted
triples:

1 g ui;
1 {1 g ui {C}} 1 P ;
1 {1 g {C}} 1 P ;
1 g vi+1;
1 g 1 g vi+1;
1 1 {1 prov {〈g current g vi〉}};
1 1 {1 prov {

〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui input g vi〉, 〈ui output g vi+1〉,
〈ui type insert〉, 〈ui data g ui〉
〈ui source s1〉, . . . , 〈ui source sm〉,
〈ui meta mi〉, (metadata)}}

where s1, . . . , sm are the source graph names of P .

• A deletion 1 {1 g {C}} 1 P is handled similarly to an
insert, except for the update type annotation.

1 g ui;
1 {1 g ui {C}} 1 P ;
1 {1 g {C}} 1 P ;
1 g vi+1;
1 g 1 g vi+1;
1 1 {1 prov {〈g current g vi〉}};
1 1 {1 prov {

〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui input g vi〉, 〈ui output g vi+1〉,
〈ui type delete〉, 〈ui data g ui〉
〈ui source s1〉, . . . , 〈ui source sm〉,
〈ui meta mi〉, (metadata)}}

3. CONCLUSION
Provenance is a challenging problem for RDF. While some

progress has been made on provenance and annotation for
RDFS inferences and SPARQL queries, so far there has not
been work on provenance for SPARQL Update. We have
outlined an approach to the problem drawing on similar
work in database archiving and copy-paste provenance in
relational databases. We hope this will contribute to discus-
sion of how to standardize descriptions of changes to RDF
datasets, and possibly provide a way to translate changes
to underlying (e.g. relational or XML) databases to RDF
representations. In particular, the metadata carried by our
technique can use the PROV data model already developed
by the W3C Provenance Interchange Working Group [2].

4. REFERENCES
[1] Peter Buneman, Adriane Chapman, and James Cheney.

Provenance management in curated databases. In
Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, SIGMOD ’06,
pages 539–550, New York, NY, USA, 2006. ACM.

[2] Luc Moreau and Paolo Missier. PROV data model.
W3C Recommendation, April 2013.
http://www.w3.org/TR/2013/REC-prov-dm-20130430/.

288

http://www.w3.org/TR/2013/REC-prov-dm-20130430/

	Overview
	Provenance semantics
	Conclusion
	References



