Partout: A Distributed Engine for Efficient RDF Processing

Luis Galarraga
Télécom ParisTech
) Paris, France
luis.galarraga@telecom-

paristech.fr

ABSTRACT

The increasing interest in Semantic Web technologies has led
not only to a rapid growth of semantic data on the Web but
also to an increasing number of backend applications relying
on efficient query processing. Confronted with such a trend,
existing centralized state-of-the-art systems for storing RDF
and processing SPARQL queries are no longer sufficient. In
this paper, we introduce PARTOUT, a distributed engine for
fast RDF processing in a cluster of machines. We propose an
effective approach for fragmenting RDF data sets based on
a query log and allocating the fragments to hosts in a clus-
ter of machines. Furthermore, PARTOUT’S query optimizer
produces efficient query execution plans for ad-hoc SPARQL
queries.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
H.2.4 [Database Management|: Systems — Distributed
Databases

Keywords

Semantic Web, Distributed Systems, RDF, Data Partition-
ing, Distributed Query Processing

1. INTRODUCTION

The increasing interest in Semantic Web technologies led
to a rapid growth of available semantic data on the Web. Ini-
tiatives such as Wikidata' have emerged as native sources
of semantic data. In other respects, advances in information
extraction still enable efficient and accurate extraction of
knowledge from natural language text and its representation
in a machine-readable format — RDF (Resource Description
Framework). DBpedia?, for instance, has now reached a size
of 4 million entities and 2.6 billion RDF triples extracted

1http ://wikidata.org
2http ://dbpedia.org/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW’14 Companion, April 7-11, 2014, Seoul, Korea.

ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577302.

Katja Hose
Aalborg University
Aalborg, Denmark

khose@cs.aau.dk

267

Ralf Schenkel
University of Passau
Passau, Germany
ralf.schenkel@uni-
passau.de

from Wikipedia. As the number of Wikipedia articles in-
creases every day and as information extraction techniques
are still being improved, DBpedia, Wikidata, and similar
knowledge bases are continuously growing.

Approaches for query processing can be categorized into
two major groups: solutions involving query-time data re-
trieval and data warehousing. The first category often com-
prises indexing [2] of data dumps or federations of SPARQL
endpoints [6]. The main disadvantage of these systems is
the lack of control over the data, i.e., there is no guarantee
on response time or that the data is available during query
evaluation.

In data warehousing, the data is downloaded from the
Web, collected in a huge triple store, and updated from time
to time. Query processing in such a setup strongly bene-
fits from efficient centralized query optimization and execu-
tion. Still, the ever-growing amount of RDF data will sooner
or later result in scalability problems for a single machine.
Hence, approaches designed to run on clusters of machines
have been proposed [3]. Similar to distributed databases and
data warehouses in general, where data is often collected and
stored to serve a particular use case, it is possible for many
applications to derive a representative query workload. By
exploiting this information, we can achieve an additional
gain in performance as triples accessed together can be al-
located on the same machine, optimizing for efficient local
execution. PARTOUT® implements a query-load aware par-
titioning and allocation of RDF triples for efficient query
processing on a cluster of machines.

2. PARTOUT

At a high level, PARTOUT consists of a dedicated central
coordinator and a cluster of n hosts that store the actual
data. The central coordinator is responsible for distributing
the RDF data among the hosts, building efficient distributed
query plans for SPARQL queries, and coordinating query
execution. Each host runs a triple store, which in our im-
plementation conforms to an adapted version of RDF-3X [4]
— more details on our implementation and PARTOUT in gen-
eral are available in [1].

2.1 Data Partitioning and Allocation
Partitioning and allocation is done in three main steps:
Building a global query graph. Given a query load

QL = {qi1,...,qr} as bag of SPARQL queries, either col-

lected from a running system or estimated from queries in

3pronounced like the French word partout; the name is a
combination of the terms partition and scale-out



applications accessing the RDF data, for each query g € QL,
we normalize and anonymize its triple patterns by replacing
infrequent URIs and literals with variables in triple patterns.
Then, for each normalized triple pattern p in query ¢, we ob-
tain its anonymized version p’ = w(p) by replacing its vari-
ables by the same anonymized symbol 2. The anonymized
triple patterns are used to build a global query graph G(QL),
where each node is an anonymized triple pattern and there
exists an edge between two nodes if the sources of such
anonymized patterns join in the query load.

Fragmentation. The second step takes a set of triples
T (content of the triple store) and a query load QL and
produces a set of disjoint partitions of 7'. Similar to hori-
zontal fragmentation of relations, we extract a set of simple
predicates from QL. A simple predicate is a constraint on a
triple component (subject, property, or object). Examples
are prop = type or isI RI(obj). For each node p’ in G(QL),
each position that does not contain 2 creates a simple predi-
cate. SPARQL filter conditions are also used to extract sim-
ple predicates. Based on the set of simple predicates S(QL),
we generate the set M’ of minterms, i.e., all conjunctive com-
binations of simple predicates in their positive or negated
form. Each minterm m € M defines a non-overlapping par-
tition of the data set T'. Given a triple store 1" and a set
of simple predicates S(QL) as input, the COM_MIN algo-
rithm [5] iteratively computes a minimal subset of indepen-
dent simple predicates for partitioning.

Fragment Allocation. Once fragments have been de-
fined, we allocate them to the n hosts in our cluster. The
allocation procedure has two contradicting goals, (1) assign
fragments that are used together in a (part of a) query to
the same host to guarantee local execution, and (2) balance
the load over all nodes in the cluster. This is achieved by
means of an iterative greedy routine that sorts fragments in
descending order by load and in each step assigns a frag-
ment to the most beneficial host. The load of a fragment is
a function of its size and the number of queries in QL that
use that fragment. The benefit of allocating a new fragment
to a host, is inversely proportional to the host’s current load
and directly proportional to the number of already allocated
fragments that join with the new fragment. Both the load
and the benefit of a fragment with respect to a host use the
information encoded in the global query graph G(QL).

2.2 Query Processing

Distributed query processing in PARTOUT starts when the
user issues a query against the coordinator and consists
of three phases. First, the query is parsed and converted
into an RDF-3X execution plan using the statistics in the
coordinator manifest file (built at allocation time). This
plan resembles an operator tree where the leaves access the
data sources. Since this plan is not optimized for a dis-
tributed setup, the second phase transforms the centralized
query plan into a distributed query plan by (a) resolving the
locations of the data sources i.e., which hosts are relevant
to a triple pattern, and (b) computing the optimal place of
evaluation for the non-leaf operators. This phase utilizes a
modified version of the RDF-3X cost model that takes into
account remote data transfers. Once the coordinator has
found a cheap query execution plan, it sends the plan to the
relevant hosts, which execute the assigned operators and re-
trieve the results to either the coordinator or other host.

268

150

100

50

s

0 100 200 300 400 500 600 700 800
concurrent queries

== Centralized Partout
==By property ==HAR+

Figure 1: Throughput for the BTC 2008 dataset.
3. RESULTS AND CONCLUSIONS

The evaluation depicted in Figure 1 compares PARTOUT
in terms of throughput, against other approaches for RDF
query processing, including (a) a centralized RDF-3X setup,
(b) PARTOUT using naive partitioning by predicate and (c)
an improvement of the approach presented in [3], which im-
plements RDF data partitioning and allocation based on
graph partitioning techniques. Unlike the original approach,
this solution avoids Map-Reduce operations and is there-
fore faster. Moreover, both approaches allow data replica-
tion. The experiments use the Billion Triple Challenge 2008
dataset* (+500M triples). 30 random queries keeping a bal-
ance between star and path queries were extracted and used
as query load for partitioning. They were run in parallel
to simulate a concurrent workload. Using one coordinator
and 3 hosts, PARTOUT outperforms other approaches mainly
because of its load-balancing policy which allows different
computers to process queries locally in parallel against a
much smaller subset of the data. Nevertheless, the absence
of data replication often results in some queries being penal-
ized when some of their relevant fragments are distributed
among several hosts. As future work, we envision to com-
bine data partitioning and allocation with smart replication
of fragments to improve the performance of the system both
in terms of throughput and response time.

queries per second

0

4. REFERENCES

[1] L. Galdrraga, K. Hose, and R. Schenkel. Partout: A
Distributed Engine for Efficient RDF Processing.
CoRR, abs/1212.5636, 2012.

A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U.
Sattler, and J. Umbrich. Data summaries for
on-demand queries over linked data. In WWW, pages
411-420, 2010.

J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
Querying of Large RDF Graphs. PVLDB,
4(11):1123-1134, 2011.

T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J.,
19(1):91-113, 2010.

M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.

A. Schwarte, P. Haase, K. Hose, R. Schenkel, and

M. Schmidt. FedX: Optimization Techniques for
Federated Query Processing on Linked Data. In ISWC,
pages 601-616, 2011.

2l

3]

(4]

(5]

(6]

4http ://challenge.semanticweb.org/





