
BUbiNG: Massive Crawling for the Masses∗

Paolo Boldi Andrea Marino Massimo Santini Sebastiano Vigna
Dipartimento di Informatica

Università degli Studi di Milano, Italy

{boldi,marino,santini,vigna}@di.unimi.it

ABSTRACT

Although web crawlers have been around for twenty years
by now, there is virtually no freely available, open-source
crawling software that guarantees high throughput, over-
comes the limits of single-machine tools and at the same
time scales linearly with the amount of resources available.
This paper aims at filling this gap.

Categories and Subject Descriptors

H.3.4 [Information storage and retrieval]: Systems and
software—World Wide Web (WWW)

1. INTRODUCTION
A web crawler is a system that downloads systematically a

large number of web pages starting from a seed and following
hypertextual links. In this paper we describe the design and
implementation of BUbiNG, our new web crawler built upon
the experience with UbiCrawler [1] and on the last ten years
of research on the topic. BUbiNG main features are the
following:

• It is pure Java and open source, released under the
GNU GPLv3+ and available at the LAW web site.1

• It is fully distributed: multiple agents perform the
crawl concurrently and handle the necessary coordi-
nation without the need of any central control; given
enough bandwidth, the crawling speed grows linearly
with the number of agents.

• Its design acknowledges that CPUs and OS kernels
have become extremely efficient in handling a large
number of threads, and that large amounts of RAM
are by now easily available at a moderate cost.

∗The authors were supported by the EU-FET grant NA-
DINE (GA 288956).
1http://law.di.unimi.it/

Copyright is held by the author/owner(s).
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577304.

• It is very fast: on a 64-core, 64GB workstation it can
download hundreds of million of pages at more than
9 000 pages per second respecting politeness, analyz-
ing, compressing and storing more than 140 MB/s of
data.

• It guarantees that politeness intervals are satisfied both
at the host and at the IP level, that is, that two data
requests to the same host or IP are separated by at
least a specified amount of time. The two intervals can
be set independently, and, in principle, customized per
host or IP.

• It guarantees that hostwise the visit is breadth first,
and that also the global behavior is as close as pos-
sible to a breadth-first visit, taking politeness limits
into account; moreover, the global policy can be easily
customized.

For more details about previous works or the main issues
in the design of crawlers, we refer the reader to [5].

2. DESIGN HIGHLIGHTS
BUbiNG stands on a few architectural choices which in

some cases contrast the common folklore wisdom. We took
our decisions after carefully benchmarking several options
and gathering the hands-on experience of similar projects.

• The fetching logic of BUbiNG is built around thou-
sands of identical fetching threads performing essen-
tially only synchronous (blocking) I/O. Experience with
recent Linux kernels and increase in the number of
cores per machine shows that this approach consis-
tently outperforms asynchronous I/O.

• Lock-free [3] data structures are used to “sandwich”
fetching threads, so that they never have to access
lock-based data structures. This approach is partic-
ularly useful to avoid direct access to synchronized
data structures with logarithmic modification time, as
contention between fetching threads can become very
significant. Such structures are accessed by a single
thread that enqueues the result of the slow-access op-
eration to a lock-free queue, where any fetching thread
can pick it up quickly.

• URL storage (both in memory and on disk) is entirely
performed using byte arrays. While this approach
might seem anachronistic, it pays off in terms of foot-
print (a String instance can occupy three times the
memory of the corresponding byte array) and in terms
of number of created objects.

227



Resources Resources/s Speed in MB/s
Crawler Machines (Millions) overall per agent overall per agent

Nutch (ClueWeb09) 100 (Hadoop) 1 200 430 4.3 10 0.1
Heritrix (ClueWeb12) 5 2 300 300 60 19 3.9
IRLBot 1 6 380 1 790 1 790 40 40
BUbiNG (iStella) 1 500 5 400 5 400 135 135
BUbiNG (in vitro) 4 1 000 36 600 9 150 584 146

Table 1: Comparison between BUbiNG and the main existing open-source crawlers. Resources are HTML
pages for ClueWeb09 and IRLBot, but include other data types (e.g., images) for ClueWeb12. For reference,
we also report the throughput of IRLbot [2], although the latter is not publicly available.

• Following UbiCrawler’s design [1], BUbiNG agents are
identical and autonomous. The assignment of URLs to
agents is entirely customizable, but by default we use
consistent hashing as a fault-tolerant, self-configuring
assignment function.

We now provide a few highlights on data structures that are
novel and central in the design of BUbiNG.

Workbench. It is an in-memory data structure that con-
tains the next URLs to be visited. It is one of the main
novel ideas in BUbiNG’s design.

URLs associated with a specific host are kept in a struc-
ture called visit state, containing a FIFO queue of the next
URLs to be crawled for that host along with a next-fetch

field that specifies the first instant in time when a URL from
the queue can be downloaded, according to the host polite-
ness configuration. Visit states are further gathered by IP
address in workbench entries: a workbench entry contains
a queue of visit states sharing a common IP, prioritized by
their next-fetch field, and an IP-specific next-fetch, con-
taining the first instant in time when the IP address can
be accessed again, according to the IP politeness configura-
tion. The workbench is the queue of all workbench entries,
prioritized on the next-fetch field of each entry maximized

with the next-fetch field on the top element of its queue
of visit states. In other words, the workbench is a prior-
ity queue of priority queues of FIFO queues. Due to our
choice of priorities there is a host that can be visited with-

out violating host or IP politeness if and only if the first

URL of the top visit state of the top workbench entry can be

visited. This approach improves significantly over IRLBot’s
two-queues technique [2], as it can detect in constant time
the next URL to process.

Cache and sieve. To keep track of already-seen URLs,
every time a URL is discovered it is checked against a high-
performance approximate LRU cache containing 128-bit fin-
gerprints: more than 90% of the URLs discovered are dis-
carded at this stage. The cache has also another important
goal: it avoids that frequently found URLs assigned to an-
other agent are retransmitted several times. URLs that pass
the cache check are enqueued to a sieve, a data structure
originally used by Mercator [4] that stores fingerprints of
the set of seen URLs on disk and merges them periodically
with a set accumulated in RAM, emitting new URLs that
must be crawled. We tested an alternative sieve described
in [2], the DRUM (a extension of the Mercator sieve) but
DRUM destroys the breadth-first order of the visit, and we
found no performance advantages with respect to a standard
Mercator sieve coupled with our cache.

Distributor. It is a high-priority thread that processes
URLs that have been emitted by the sieve. The main task

of the distributor is to dequeue iteratively a URL from the
sieve, checking whether it belongs to a host for which a visit
state already exists, and then either creating a new visit
state or enqueuing the URL to an existing one. If a new
visit state is necessary, it is passed to a set of DNS threads

that perform DNS resolution and then move the visit state
on the workbench. Since, however, breadth-first visit queues
grow exponentially, and the workbench can use only a fixed
amount of in-core memory, it is necessary to virtualize the
workbench, that is, writing on disk part of the URLs coming
out of the sieve. In the first versions of BUbiNG, we tried
designs inspired by the BEAST module of IRLbot [2], which
however is only vaguely specified; moreover, BEAST-based
implementations performed poorly unless we discarded all
sites generating errors. Currently, BUbiNG uses a sophis-
ticated memory-mapped system that can handle millions of
on-disk FIFO queues by appending elements in a log-like
fashion and periodically collecting unused space. Alterna-
tively, if page-level prioritization is necessary, BUbiNG can
virtualize the workbench using the Berkeley DB.

3. EXPERIMENTS
We ran two kinds of experiments: one batch was per-

formed in vitro with a HTTP proxy simulating network
connections towards the web and generating fake HTML
pages. Four agents (with IP delay 500ms and host delay 4 s)
downloaded on average 36 600 pages per second. A second
batch of experiments was run at iStella, an Italian commer-
cial search engine that kindly provided us with a 48-core,
512GB RAM machine with a 2Gb/s link that we were able
to fully saturate, downloading 5 400 pages per second using
a single agent. Table 1 reports comparison with public data
about other crawlers.

4. REFERENCES
[1] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.

Ubicrawler: A scalable fully distributed web crawler.
Software: Practice & Experience, 34(8):711–726, 2004.

[2] H. Lee, D. Leonard, X. Wang, and D. Loguinov. Irlbot:
Scaling to 6 billion pages and beyond. ACM Trans. Web,
3(3):8:1–8:34, July 2009.

[3] M.M. Michael and M.L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms.
In Proc. 15th ACM PODC, pages 267–275. ACM, 1996.

[4] M. Najork and A. Heydon. High-performance web
crawling. In James Abello, Panos M. Pardalos, and
Mauricio G. C. Resende, eds., Handbook of massive data
sets, pages 25–45. Kluwer Academic Publishers, 2002.

[5] C. Olston and M. Najork. Web crawling. Foundations
and Trends in Information Retrieval, 4(3):175–246, 2010.

228




